записать второй закон ньютона в векторной форме

Второй закон Ньютона в векторной форме: объяснение + 5 примеров решения задач

Физиков всегда увлекали теоретические знания трех «китов» классической динамики, их грамотное практическое применение. Понимание основ способствует представлению примитивных движений окружающих предметов, подчиняющихся ньютоновской механике. Второй закон Ньютона в векторном виде определен Лукасовским профессором по специализации: математика и физика. Трактовка: сдвиг изменяется пропорционально силе, приложенной к объекту. Направление перемещения соответствует прямой линии, вдоль действия данной силы.

записать второй закон ньютона в векторной форме

Второй закон Ньютона в векторном виде формулируется иначе современными физиками: сила, оказывающая воздействие на объект, составляет равенство произведения массы тела на ускорение, придаваемого силой. Направления физических величин совпадают. Его альтернативное название – главным тождеством (правилом) динамики.

Как записывается второй закон ньютона в векторной форме

Второй закон Исаака Ньютона записывается в векторной или скалярной форме.

Скаляр – величина без направления, вектор – указывает ориентацию смещения.

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

если расписать через векторные величины – это производная проекций скорости по времени: дважды берется дифференциал x, y, z по t):

записать второй закон ньютона в векторной форме

Второй образец записи главного тождества динамики через импульс тела p:

записать второй закон ньютона в векторной форме

Таблица отражает особенности, присущие основному правилу динамики, используемые при решении заданий.

Физическая системаМакроскопическое тело
МодельМатериальная точка
Описываемое явлениеПеремещение, имеющее ускорение
Примеры проявленияПередвижение планет; падение, разгон, торможение предметов
Особенности1. Объективно для любых действующих сил;
2. F и a сонаправлены;
3. Существование нескольких сил представлено равнодействующей;
4. Если Fрез=0, то a=0, получается закон инерции;
5. Допустимо применение совместно с законом инерции, эквивалентом действия и противодействия.

Внимание! Далее ориентированные параметры представлены латинскими буквами, выделенными полужирным курсивом.

Примеры задач и их решение

Джон Сантаяна – американский философ, писатель подметил: «Ребенок, получивший образование только в учебном заведении – необразованный ребенок».

Его соотечественник оратор Джим Рон высказывал схожую мысль: «Образование поможет выжить. Самообразование приведет Вас к успеху».

Собственной деятельностью Герман Оскарович Греф – российский экономист продемонстрировал верность, высказанного им утверждения: «Не верю в науку, не связанную с практикой, в образование, не связанное с практикой…»

Для достижения «признания» следует научиться решать задания любого уровня сложности.

Целесообразно рассмотреть ключевые задания на примерах, которые дополнительно могут усложняться.

Справка! Для успешного прохождения «миссий» по усвоению материала, нужно использовать ряд предписаний:

Рекомендуем вам посмотреть видео о алгоритме решения всех задач на второй закон Ньютона в векторном виде.

Задача 1 – идеальна для «новичков»

Бруски массами 4 и 6 килограмм связаны нерастяжимой нитью, находятся на гладкой горизонтальной поверхности. К материальной точке с большей массой приложена F=12 Н, воздействующая горизонтально. Каково ускорение движения обоих брусков? Чему равна сила натяжения нити?

записать второй закон ньютона в векторной форме

Нить нерастяжима, значит, материальные точки сдвигаются синхронно и равноускоренно.

записать второй закон ньютона в векторной форме

общий вид уравнения движения.

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

Из эквивалента действия и противодействия, получается

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

Задача 2 – подходит для проверки усвоенного материала

Есть однородный шарик массой 0,5 килограмм. К его центру прикладывают F=3,9Н. Нужно определить модуль и направление F1, необходимой для перемещения с ускорением 7 м/с 2 сонаправленного F.

записать второй закон ньютона в векторной форме

Второй закон Ньютона в векторном виде:

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

F, a и F1 располагаются вдоль одной прямой.

Микрозадача: найти проекцию F1 на ось Х.

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

ось Х и F1 одинаково ориентированы, если записать второй закон ньютона в векторной формето записать второй закон ньютона в векторной форме, – противонаправлены.

Буквы заменяются цифрами:

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

Ответ отрицательный, поэтому ориентация F1 противоположена относительно оси Х.

Задача 3 – повышенный уровень сложности

После толчка брусок начал скольжение вверх из точки 0 по гладкой наклонной плоскости. Его начальная скорость равна 5,3 м/с. Уклон поверхности 30°. Определить нахождение бруска через 4 секунды, относительно 0.

записать второй закон ньютона в векторной форме

Пусть 0 – начало координат. Строятся оси X и Y, отображаются: mg – вес, N – реакция опоры (перпендикулярна поверхности скольжения).

Второй закон сэра Ньютона в векторной форме: записать второй закон ньютона в векторной форме. Силы, оказывающие воздействие на брусок, носят постоянный характер, смещение вдоль Х, равноускорено.

Нужно использовать кинематическое равенство:

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

Нахождение проекции ускорения на ось Х получается из главного правила динамики.

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

Делается подстановка в кинематическое уравнение:

записать второй закон ньютона в векторной форме

Задача 4 – упрощенная версия

Нерастяжимой нитью, перекинутой через невесомый блок, расположенный на наклонной поверхности, связаны бруски массами 16 и 24 грамма. Уклон составляет 30°. Надо найти ускорения, перемещающихся предметов. Трение не учитывать.

записать второй закон ньютона в векторной форме

Пусть m2 перетягивает. Изображаются оси координат.

записать второй закон ньютона в векторной форме

Записываются уравнения движения брусков по проекциям на оси X и Z:

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

Нить нерастяжима, поэтому записать второй закон ньютона в векторной форме. Силы натяжения равны, поскольку блок и нить невесомы.

Левые и правые части формул суммируются:

записать второй закон ньютона в векторной форме

Результат выходит больше нуля, ориентация сдвига выбрана верно.

Задача 5 – сверхсложный вариант

Грузовик массой 2 тонны переезжает выпуклую эстакаду со скоростью 27 км/ч. Радиус кривизны дуги составляет 60 метров. Чему равна сила посередине моста, которая давит на грузовой автомобиль? Какова должна быть минимальная быстрота перемещения, чтобы давление на поверхность в верхней точке отсутствовало?

записать второй закон ньютона в векторной форме

Влияние силы тяжести обозначается – mg, нормальная реакция эстакады – N.

Из эквивалента действия и противодействия выходит:

записать второй закон ньютона в векторной форме

F искомая величина.

По второму правилу, установленному Ньютоном, центростремительное ускорение представляет сумму сил:

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

Давления на поверхность отсутствует, в случае N=0:

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме=588 м/с = 87,3 км/ч

Автомобиль оторвется от моста, если скорость передвижения будет выше минимальной.

Еще примеры решения простых задач на законы Ньютона вы можете посмотреть в видеоролике.

Из представленных выше задач можно увидеть, что второй закон, автора фундаментального труда «Математические начала натуральной философии» – Ньютона в векторной форме ключевое тождество, описывающее физические явления, способствующее решению задач по механике.

Источник

Записать второй закон ньютона в векторной форме

Но уже говорилось о том, что ускорение зависит от массы тела: a ∼ 1 m a \sim \frac 1m

Обощая эти зависимости получим:

\[a = \frac, \quad \mathrm<или>\quad F = ma.\]

Теперь рассмотрим свойства силы, устанавливаемые опытным путём:

1) Результат действия (проявления) силы зависит от направления действующей силы, следовательно, сила – величина векторная.

3) Результат действия (проявления) силы зависит от точки приложения силы.

записать второй закон ньютона в векторной форме
Рис. 4

Из приведённых свойств силы следует, как обобщение опытных фактов, второй закон Ньютона:

Второй закон Ньютона: Сумма всех сил, действующих на тело, равна произведению массы тела на ускорение, сообщаемое этой суммой сил:

Произведение массы тела и его скорости называют импульсом тела:

тогда получим новое выражение для второго закона Ньютона:

Из второго закона в частности следует, что ускорение тела, подвергающегося действию нескольких сил, равно сумме ускорений, сообщаемых каждой силой:

В торое (импульсное) выражение имеет более общий характер и справедливо при любых скоростях.

Как правило, в школьном курсе физики сила со временем не меняется. Однако последняя импульсная форма записи позволяет учесть зависимость силы от времени, и тогда изменение импульса тела будет найдено с помощью определённого интеграла на исследуемом интервале времени. В более простых случаях (сила изменяется со временем по линейному закону) можно брать среднее значение силы.

записать второй закон ньютона в векторной форме
Рис. 5
записать второй закон ньютона в векторной форме
Рис. 6

Следует добавить ещё одно очень важное следствие второго закона Ньютона, связанное с равенством инертной и гравитационной масс.

Неразличимость гравитационной и инертной масс означает, что и ускорения, вызванные гравитационным взаимодействием (законом всемирного тяготения) и любым другим тоже неразличимы.

Источник

Закон cохранения импульса

записать второй закон ньютона в векторной форме

9 класс, 10 класс, ЕГЭ/ОГЭ

Импульс: что это такое

Как-то раз Рене Декарт (это который придумал ту самую декартову систему координат) решил, что каждый раз считать силу, чтобы описать процессы — как-то лень и сложно.

Для этого нужно ускорение, а оно не всегда очевидно. Тогда он придумал такую величину, как импульс. Импульс можно охарактеризовать, как количество движения — это произведение массы на скорость.

Импульс тела

→ →
p = mv

p — импульс тела [кг*м/с]

Закон сохранения импульса

В физике и правда ничего не исчезает и не появляется из ниоткуда. Импульс — не исключение. В замкнутой изолированной системе (это та, в которой тела взаимодействуют только друг с другом) закон сохранения импульса звучит так:

Закон сохранения импульса

Векторная сумма импульсов тел в замкнутой системе постоянна

А выглядит — вот так:

Закон сохранения импульса

→ → →
p1 + p2 + … + pn = const

p — импульс тела [кг*м/с]

Простая задачка

Мальчик массой m = 45 кг плыл на лодке массой M = 270 кг в озере и решил искупаться. Остановил лодку (совсем остановил, чтобы она не двигалась) и спрыгнул с нее с горизонтально направленной скоростью 3 м/с. С какой скоростью станет двигаться лодка?

Решение:

Запишем закон сохранения импульса для данного процесса.

p0 — это импульс системы мальчик + лодка до того, как мальчик спрыгнул,

p1 — это импульс мальчика после прыжка,

p2 — это импульс лодки после прыжка.

Изобразим на рисунке, что происходило до и после прыжка.

записать второй закон ньютона в векторной форме

Если мы спроецируем импульсы на ось х, то закон сохранения импульса примет вид
0 = p1 — p2
p1 = p2

Подставим формулу импульса.
mV1 = MV2

Выразим скорость лодки V2:
V2 = mV1/M

Подставим значения:
V2 = 45*3/270 = 3/6 = ½ = 0,5 м/с

Ответ: скорость лодки после прыжка равна 0,5 м/с

Задачка посложнее

Решение: Для данной системы выполняется закон сохранения импульса:

записать второй закон ньютона в векторной форме

Импульс системы до удара — это сумма импульсов тел, а после удара — импульс «получившегося» в результате удара тела.

Спроецируем импульсы на ось х:

После неупругого удара получилось одно тело массы m1 + m2, которое движется с искомой скоростью:

m1v1 — mv2 = (m1 + m2) v

Отсюда находим скорость тела, образовавшегося после удара:

v = (m1v1 — mv2)/(m1 + m2)

Переводим массу в килограммы и подставляем значения:

В результате мы получили отрицательное значение скорости. Это значит, что в самом начале на рисунке мы направили скорость после удара неправильно.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Это никак не влияет на значение получившееся значение.

Ответ: скорость системы тел после соударения равна v = 0,2 м/с.

Второй закон Ньютона в импульсной форме

Второй закон Ньютона в импульсной форме можно получить следующим образом. Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона, спроецированный на ось х, сонаправленную с направлением движения и ускорением:

Применим выражение для ускорения

Полученное выражение является пропорцией. Применив основное свойство пропорции, получим такое выражение:

В правой части находится Δv =v —v0 — это разница между конечной и начальной скоростью.

Преобразуем правую часть

Раскрыв скобки, получим

Заменим произведение массы и скорости на импульс:

То есть, вектор Δv⋅m – это вектор Δp.

Тогда второй закон Ньютона в импульсной форме запишем так

Вернемся к векторной форме, чтобы данное выражение было справедливо для любого направления вектора ускорения.

Задачка про белку отлично описывает смысл второго закона Ньютона в импульсной форме

Белка с полными лапками орехов сидит на гладком горизонтальном столе. И вот кто-то бесцеремонно толкает ее к краю стола. Белка понимает законы Ньютона и предотвращает падение. Но как?

Решение:

Чтобы к белке приложить силу, которая будет толкать белку в обратном направлении от края стола, нужно создать соответствующий импульс (вот и второй закон Ньютона в импульсной форме подъехал).

Ну, а чтобы создать импульс, белка может выкинуть орехи в сторону направления движения — тогда по закону сохранения импульса ее собственный импульс будет направлен против направления скорости орехов.

Реактивное движение

В основе движения ракет, салютов и некоторых живых существ: кальмаров, осьминогов, каракатиц и медуз — лежит закон сохранения импульса. В этих случаях движение тела возникает из-за отделения какой-либо его части. Такое движение называется реактивным.

Яркий пример реактивного движения в технике — движение ракеты, когда из нее истекает струя горючего газа, которая образуется при сгорании топлива.

Сила, с которой ракета действует на газы, равна по модулю и противоположна по направлению силе, с которой газы отталкивают от себя ракету:

Сила F2 называется реактивной. Это та сила, которая возникает в процессе отделения части тела. Особенностью реактивной силы является то, что она возникает без взаимодействия с внешними телами.

Закон сохранения импульса позволяет оценить скорость ракеты.

mг vг = mр vр,
где mг — это масса горючего,

vг — скорость горючего,

vр — скорость ракеты.

Отсюда можно выразить скорость ракеты:

Скорость ракеты при реактивном движении

vр = mг vг / mр
mг — это масса горючего [кг]

vг — скорость горючего [м/с]

mр — масса ракеты [кг]

v р — скорость ракеты [м/с]

Эта формула справедлива для случая мгновенного сгорания топлива. Мгновенное сгорание — это теоретическая модель. В реальной жизни топливо сгорает постепенно, так как мгновенное сгорание приводит к взрыву.

Источник

Записать второй закон ньютона в векторной форме

Приступая к формулировке второго закона, следует вспомнить, что в динамике вводятся две новые физические величины – масса тела m и сила записать второй закон ньютона в векторной формеа также способы их измерения. Первая из этих величин – масса – является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

Вторая – сила записать второй закон ньютона в векторной форме– является количественной мерой действия одного тела на другое.

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

В качестве примера рассмотрим данный рисунокс велосипедистом. Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Более подробно о записи уравнений. Если в некотором направлении тело двигается равномерно или покоится, то алгебраическая сумма (с учетом знаков) проекций сил равна нулю. Если в некотором направлении тело движется равноускоренно, то алгебраическая сумма проекций сил равна произведению массы на ускорение, согласно второму закону Ньютона.

Лебедь, Щука и Рак

записать второй закон ньютона в векторной форме

Для начала о бозначим силы, выберем координатные оси.

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

записать второй закон ньютона в векторной форме

2)Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.

записать второй закон ньютона в векторной форме
записать второй закон ньютона в векторной форме
записать второй закон ньютона в векторной форме

3)Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.

записать второй закон ньютона в векторной форме
записать второй закон ньютона в векторной форме
записать второй закон ньютона в векторной форме

Главное запомнить

1) Если тело покоится или движется равномерно, то равнодействующая сила равна нулю и ускорение равно нулю;
2) Если тело движется равноускоренно, значит равнодействующая сила не нулевая;
3) Направление вектора равнодействующей силы всегда совпадает с направлением ускорения;
4) Уметь записывать уравнения проекций действующих на тело сил

Второй закон Ньютона – это фундаментальный закон природы; он является обобщением опытных фактов, которые можно разделить на две категории:

Если на тела разной массы подействовать одинаковой силой, то ускорения, приобретаемые телами, оказываются обратно пропорциональны массам:

записать второй закон ньютона в векторной формепри F = const.

Если силами разной величины подействовать на одно и то же тело, то ускорения тела оказываются прямо пропорциональными приложенным силам:

записать второй закон ньютона в векторной формепри m = const.

Если равнодействующая сила записать второй закон ньютона в векторной формето тело будет оставаться в состоянии покоя или равномерного прямолинейного движения. Таким образом, формально второй закон Ньютона включает как частный случай первый закон Ньютона, однако первый закон Ньютона имеет более глубокое физическое содержание – он постулирует существование инерциальных систем отсчета.

Особенностии второго закона Ньютона:

Источник

Второй закон Ньютона

Сила – физическая величина, измеряемоя прибором динамометром и характеризующей действие одного тела на другое. Если на тело действует неуравновешенная сила, то такое тело обязательно изменяет свою скорость или направление движения. Другими словами, действие на тело неуравновешенной силы приводит к появлению ускорения.

Возникает вопрос: каким образом сила и вызываемое ей ускорение связаны друг с другом? Какова формула, выражающая связь этих величин?

записать второй закон ньютона в векторной форме

Ответ на этот вопрос дает второй закон Ньютона: вектор силы, действующей на тело, в инерциальной системе отсчета равен произведению массы на вектор ускорения этого тела.

записать второй закон ньютона в векторной форме

Чтобы убедиться в справедливости этой формулы, нужно измерить величины F и ma по отдельности, а затем сравнить их численные значения и направления векторов. Сделаем это. Возьмем прибор, представляющий из себя легко вращающийся диск (1). На нем укреплены указатель частоты вращения (2) и толстая линейка (3), одновременно служащая «рельсом» для ролика (4). При помощи нити ролик привязан к динамометру (5). При вращении ролик натянет нить, и динамометр покажет некую силу F, тем бо’льшую, чем быстрее вращается диск.

Вращая диск, мы получим, например, такие данные:

Ролик массой 0,25 кгРолик массой 0,5 кг
радиус (R), м0.20.20.20.2
период (T), с1212
ускорение (а)» 8 м/с2» 2 м/с2» 8 м/с2» 4 м/с2
сила (F)»2 H»0.5 H»4 H»1 H

Рассмотрим, как получились эти числа. Радиус R – это расстояние от ролика до центра диска. Во время вращения диска ролик откатывается по линейке до отметки 20 см. Значит, R = 0.2 м. Период T – это время, за которое диск совершает один оборот. Указатель частоты вращения на рисунке показывает 1 об/с. То есть за секунду совершается один оборот. Следовательно, период T = 1 с. Вычисляя центростремительное ускорение ролика по формуле a = 4p2R/T2, получим: 4 · 3.142 · 0.2 / 12 » 8 м/с2. Именно это число и записано в клетке «ускорение».

Итак, справедливо ли равенство F=ma? Перемножим подчеркнутые числа верхней таблицы. Имеем: 2 Н » 0.25 кг · 8 м/с2. Другими словами, F » ma.

записать второй закон ньютона в векторной форме

Теперь убедимся, что векторы F и ma сонаправлены. Вспомним, что вектор центростремительного ускорения тела при его равномерном движении по окружности всегда направлен к центру этой окружности. Выясним, куда направлен вектор силы, придающей ролику это ускорение. Вообразим на мгновение, что нить, связывающая ролик и динамометр, вдруг оборвалась. Что произойдет с роликом? Он покатится по линейке и соскочит с диска. Следовательно, нить тянула ролик к оси вращения, не позволяя ему откатиться дальше. Другими словами, вектор F сонаправлен с вектором ускорения.

Таким образом мы подтвердили истинность векторного равенства: F = ma.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *