Адронный коллайдер что это

Адронный коллайдер что это

Большой адронный коллайдер: назначение, открытия и мифы

Большой адронный коллайдер (БАК) — самый большой и мощный ускоритель частиц в мире. Он был построен Европейской организацией ядерных исследований (ЦЕРН).

Адронный коллайдер что это

10 000 ученых и инженеров из более чем 100 разных стран работали вместе над созданием этого проекта. Его строительство стоило 10 миллиардов долларов. В настоящее время это самая большая и сложная экспериментальная исследовательская установка в мире.

Как выглядит Большой адронный коллайдер

Это гигантский замкнутый туннель, построенный под землей. Он имеет длину 27 километров и уходит на глубину от 50 до 175 метров.

Адронный коллайдер что это

Находится коллайдер на границе Франции и Швейцарии, недалеко от города Женева.

Как работает Большой адронный коллайдер

Слово «коллайдер» в этом случае можно перевести как «сталкиватель». А сталкивает он адроны — класс частиц, состоящих из нескольких кварков, которые удерживаются сильной субатомной связью. Протоны и нейтроны являются примерами адрона.

Адронный коллайдер что это

БАК в основном использует столкновение протонов в своих экспериментах. Протоны — это части атомов с положительным зарядом. Коллайдер ускоряет эти протоны в тоннеле, пока они не достигнут почти скорости света. Различные протоны направлены через туннель в противоположных направлениях. Когда они сталкиваются, то можно зафиксировать условия, подобные ранней Вселенной.

Откуда берутся протоны в для столкновения?

Для этого ионизируются атомы водорода. Атом водорода состоит из одного протона и одного электрона. Во время ионизации удаляется электрон и остаётся нужный для эксперимента протон.

БАК состоит из трёх основных частей:

Зачем нужен Большой адронный коллайдер

С помощью БАК можно изучить элементарные частицы и способы их взаимодействия. Он уже многому научил нас в области квантовой физики, и исследователи надеются узнать больше о структуре пространства и времени. Наблюдения, которые делают учёные, помогают понять, какой могла быть Вселенная в течение миллисекунд после Большого взрыва.

Адронный коллайдер что это

Какие открытия совершили на БАК

На данный момент самое большое открытие — это бозон Хиггса. Это одно из важнейших открытий 21 века, объясняющее существование массы частиц во Вселенной. Это подтверждает Стандартную модель, с помощью которой сегодня физики описывают взаимодействие элементарных частиц. Именно на этом взаимодействии основано устройство всей Вселенной.

Суть работы бозона Хиггса в том, что благодаря ему другие элементарные частицы могут иметь и передавать свою массу. Но это очень и очень упрощённое понимание, и если Вам интересно, почитайте научную литературу.

С полным списком всех открытий на Большом адронном коллайдере можно ознакомиться на Википедии.

Может ли коллайер уничтожить Землю

С момента запуска БАК стал объектом разнообразных домыслов. Самый известный — в ходе экспериментов может образоваться чёрная дыра и поглотить планету.

Адронный коллайдер что это

Есть две причины, чтобы не волноваться.

Надеемся, Вам было интересно, как и нам во время работы над этим материалом!

Источник

Адронный коллайдер что это

История, мифы и факты

Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных страхах и ужасах, связанных с запуском коллайдера.

Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:

Вся Вселенная, конечно, в самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.

Адронный коллайдер что это

Коллайдер уничтожает землю

А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.

Адронный коллайдер что это

Как работает большой адронный коллайдер

Адронный коллайдер что это

Детектор на БАК

В составе коллайдера 4 гигантских детектора: ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.

Адронный коллайдер что это

Большой адронный коллайдер. Фото расположения

Результаты работы большого адронного коллайдера.

Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».

Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц, получены первые данные столкновений на рекордных энергиях, показано отсутствие асимметрии протонов и антипротонов, обнаружены необычные корреляции протонов. Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.

Адронный коллайдер что это

Большой адронный коллайдер

Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут наши авторы. Обращайтесь за помощью, и пусть учеба приносит радость!

Источник

Угроза для планеты или будущее физики: все о Большом адронном коллайдере

Адронный коллайдер что это

Что такое адронный коллайдер

Адронный коллайдер — это ускоритель, разгоняющий частицы высокой энергии почти до скорости света с помощью воздействия электромагнитных полей. Такое название устройство получило потому, что работает с определенным классом частиц — адронами (составными частицами, подверженными сильному ядерному взаимодействию) — и в процессе сталкивает их (англ. collider — сталкиватель).

Первый в мире адронный коллайдер ISR был запущен в 1971 году Европейской организацией по ядерным исследованиям (ЦЕРН). Устройство было небольшим — 943 м в длину, а максимальная энергия частиц, до которой оно могло их разогнать, — 28 ГэВ. В 1980-х годах работу ISR остановили и направили финансовые средства, которые уходили на его содержание, на строительство более мощного электрон-позитронного коллайдера. Последний проработал до 2001 года, пока его не сменил Большой адронный коллайдер — на сегодняшний день самый мощный ускоритель адронов в мире.

БАК находится на границе между Францией и Швейцарией, возле города Женевы, в тоннеле глубиной 100 м. Длина ускорителя — почти 27 км, а максимальная энергия частиц, до которой он может их разогнать, — 7 ТэВ, что почти в 230 раз больше, чем у первого адронного коллайдера.

Большой адронный коллайдер является самой крупной экспериментальной установкой в мире — в строительстве, которое длилось почти 10 лет, принимало участие более 10 000 ученых и инженеров из 100 стран. Затраты на создание БАК оцениваются в €4,6 млрд.

Сотрудники ЦЕРН создали онлайн-карту Большого адронного коллайдера, с помощью которой можно увидеть туннель, в котором он находится, и часть ускорительного кольца.

Для чего нужен Большой адронный коллайдер

В физике элементарных частиц есть важный постулат — Стандартная модель. Это теория, описывающая, как взаимодействуют элементарные частицы нашего мира: кварки, бозоны, лептоны, барионы. Ученым интересны эти отношения, потому что в результате них могут появиться новые или очень редкие элементы, которые плохо или вообще не изучены. Это, в свою очередь, позволит узнать больше о мире и его материи.

Чтобы открывать новые частицы, нужно проводить эксперименты. В этом ученым и помогают коллайдеры. Установки воспроизводят процессы, которые в действительности происходят в природе, то есть сталкивают друг с другом заряженные частицы материи — протоны с протонами или электроны с позитронами. После этого собранные данные фиксируются и передаются на компьютер. У ученых есть возможность детально изучить результаты взаимодействия заряженных частиц: обнаружить следы распада мюонов, пи- и К-мезонов и другие события, возникшие в коллайдере.

Анатолий Сидорин, заместитель начальника ускорительного отделения Лаборатории физики высоких энергий имени В. И. Векслера и А. М. Балдина в Дубне, один из ведущих экспертов по кольцевым ускорителям и коллайдерам:

«Строительство Большого адронного коллайдера в ЦЕРН вызвало закрытие нескольких небольших ускорительных лабораторий почти по всей Европе: в Голландии, в Швеции, во Франции. Но Национальное научное сообщество на это пошло, потому что это был общеевропейский проект — с ним Европа становилась лидером в области физики высоких энергий.

В первую очередь от Большого адронного коллайдера ожидали обнаружение бозона Хиггса (элементарная частица с нулевым моментом импульса и нулевым зарядом, которая играет важную роль в Стандартной модели, и чье существование было предсказано задолго до обнаружения. — РБК Тренды). Но, конечно, ради одной частицы его строить не стоило. Основные серьезные надежды физики связывали с тем, что БАК откроет что-то неожиданное. Так, помимо изучения хиггсовского механизма, одной из задач был поиск микроскопических черных дыр. К сожалению, пока их не нашли».

Помимо поиска черных дыр и обнаружения бозона Хиггса, перед адронным коллайдером стоит еще несколько задач:

Адронный коллайдер что это

Как работает Большой адронный коллайдер

Большой адронный коллайдер — это ускорительное кольцо окружностью 27 км, оборудованное огромным количеством установок, каждая из которых выполняет свою функцию. Ускорительное кольцо можно условно разделить на восемь секторов, через которые проходят пучки частиц.

Пучки частиц поступают в Большой адронный коллайдер из предварительного ускорителя SPS — протонного суперсинхротрона, который их формирует, а затем впрыскивает в специальный отсек БАК. Внутри коллайдера протоны начинают циркулировать в противоположных направлениях по двум вакуумным трубам. По мере своего движения они пролетают через следующие установки ускорительного кольца:

Адронный коллайдер что это

Анатолий Сидорин:

«Детектор — это огромное количество электроники, по сигналам которой можно отследить сорта частиц, образованные при столкновении пучков протонов, а также их параметры: энергию, направление движения и так далее.

Все данные получаются в виде потока информации — около 20 Гб в секунду. Такой объем информации просто так сохранить невозможно, поэтому есть дополнительная сортировка. Из всего объема информации, которая идет от электроники детектора, отбираются только те сигналы, по которым можно реконструировать события — возникновение частиц.

Дальше вся информация записывается на диск. Полный объем данных, поступающий с Большого адронного коллайдера, хранится в вычислительном центре ЦЕРН. Есть еще 12 центров более низкого уровня, на которых размещены резервные фрагменты этих данных, например у нас, в Дубне. То есть данные распределяются по всему миру».

Для того чтобы удерживать протонные пучки внутри ускорителя, на них необходимо воздействовать магнитным полем. Для этого на Большом адронном коллайдере установлено несколько тысяч мощных магнитов.

Адронный коллайдер что это

Кто обслуживает Большой адронный коллайдер

Все органы управления БАК находятся в центре управления ЦЕРН. В постоянном штате примерно 1,5 тыс. человек: инженерный научный персонал, который обеспечивает работу ускорительного комплекса, сотрудники, занимающиеся развитием, ремонтом и модернизацией установки и так далее.

Другая категория сотрудников на БАК — приглашенные группы ученых, которые проводят эксперименты. Они приезжают на определенное время и изучают данные, полученные с детектора. Помимо этого, физики из других стран помогают контролировать работу БАК: выходят на смены и следят за его приборами и системами.

Большой адронный коллайдер работает круглосуточно — выключать его нельзя. Это связано с тем, что он постоянно потребляет большое количество энергии, в основном на поддержание низкой температуры. Наблюдать за коллайдером тоже нужно постоянно, поэтому сутки разделены минимум на три рабочие смены.

Что открыли на Большом адронном коллайдере

На сегодняшний день бозон Хиггса — единственное открытие, сделанное на Большом адронном коллайдере. Эта элементарная частица была необходима ученым, чтобы объяснить нарушение электрослабой симметрии, в результате которой другие частицы, которые изначально ничего не весили, приобрели массу.

Чтобы объяснить нарушение симметрии, в 1970-х годах Питер Хиггс и еще несколько ученых выдвинули теорию, согласно которой Вселенную пронизывает некое поле, при взаимодействии с которым частицы приобретают массу. Позже его назвали полем Хиггса. Для подтверждения теории ученым нужно было найти и доказать существование бозона Хиггса — основы материи поля Хиггса.

Несколько десятков лет Франсуа Энглерт и Питер Хиггс путем экспериментов пытались обнаружить бозон Хиггса, но все было безрезультатно. Эту частицу сложно увидеть, потому что она нестабильна, а появившись, сразу распадается — нужно было мощное оборудование, которое сможет запечатлеть следы ее распада. Однако с помощью экспериментов на электрон-позитронном коллайдере ученые смогли определить примерную массу бозона Хиггса, что значительно облегчило поиски.

Работы были продолжены на Большом адронном коллайдере, и в 2012 году экспериментаторы объявили, что каждый из них наблюдал новую частицу, которая своей массой и другими признаками похожа на бозон Хиггса. В 2013 году находку ученых официально признали, а Франсуа Энглерт и Питер Хиггс получили Нобелевскую премию за свои открытия.

Почему люди боятся Большого адронного коллайдера

БАК и микроскопические черные дыры

Согласно одной из теорий, во время столкновения протонов на Большом адронном коллайдере могут появиться черные дыры. Если они окажутся стабильными и не распадутся, то попадут в центр Земли, поглотят ее материю и разрушат планету. Начало этим предположениям положил гаваец Уолтер Вагнер — он подал иск с требованием остановить строительство БАК и провести дополнительные тесты, чтобы доказать безопасность установки. После суда стали переживать и остальные. Так, группа неизвестных угрожала расправой ученым, которые работали над БАК.

Но устрашающий сценарий невозможен. То, что происходит в БАК, также происходит в природе, только в гораздо больших масштабах и на огромных мощностях. А значит, микроскопические черные дыры уже давно бы возникли. Кроме того, согласно теории относительности Эйнштейна, микроскопические черные дыры не могут возникнуть на БАК, потому что частицы, которые могли бы их образовывать, моментально распадаются.

Адронный коллайдер что это

Анатолий Сидорин:

«Если микроскопические черные дыры найдут на Большом адронном коллайдере, это будет революция в науке. Какова их судьба? Чтобы ответить на этот вопрос, нужно вспомнить механизм Хокинга, описывающий принцип испарения черной дыры: чем меньше масса черной дыры, тем быстрее она исчезает. Микроскопическая черная дыра будет жить микроскопическое время — после появления она тут же испарится».

БАК и страпельки

Последователи другой теории предполагают, что во время работы БАК могут появиться страпельки — часть странной материи, которая состоит из странных кварков. Если эти частицы попадут в обычную материю, то начнется цепная реакция и вся планета превратится в комок странной материи, непригодный для жизни.

Осложняется все тем, что странная материя до сих пор плохо изучена и никто из ученых не может сказать, как она себя поведет (отсюда и ее название).

Однако многолетние эксперименты показали, что за все время работы БАК в нем не возникло ни одной страпельки. Найти эти части пытались и физики из Брукхейвенской национальной лаборатории в Нью-Йорке на другом коллайдере, но поиски, которые начались еще в 2000 году, на сегодняшний день не дали результатов.

БАК и магнитные монополи

Магнитные монополи — гипотетически существующие частицы с одним магнитным зарядом: либо северным, либо южным. Согласно некоторым теориям, если эти элементы действительно существуют, они могут вызвать распад протонов — одних из основных частиц материи — и, как следствие, разрушение материи и мира.

Люди опасаются, что в БАК могут производиться магнитные монополи. Но это не так: специалисты ЦЕРН доказали, что если монополи и существуют, они имеют слишком большую массу — даже для БАК. Но даже имея подходящий для ускорителя вес, они уже давно бы появились: космические лучи, попадающие в атмосферу Земли, произвели бы их намного раньше.

Адронный коллайдер что это

Анатолий Сидорин:

«Мифы о Большом адронном коллайдере возникают из-за гипертрофированного антропоцентризма. Многие думают, что человек — самая мощная сила на планете, и он может уничтожить планету. На самом деле это не так.

Все ускорители, которые работают на текущий момент, производят в тысячи, если не в миллионы раз меньше событий, чем космическое излучение, падающее на Землю. Все, что делают коллайдеры, происходит со значительно большей частотой в течение всего времени существования планеты в атмосфере и на поверхности земли.

Поэтому все мифы о том, что во время работы коллайдера может возникнуть что-то, что уничтожит землю, — это просто переоценка возможностей человечества, оно не обладает такими способностями».

Будущее Большого адронного коллайдера

Большой адронный коллайдер отработал на первоначальных настройках и в 2018 году был приостановлен. Сделано это для того, чтобы повысить его светимость, то есть увеличить производительность в 10 раз. Это поможет БАК обнаруживать больше эпизодов возникновения новых частиц.

В режиме повышенной светимости Большой адронный коллайдер отработает примерно до 2040 года — дата сдвигается из-за пандемии коронавируса и задержки реализации проекта. К этому времени ускоритель наберет достаточный объем данных по бозону Хиггса, а после еще минимум 50 лет ученые будут их обрабатывать.

После того как БАК соберет все данные, он будет приостановлен, а ЦЕРН начнет строить новый циклический коллайдер — Future Circular Collider. Предполагается, что эта экспериментальная установка будет длиной примерно 100 км, а по энергии столкновений частиц будет превосходить БАК минимум в 7 раз. А Большой адронный коллайдер, в свою очередь, начнет выполнять функцию инжектора и «впрыскивать» пучки частиц в новую экспериментальную установку.

Источник

Разгадка появления Вселенной и путешествия в прошлое: для чего нужен Большой адронный коллайдер

Некоторые называют Большой адронный коллайдер величайшим творением человечества, а другие не понимают, зачем тратить бездну усилий и миллиарды долларов на изучение элементарных частиц. Сотрудник Лаборатории физики сверхвысоких энергий СПбГУ, победитель Science Slam, создатель паблика «ЦЕРНач» Андрей Серяков объясняет, как одно устройство может решить десятки проблем — от загадки происхождения Вселенной до удаления раковой опухоли из мозга.

Читайте «Хайтек» в

Что такое коллайдер?

Когда люди говорят о Большом адронном коллайдере (БАК), первое, что приходит им в голову, — то, что это самый крупный эксперимент в истории человечества. Ведь это 27-километровое кольцо в предгорье швейцарских альп. На картинке ниже — то, как он выглядел бы на поверхности. Но на самом деле это кольцо, опущенное в туннель от 50 до 150 м под землей.

Адронный коллайдер что этоТерритория, которую занимает БАК

Устройство ускоряет протоны и ядра свинца до скоростей лишь на несколько метров в секунду меньше скорости света. Обладая такой скоростью, протон преодолевает эти 27 км 10 000 раз в секунду. Потом он их сталкивает — внутри устройства частицы вращаются как по часовой, так и против часовой стрелки. В четырех точках эти пучки пересекаются и происходит столкновение, достигается огромная температура и мы исследуем, как Вселенная вела себя в первые минуты после Большого взрыва.

Другой интересный факт про БАК — там зарегистрирована самая высокая температура в истории человечества. Это примерно 40 тыс. млрд ​​градусов Цельсия. Именно такая температура достигается в момент столкновения частиц с огромной энергией. И если рассматривать то, как развивалась Вселенная, — это будет соответствовать первым микросекундам после Большого взрыва.

Одновременно с этим в коллайдере — самая низкая температура во Вселенной. Например, в Антарктиде зарегистрирована температура –95 °C, в открытом космосе –270 °C. А температура жидкого гелия внутри адронного коллайдера –273,3 °C. Она нужна для того, чтобы магниты, из которых состоит 27-километровое кольцо, находились в состоянии сверхпроводимости. Чтобы можно было пропускать огромное количество тока, но все работало и не перегревалось.

Сколько энергии потребляет коллайдер?

ЦЕРН потребляет столько же энергии, сколько весь кантон Женевы, там живет примерно 50 тыс. жителей. На Большом адронном коллайдере же трудились примерно 15 тыс. инженеров и ученых со всего мира.

Это самый дорогой наземный эксперимент человечества. Его обгоняет только МКС, которая в несколько раз дороже, но расходы на этот проект объясняется тем, что доставка в космос очень дорогая. Если сравнивать с обыденными вещами, то за стоимость коллайдера можно было построить 20 «Самара Арен» или 6 «Газпром Арен». При этом коллайдер — работающая вещь, поэтому стоимость растет во время эксплуатации.

Если такие примеры тоже сложно воспринимать, то вот еще один пример. Если стоимость адронного коллайдера разделить на цену «Роллтона» на 2016 год, то из этого количества упаковок можно построить 13 башен, которые дотянутся до Луны.

Зачем это нужно?

Чтобы объяснить важность адронного коллайдера, сначала обратимся к тому, из чего мы состоим как материя и что нас окружает. Все это состоит из атомов, сверхплотного вещества внутри атома и электронов. На картинке, по которой мы привыкли изучать эти структуры в школе, есть большая ошибка. Дело в масштабе: представьте, что атомное ядро размером с ноготь на большом пальце. Тогда электрон должен вращаться от него на расстоянии 100 км. То есть мы все — пустое место.

Но почему атом не разваливается, почему все, из чего мы состоим, не распадается? Все дело в электромагнитных взаимодействиях: если есть два одноименных заряда, — они отталкиваются, если два разноименных, — они притягивается. Но почему? С точки зрения современной физики эти притяжения и отталкивания объясняются обменом другими частицами. Поэтому мы не распадаемся: потому что электронная оболочка и атомы, которые взаимодействуют с другими атомами и обмениваются фотонами, они связаны.

Адронный коллайдер что этоСтруктура атома

Атом состоит из электронов и ядра, которые обмениваются фотонами, поэтому они связаны вместе. А ядро — из нейтронов и протонов. А почему ядро не разваливается? Потому что протоны положительно заряжены и отталкиваются, а нейтроны не заряжены. Значит, у них тоже есть какое-то взаимодействие в пределах ядра, — оно называется сильным. Сильное взаимодействие — это обмен глюонами. На картинке ниже представлены все виды взаимодействия, которые существуют в принципе.

Обведенное — это та материя, из которой мы состоим. Протоны и нейтроны состоят из двух типов кварков. Они связаны между собой гелионами — голубые буквы. Они образовали протоны и нейтроны, потом на них надо нацепить электроны, они цепляются с помощью фотонов. А еще есть частицы нейтрино, даже через палец моей руки проходят миллиарды частиц в секунду. Чтобы их поймать строят огромные детекторы элементарных частиц. Например, один из них находится в Японии — это огромная шахта, заполненная водой, где нейтрино можно ловить поштучно.

Есть и другие типы частиц, которые нас не окружают в том, что они нестабильные, короткоживущие и тяжелее, не распадаются на более легкие частицы.

Адронный коллайдер что этоИз чего состоит все вокруг

Как работает энергия?

Чтобы понимать работу БАК, также нужно знать, как работает энергия. В школьной программе объясняется, что тело обладает энергией, когда может совершать работу. Я бы сказал, что тело обладает энергией, когда оно может что-то сделать. Например, если я уроню предмет, то, падая, он может развалиться — это и есть работа, порвались электромагнитные связи, он обладает потенциальной энергией, когда я его подкину. Еще важно, что есть закон сохранения энергии — если я подкидываю предмет, то даю ему кинетическую энергию, в максимуме она переходит в потенциальную энергию, а потом переходит назад.

Тепловая энергия — это тоже кинетическая энергия. Если потереть руку — она станет теплее, то есть кинетическая энергия передается в тепловую, молекула начинает двигаться быстрее и тем самым кинетическая энергия переходит опять же в кинетическую энергию молекул моей руки.

Но потом пришел Эйнштейн и с помощью своей знаменитой формулы сказал, что масса — это энергия. Это открыло огромные возможности, оказалось, что кинетическую энергию можно перегонять в энергию массы и обратно. Если мы разгоним частицы до огромных энергий и столкнем их, то запасенная кинетическая энергия может перейти в рождение новых частиц. Так и устроен адронный коллайдер.

Ускорители нужны именно поэтому: там разгоняют частицы протонов до кинетической энергии, которая в 10 тыс. раз выше, чем его энергия массы и в момент столкновения рождаются новые частицы, которые нас не окружают. Поэтому с точки зрения физиков БАК нужен, чтобы создавать новые частицы. Например, Бозон Хиггса именно так и был открыт.

Что делает коллайдер?

Для того, чтобы разогнать частицы, там используются радиочастотные резонаторы. В 27-километровом ускорителе в двух местах стоят резонаторы, постоянно меняется электрическое поле, частица пролетает, получает «пинок», пролетает еще 27 км, затем снова получает «пинок» и так далее. Она летает почти со скоростью света, поэтому этот процесс происходит 10 тыс. раз в секунду. Даже двигаясь несколько минут, она уже получает огромную энергию.

При этом нужны магниты, которые удерживают частицы в окружности. Размер коллайдера зависит от магнитов. Если бы мы могли сделать более мощный магнит, устройство было бы меньше. Но есть еще одна причина, почему нам нужны магниты. Ведь пучок состоит из протонов, которые отталкиваются друг от друга, и их нужно сфокусировать, чтобы произошло как можно больше столкновений.

Так устроен БАК — там разгоняют сотни известных частиц, чтобы получить одну новую. Она проживает очень маленький промежуток времени, разваливается на частицы, которые разлетаются в разные стороны со скоростью света. Но как зафиксировать новую частицу, если она так мало живет?

Как зафиксировать открытие?

Для фиксации ученым нужен очень хороший фотоаппарат. В этой роли используется огромный детектор элементарных частиц, он снимает каждое столкновение протонов и ядер свинца. На БАК таких детекторов четыре. Один из них, ALICE, весит 10 тыс. тонн, как Эйфелева башня. Самый тяжелый детектор — CMS, его масса около 18 тыс. тонн, и именно он открыл Бозон Хиггса.

Адронный коллайдер что этоДетектор CMS

Вот так выглядит снимок столкновения протонов на Большом адронном коллайдере. Каждая линия здесь — это след рожденной частицы. Это реальная фотография, слева можно увидеть, что он сделан 4 июля 2016 года в 16 часов 18 минут 25 секунд. Таких столкновений происходит до 100 млн в секунду.

Как сделать открытие?

Для простоты допустим, что есть новая частица, которая распадается на известные нам частицы. Например, когда искали Бозон Хиггса, ученые уже предполагали, что он должен распадаться на два фотона. Это означает, что детектор должен не просто понимать, куда и с какой траекторией разлетелись частицы, но и какими они были.

Этим обусловлены размеры детектора и их структура — это так называемая структура матрешки. Первые слои детекторов — пиксельные, по технологии они похожи на пиксели, которые есть в камерах смартфонов, но они ловят не фотоны, а частицы. Допустим, заряженная частица пролетает и пиксели зажигаются — потом можно увидеть их траекторию, а если следа нет, значит, частица была незаряженной.

Адронный коллайдер что этоСтруктура БАК

Затем идут калориметр, который уничтожает частицы, после чего остаются «ливни», по их размеру можно определить энергию частицы. А по траектории можно понять импульс протона, калибраторы могут определить их энергию, после этого можно понять массу частиц.

Как появился Бозон Хиггса?

Представим, что есть столкновение, в котором рождаются только фотоны. Значит, мы можем ловить их, и они будут появляться в разных процессах.

Теперь предполагаем, что в этих же процессах очень редко рождается Бозон Хиггса. Он обладает массой, распадается на два фотона, и в этом процессе должен соблюдаться закон сохранения импульса и энергии. Как эти два фотона будут отличаться от фотонов, которые появляются в других процессах? Законами сохранения — Бозон Хиггса обладает определенной массой и импульсом. И если мы посчитаем так называемую инвариантную массу, то есть их суммарный импульс и энергию, то сможем посчитать массу бозона.

Но есть огромный фон — миллиард огромных фотонов. Чтобы отделить одни фотоны от других, мы предполагаем, что все они родились из бозонов Хиггса, получаем гладкое распределение и смотрим на неоднородности. Так можно увидеть, что как-то пар фотонов чуть больше, чем других. Значит, именно там родилась частица, которая распадаются на фотоны с конкретными характеристиками. Так и выглядит открытие бозона Хиггса.

Адронный коллайдер что этоКак ловят уникальные фотоны

Для чего еще нужен БАК?

Во Вселенной еще много неизвестных процессов, чьи принципы работы нам непонятны. Например, Вселенная существует, а, согласно современным теориям, количество материи и антиматерии должно быть одинаковым. Если в столкновении частиц на коллайдере родилось пять кварков, то родилось и пять антикварков. Но если бы это выполнялось и после Большого взрыва, — нас не должно было существовать, Вселенная была бы пустой, наполненной фотонами.

Есть другая цель — заглянуть в прошлое Вселенной. Скорость света ограничена, и когда мы смотрим в телескоп, то видим галактики в прошлом. Но у метода есть предел — 400 тыс. лет после Большого взрыва, когда Вселенная была непрозрачной. Единственный способ туда заглянуть — это ускорители элементарных частиц.

Адронный коллайдер что этоИз чего состоит Вселенная

Перед учеными стоят и другие задачи — например, определить состав Вселенных, которые нас окружают. На этот вопрос тоже пытается ответить БАК, есть фабрика производства антиматерии, где ученые роняют антиатомы и смотрят, как они падают, и смотрят как на них влияет гравитация. Или сталкивают частицы, чтобы попробовать создать частицу антиматерии. Но для этого надо апгрейдить БАК, чтобы он производил еще больше столкновений.

Для чего БАК нужен не физикам?

У большинства этих исследований нет практического применения. Но все, что там делается, — происходит впервые, поэтому это данные для неожиданных открытий. В будущем они могут стать технологиями, которыми мы пользуемся — например, интернет придумали в ЦЕРНе 30 лет назад, там же загрузили первую гифку.

Из-за ускорителей, например, сделали первую систему GRID — это сеть вычислительных мощностей по всей планете. Она нужна была для хранения огромного количества данных, которые коллайдер производит каждую секунду.

В начале 70-х в ЦЕРНе придумали сенсорный экран. Но пришлось потратить еще 40 лет, прежде чем вышел первый айфон и сделал революцию в обыденности.

Адронный коллайдер что этоПервый тачскрин и его изобретатель — Бент Стумпе

Есть много медицинских технологий, которые изначально придумали для ускорителей. Например, ПЭТ — метод, которым, например обнаруживают раковые опухоли. По факту, это детектор элементарных частиц, куда засовывают человека, впрыскивают малую дозу радиоактивного вещества, из раковой опухоли начинают вылетать фотоны, которые дают понять, что у человека опухоль. Или есть специальная методика по удалению раковых опухолей — адронная терапия. Где с помощью пучка удаляют опухоль, до которой сложно добраться хирургически.

Так что ответ на этот вопрос о том, зачем нужен БАК, зависит от того, у кого вы спросите. С его помощью можно узнать, как устроена Вселенная, политик скажет, что с его помощью можно развивать науку, а экономист — что он может приносить прибыль.

Источник

Разгадка появления Вселенной и путешествия в прошлое: для чего нужен Большой адронный коллайдер

Некоторые называют Большой адронный коллайдер величайшим творением человечества, а другие не понимают, зачем тратить бездну усилий и миллиарды долларов на изучение элементарных частиц. Сотрудник Лаборатории физики сверхвысоких энергий СПбГУ, победитель Science Slam, создатель паблика «ЦЕРНач» Андрей Серяков объясняет, как одно устройство может решить десятки проблем — от загадки происхождения Вселенной до удаления раковой опухоли из мозга.

Читайте «Хайтек» в

Что такое коллайдер?

Когда люди говорят о Большом адронном коллайдере (БАК), первое, что приходит им в голову, — то, что это самый крупный эксперимент в истории человечества. Ведь это 27-километровое кольцо в предгорье швейцарских альп. На картинке ниже — то, как он выглядел бы на поверхности. Но на самом деле это кольцо, опущенное в туннель от 50 до 150 м под землей.

Адронный коллайдер что этоТерритория, которую занимает БАК

Устройство ускоряет протоны и ядра свинца до скоростей лишь на несколько метров в секунду меньше скорости света. Обладая такой скоростью, протон преодолевает эти 27 км 10 000 раз в секунду. Потом он их сталкивает — внутри устройства частицы вращаются как по часовой, так и против часовой стрелки. В четырех точках эти пучки пересекаются и происходит столкновение, достигается огромная температура и мы исследуем, как Вселенная вела себя в первые минуты после Большого взрыва.

Другой интересный факт про БАК — там зарегистрирована самая высокая температура в истории человечества. Это примерно 40 тыс. млрд ​​градусов Цельсия. Именно такая температура достигается в момент столкновения частиц с огромной энергией. И если рассматривать то, как развивалась Вселенная, — это будет соответствовать первым микросекундам после Большого взрыва.

Одновременно с этим в коллайдере — самая низкая температура во Вселенной. Например, в Антарктиде зарегистрирована температура –95 °C, в открытом космосе –270 °C. А температура жидкого гелия внутри адронного коллайдера –273,3 °C. Она нужна для того, чтобы магниты, из которых состоит 27-километровое кольцо, находились в состоянии сверхпроводимости. Чтобы можно было пропускать огромное количество тока, но все работало и не перегревалось.

Сколько энергии потребляет коллайдер?

ЦЕРН потребляет столько же энергии, сколько весь кантон Женевы, там живет примерно 50 тыс. жителей. На Большом адронном коллайдере же трудились примерно 15 тыс. инженеров и ученых со всего мира.

Это самый дорогой наземный эксперимент человечества. Его обгоняет только МКС, которая в несколько раз дороже, но расходы на этот проект объясняется тем, что доставка в космос очень дорогая. Если сравнивать с обыденными вещами, то за стоимость коллайдера можно было построить 20 «Самара Арен» или 6 «Газпром Арен». При этом коллайдер — работающая вещь, поэтому стоимость растет во время эксплуатации.

Если такие примеры тоже сложно воспринимать, то вот еще один пример. Если стоимость адронного коллайдера разделить на цену «Роллтона» на 2016 год, то из этого количества упаковок можно построить 13 башен, которые дотянутся до Луны.

Зачем это нужно?

Чтобы объяснить важность адронного коллайдера, сначала обратимся к тому, из чего мы состоим как материя и что нас окружает. Все это состоит из атомов, сверхплотного вещества внутри атома и электронов. На картинке, по которой мы привыкли изучать эти структуры в школе, есть большая ошибка. Дело в масштабе: представьте, что атомное ядро размером с ноготь на большом пальце. Тогда электрон должен вращаться от него на расстоянии 100 км. То есть мы все — пустое место.

Но почему атом не разваливается, почему все, из чего мы состоим, не распадается? Все дело в электромагнитных взаимодействиях: если есть два одноименных заряда, — они отталкиваются, если два разноименных, — они притягивается. Но почему? С точки зрения современной физики эти притяжения и отталкивания объясняются обменом другими частицами. Поэтому мы не распадаемся: потому что электронная оболочка и атомы, которые взаимодействуют с другими атомами и обмениваются фотонами, они связаны.

Адронный коллайдер что этоСтруктура атома

Атом состоит из электронов и ядра, которые обмениваются фотонами, поэтому они связаны вместе. А ядро — из нейтронов и протонов. А почему ядро не разваливается? Потому что протоны положительно заряжены и отталкиваются, а нейтроны не заряжены. Значит, у них тоже есть какое-то взаимодействие в пределах ядра, — оно называется сильным. Сильное взаимодействие — это обмен глюонами. На картинке ниже представлены все виды взаимодействия, которые существуют в принципе.

Обведенное — это та материя, из которой мы состоим. Протоны и нейтроны состоят из двух типов кварков. Они связаны между собой гелионами — голубые буквы. Они образовали протоны и нейтроны, потом на них надо нацепить электроны, они цепляются с помощью фотонов. А еще есть частицы нейтрино, даже через палец моей руки проходят миллиарды частиц в секунду. Чтобы их поймать строят огромные детекторы элементарных частиц. Например, один из них находится в Японии — это огромная шахта, заполненная водой, где нейтрино можно ловить поштучно.

Есть и другие типы частиц, которые нас не окружают в том, что они нестабильные, короткоживущие и тяжелее, не распадаются на более легкие частицы.

Адронный коллайдер что этоИз чего состоит все вокруг

Как работает энергия?

Чтобы понимать работу БАК, также нужно знать, как работает энергия. В школьной программе объясняется, что тело обладает энергией, когда может совершать работу. Я бы сказал, что тело обладает энергией, когда оно может что-то сделать. Например, если я уроню предмет, то, падая, он может развалиться — это и есть работа, порвались электромагнитные связи, он обладает потенциальной энергией, когда я его подкину. Еще важно, что есть закон сохранения энергии — если я подкидываю предмет, то даю ему кинетическую энергию, в максимуме она переходит в потенциальную энергию, а потом переходит назад.

Тепловая энергия — это тоже кинетическая энергия. Если потереть руку — она станет теплее, то есть кинетическая энергия передается в тепловую, молекула начинает двигаться быстрее и тем самым кинетическая энергия переходит опять же в кинетическую энергию молекул моей руки.

Но потом пришел Эйнштейн и с помощью своей знаменитой формулы сказал, что масса — это энергия. Это открыло огромные возможности, оказалось, что кинетическую энергию можно перегонять в энергию массы и обратно. Если мы разгоним частицы до огромных энергий и столкнем их, то запасенная кинетическая энергия может перейти в рождение новых частиц. Так и устроен адронный коллайдер.

Ускорители нужны именно поэтому: там разгоняют частицы протонов до кинетической энергии, которая в 10 тыс. раз выше, чем его энергия массы и в момент столкновения рождаются новые частицы, которые нас не окружают. Поэтому с точки зрения физиков БАК нужен, чтобы создавать новые частицы. Например, Бозон Хиггса именно так и был открыт.

Что делает коллайдер?

Для того, чтобы разогнать частицы, там используются радиочастотные резонаторы. В 27-километровом ускорителе в двух местах стоят резонаторы, постоянно меняется электрическое поле, частица пролетает, получает «пинок», пролетает еще 27 км, затем снова получает «пинок» и так далее. Она летает почти со скоростью света, поэтому этот процесс происходит 10 тыс. раз в секунду. Даже двигаясь несколько минут, она уже получает огромную энергию.

При этом нужны магниты, которые удерживают частицы в окружности. Размер коллайдера зависит от магнитов. Если бы мы могли сделать более мощный магнит, устройство было бы меньше. Но есть еще одна причина, почему нам нужны магниты. Ведь пучок состоит из протонов, которые отталкиваются друг от друга, и их нужно сфокусировать, чтобы произошло как можно больше столкновений.

Так устроен БАК — там разгоняют сотни известных частиц, чтобы получить одну новую. Она проживает очень маленький промежуток времени, разваливается на частицы, которые разлетаются в разные стороны со скоростью света. Но как зафиксировать новую частицу, если она так мало живет?

Как зафиксировать открытие?

Для фиксации ученым нужен очень хороший фотоаппарат. В этой роли используется огромный детектор элементарных частиц, он снимает каждое столкновение протонов и ядер свинца. На БАК таких детекторов четыре. Один из них, ALICE, весит 10 тыс. тонн, как Эйфелева башня. Самый тяжелый детектор — CMS, его масса около 18 тыс. тонн, и именно он открыл Бозон Хиггса.

Адронный коллайдер что этоДетектор CMS

Вот так выглядит снимок столкновения протонов на Большом адронном коллайдере. Каждая линия здесь — это след рожденной частицы. Это реальная фотография, слева можно увидеть, что он сделан 4 июля 2016 года в 16 часов 18 минут 25 секунд. Таких столкновений происходит до 100 млн в секунду.

Как сделать открытие?

Для простоты допустим, что есть новая частица, которая распадается на известные нам частицы. Например, когда искали Бозон Хиггса, ученые уже предполагали, что он должен распадаться на два фотона. Это означает, что детектор должен не просто понимать, куда и с какой траекторией разлетелись частицы, но и какими они были.

Этим обусловлены размеры детектора и их структура — это так называемая структура матрешки. Первые слои детекторов — пиксельные, по технологии они похожи на пиксели, которые есть в камерах смартфонов, но они ловят не фотоны, а частицы. Допустим, заряженная частица пролетает и пиксели зажигаются — потом можно увидеть их траекторию, а если следа нет, значит, частица была незаряженной.

Адронный коллайдер что этоСтруктура БАК

Затем идут калориметр, который уничтожает частицы, после чего остаются «ливни», по их размеру можно определить энергию частицы. А по траектории можно понять импульс протона, калибраторы могут определить их энергию, после этого можно понять массу частиц.

Как появился Бозон Хиггса?

Представим, что есть столкновение, в котором рождаются только фотоны. Значит, мы можем ловить их, и они будут появляться в разных процессах.

Теперь предполагаем, что в этих же процессах очень редко рождается Бозон Хиггса. Он обладает массой, распадается на два фотона, и в этом процессе должен соблюдаться закон сохранения импульса и энергии. Как эти два фотона будут отличаться от фотонов, которые появляются в других процессах? Законами сохранения — Бозон Хиггса обладает определенной массой и импульсом. И если мы посчитаем так называемую инвариантную массу, то есть их суммарный импульс и энергию, то сможем посчитать массу бозона.

Но есть огромный фон — миллиард огромных фотонов. Чтобы отделить одни фотоны от других, мы предполагаем, что все они родились из бозонов Хиггса, получаем гладкое распределение и смотрим на неоднородности. Так можно увидеть, что как-то пар фотонов чуть больше, чем других. Значит, именно там родилась частица, которая распадаются на фотоны с конкретными характеристиками. Так и выглядит открытие бозона Хиггса.

Адронный коллайдер что этоКак ловят уникальные фотоны

Для чего еще нужен БАК?

Во Вселенной еще много неизвестных процессов, чьи принципы работы нам непонятны. Например, Вселенная существует, а, согласно современным теориям, количество материи и антиматерии должно быть одинаковым. Если в столкновении частиц на коллайдере родилось пять кварков, то родилось и пять антикварков. Но если бы это выполнялось и после Большого взрыва, — нас не должно было существовать, Вселенная была бы пустой, наполненной фотонами.

Есть другая цель — заглянуть в прошлое Вселенной. Скорость света ограничена, и когда мы смотрим в телескоп, то видим галактики в прошлом. Но у метода есть предел — 400 тыс. лет после Большого взрыва, когда Вселенная была непрозрачной. Единственный способ туда заглянуть — это ускорители элементарных частиц.

Адронный коллайдер что этоИз чего состоит Вселенная

Перед учеными стоят и другие задачи — например, определить состав Вселенных, которые нас окружают. На этот вопрос тоже пытается ответить БАК, есть фабрика производства антиматерии, где ученые роняют антиатомы и смотрят, как они падают, и смотрят как на них влияет гравитация. Или сталкивают частицы, чтобы попробовать создать частицу антиматерии. Но для этого надо апгрейдить БАК, чтобы он производил еще больше столкновений.

Для чего БАК нужен не физикам?

У большинства этих исследований нет практического применения. Но все, что там делается, — происходит впервые, поэтому это данные для неожиданных открытий. В будущем они могут стать технологиями, которыми мы пользуемся — например, интернет придумали в ЦЕРНе 30 лет назад, там же загрузили первую гифку.

Из-за ускорителей, например, сделали первую систему GRID — это сеть вычислительных мощностей по всей планете. Она нужна была для хранения огромного количества данных, которые коллайдер производит каждую секунду.

В начале 70-х в ЦЕРНе придумали сенсорный экран. Но пришлось потратить еще 40 лет, прежде чем вышел первый айфон и сделал революцию в обыденности.

Адронный коллайдер что этоПервый тачскрин и его изобретатель — Бент Стумпе

Есть много медицинских технологий, которые изначально придумали для ускорителей. Например, ПЭТ — метод, которым, например обнаруживают раковые опухоли. По факту, это детектор элементарных частиц, куда засовывают человека, впрыскивают малую дозу радиоактивного вещества, из раковой опухоли начинают вылетать фотоны, которые дают понять, что у человека опухоль. Или есть специальная методика по удалению раковых опухолей — адронная терапия. Где с помощью пучка удаляют опухоль, до которой сложно добраться хирургически.

Так что ответ на этот вопрос о том, зачем нужен БАК, зависит от того, у кого вы спросите. С его помощью можно узнать, как устроена Вселенная, политик скажет, что с его помощью можно развивать науку, а экономист — что он может приносить прибыль.

Источник

Большой адронный коллайдер: для чего нужен, где находится

Адронный коллайдер что это

Содержание:

Наверняка почти каждый человек на Земле, хоть раз, да слышал о большом адронном коллайдере. Вот только, несмотря на то, что многие слышали о нем, мало кто понимает, что такое адронный колладейр, каково его предназначение, в чем суть адронного коллайдера. В нашей сегодняшней статье мы ответим на эти вопросы.

Что такое адронный коллайдер

По сути адронный коллайдер представляет собой сложный ускоритель элементарных частиц. С его помощью физикам удается разогнать протоны и тяжелые ионы. Изначально адронный коллайдер создавался для подтверждения существования бозона Хиггса, неуловимой элементарной частицы, которую физики порой в шутку называют «частичкой Бога». И да, существование этой частички было подтверждено экспериментально с помощью коллайдера, а сам ее первооткрыватель Питер Хиггс получил за это нобелевскую премию по физике в 2013 году.

Разумеется, одним лишь бозоном Хиггса дело не ограничилось, помимо него физиками были найдены и некоторые другие элементарные частицы. Теперь вы знаете ответ на вопрос, зачем нужен адронный коллайдер.

Адронный коллайдер что это

Что представляет собой большой адронный коллайдер

Прежде всего, необходимо заметить, что большой адронный колайдер не возник на пустом месте, а появился как эволюция своего предшественника – большого электрон-позитронного коллайдера, представляющего собой 27-ми километровый подземный туннель, строительство которого началось еще в 1983 году. В 1988 году кольцевой тоннель сомкнулся, притом интересно то, что строители подошли к делу очень тщательно, настолько, что расхождение между двумя концами туннеля составляет лишь 1 сантиметр.

Адронный коллайдер что это

Так выглядит схема адронного коллайдера.

Электрон-позитронный коллайдер проработал до 2000 года и за время его работы в физике был сделан с его помощью целый ряд открытий, среди которых открытие W и Z бозонов и их дальнейшее исследование.

С 2001 года на месте электрон-позитронного коллайдера началось уже строительство коллайдера адронного, которое закончилось в 2007 году.

Где находится адронный коллайдер

Большой адронный коллайдер находится на границе Швейцарии и Франции, в долине женевского озера, всего лишь в 15 км от самой Женевы. И располагается он на глубине 100 метров.

Адронный коллайдер что это

Место расположения адронного коллайдера.

В 2008 году начались его первые испытания под патронатом ЦЕРН – Европейской организации по ядерным исследованиям, которая на данный момент является крупнейшей лабораторией в мире в области физики высоких энергий.

Для чего нужен адронный коллайдер

С помощью этого гигантского ускорителя элементарных частиц физики могут проникать так глубоко внутрь материи, как никогда раньше. Все это помогает, как подтверждать старые научные гипотезы, так и создавать новые интересные теории. Детальное изучение физики элементарных частиц помогает нам приблизиться в поисках ответов на вопросы об устройстве Вселенной, о том, как она зародилась.

Глубокое погружение в микромир позволяет открыть революционно новые пространственно-временные теории, и как знать, может быть, даже удастся проникнуть в тайну времени, этого четвертого измерения нашего мира.

Как работает адронный коллайдер

Теперь давайте опишем, как собственно работает большой адронный коллайдер. О принципах его работы говорит название, так как само слово «коллайдер» с английского переводится как «тот, кто сталкивает». Главная его задача – устроить столкновение элементарных частиц. Причем частицы в коллайдере летают (и сталкиваются) на скоростях, близких к скоростям света. Результаты столкновений частиц фиксируют четыре основных больших детектора: ATLAS, CMS, ALICE и LHCb и множество вспомогательных детекторов.

Более детально принцип работы адронного коллайдера описан в этом интересно видео.

Опасность адронного коллайдера

В целом людям свойственно боятся вещей, которые они не понимают. Именно это иллюстрирует отношение к адроному коллайдеру и различные опасения, с ним связанные. Самые радикальные из них, высказывались, что в случае возможного взрыва адронного коллайдера может погибнуть, не много, не мало, а все человечество вместе с планетой Землей, которую поглотит образовавшаяся после взрыва черная дыра. Разумеется, первые же опыты показали, что подобные опасения не более чем детская страшилка.

А вот некоторые серьезные опасения относительно работы коллайдера были высказаны недавно умершим английским ученым Стивеном Хокингом. Причем опасения Хокинга связаны не столько с самим коллайдером, сколько с полученным с его помощью бозоном Хиггса. По мнению ученого этот бозон является крайне не стабильным материалом и в результате определенного стечения обстоятельств может привести к распаду вакуума и полному исчезновению таких понятий как пространство и время. Но не все так страшно, так согласно Хокингу, для того, чтобы произошло нечто подобное необходим коллайдер величиной с целую планету.

Источник

Большой Адронный Коллайдер (БАК или LHC)

Адронный коллайдер что это

Большой Адронный Коллайдер (БАК или LHC)

Словосочетание «Большой адронный коллайдер» настолько глубоко осело в массмедиа, что о данной установке знает подавляющее количество людей, в числе которых и те, чья деятельность никоим образом не связано с физикой элементарных частиц, и с наукой вообще.

Действительно, столь масштабный и дорогой проект не мог обойти стороной СМИ – кольцевая установка длиной почти в 27 километров, ценою в десяток миллиардов долларов, с которой работает несколько тысяч научных сотрудников со всего мира. Немалую лепту в популярность коллайдера внесла так называемая «частица Бога» или бозон Хиггса, который был успешно разрекламирован, и за который Питер Хиггс получил нобелевскую премию по физике в 2013-м году.

Адронный коллайдер что это

Большой адронный коллайдер под землей комплекса ЦЕРНа

Далее разберемся подробнее в задачах и работе Большого адронного коллайдера.

Предыстория

Прежде всего следует отметить, что Большой адронный коллаейдер не строился с нуля, а возник на месте своего предшественника — Большого электрон-позитронного коллайдера (Large Electron-Positron collider или LEP). Работа над 27-микилометровом тоннелем началась в 1983-м году, где в дальнейшем планировалось расположить ускоритель, который будет осуществлять столкновение электроном и позитронов. В 1988-м году кольцевой тоннель сомкнулся, при этом рабочие подошли к проведению тоннеля столь тщательно, что расхождение между двумя концами тоннеля составило всего 1 сантиметр.

Адронный коллайдер что это

Инфографика Большого адронного коллайдера

Ускоритель проработал до конца 2000-го года, когда достиг своего пика – энергии в 209 ГэВ. После этого начался его демонтаж. За одиннадцать лет своей работы LEP принес физике ряд открытий, в числе которых – открытие W и Z бозонов и их дальнейшие исследования. На основе результатов этих исследований был сделан вывод о сходстве механизмов электромагнитного и слабого взаимодействий, вследствие чего начались теоретические работы по объединению этих взаимодействий в электрослабое.

В 2001-м году на месте электрон-позитронного ускорителя началась постройка Большого адронного коллайдера. Строительство нового ускорителя завершилось в конце 2007-го года. Он располагался на месте LEP – на границе между Францией и Швейцарией, в долине Женевского озера (в 15 км от Женевы), на глубине ста метров. В августе 2008-го года начались испытания коллайдера, а 10-го сентября произошел официальный запуск БАКа. Как и в случае с предыдущим ускорителем, строительство и работа с установкой возглавляется Европейской организацией по ядерным исследованиям – ЦЕРН.

Адронный коллайдер что это

Сотрудники ЦЕРНа в тоннеле коллайдера

Вкратце стоит сказать об организации CERN (Conseil Européenne pour la Recherche Nucléaire). Данная организация выступает в роли крупнейшей мировой лаборатории в области физики высоких энергий. Включает три тысячи постоянных сотрудников, и еще несколько тысяч исследователей и ученых из 80 стран принимают участие в проектах ЦЕРНа.

На данный момент участниками проекта является 22 страны: Бельгия, Дания, Франция, Германия, Греция, Италия, Нидерланды, Норвегия, Швеция, Швейцария, Великобритания – учредители, Австрия, Испания, Португалия, Финляндия, Польша, Венгрия, Чехия, Словакия, Болгария и Румыния – присоединившиеся. Однако, как уже было сказано выше – еще несколько десятков стран так или иначе принимают участие в работе организации, и в частности – на Большом адронном коллайдере.

Как работает Большой адронный коллайдер?

Что такое Большой адронный коллайдер и как он работает – основные вопросы, интересующие общественность. Рассмотрим эти вопросы далее.

Коллайдер (collider) – в переводе с английского означает «тот, кто сталкивает». Задача такой установки состоит в столкновении частиц. В случае с адроннмы коллайдером, в роли частиц выступают адроны – частицы, участвующие в сильном взаимодействии. Таковыми являются протоны.

Получение протонов

Долгий путь протонов берет свое начало в дуоплазматроне – первой ступени ускорителя, куда поступает водород в виде газа. Дуоплазматрон представляет собой разрядную камеру, где через газ проводится электрический разряд. Так водород, состоящий всего из одного электрона и одного протона, теряет свой электрон. Таким образом образуется плазма – вещество, состоящее из заряженных частиц – протонов. Конечно, получить чистую протонную плазму сложно, поэтому далее образованная плазма, включающая также облако молекулярных ионов и электронов, проходит фильтрацию для выделения облака протонов. Под действием магнитов протонная плазма сбивается в пучок.

Адронный коллайдер что это

Физик Детлеф Кюхлер измеряет положение печи внутри источника ионов

Предварительный разгон частиц

Новообразованный пучок протонов начинает свой путь в линейном ускорителе LINAC 2, который представляет собой 30-тиметровое кольцо, последовательно увешенное несколькими полыми цилиндрическими электродами (проводниками). Создаваемое внутри ускорителя электростатическое поле градуировано таким образом, что частицы между полыми цилиндрами всегда испытывают ускоряющую силу в направлении следующего электрода. Не углубляясь целиком в механизм разгона протонов на данном этапе, отметим лишь, что на выходе с LINAC 2 физики получают пучок протонов с энергией 50 МэВ, которые уже достигают 31% скорости света. Примечательно, что при этом масса частиц возрастает на 5%.

Адронный коллайдер что это

Линейный ускоритель LINAC 2

К 2019-2020-му году планируется замена LINAC 2 на LINAC 4, который будет разгонять протоны до 160 МэВ.

Стоит отметить, что на коллайдере также разгоняют ионы свинца, которые позволят изучить кварк-глюонную плазму. Их разгоняют в кольце LINAC 3, аналогичном LINAC 2. В дальнейшем также планируются эксперименты с аргоном и ксеноном.

Далее пакеты протонов поступают в протон-синхронный бустер (PSB). Он состоит из четырех наложенных колец диаметром 50 метров, в которых располагаются электромагнитные резонаторы. Создаваемое ими электромагнитное поле имеет высокую напряженность, и проходящая через него частица получает ускорение в результате разности потенциалов поля. Так спустя всего 1,2 секунды частицы разгоняются в PSB до 91% скорости света и достигают энергии в 1,4 ГэВ, после чего поступают в протонный-синхротрон (PS). Диаметр PS составляет 628 метров и оснащен 27 магнитами, направляющими пучок частиц по круговой орбите. Здесь частиц протоны достигают 26 ГэВ.

Адронный коллайдер что это

Предпоследним кольцом для разгона протонов служит Суперпротонный-синхротрон (SPS), длина окружности которого достигает 7 километров. Будучи оснащенным 1317-ю магнитами SPS разгоняет частицы до энергии в 450 ГэВ. Спустя примерно 20 минут пучок протонов попадает в основное кольцо – Большой адронный коллайдер (LHC).

Адронный коллайдер что это

Разгон и столкновение частиц в LHC

Адронный коллайдер что это

Схема ускорителей LHC

Столкновение частиц происходит в четырех точках основного кольца LHC, в которых располагаются четыре детектора: ATLAS, CMS, ALICE и LHCb.

Детекторы Большого адронного коллайдера

ATLAS (A Toroidal LHC ApparatuS)

Логотип эксперимента ATLAS

— является одним из двух детекторов общего назначения на Большом адронном коллайдере (LHC). Он исследует широкий спектр физики: от поиска бозона Хиггса до частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент CMS, ATLAS использует иные технические решения и другую конструкцию магнитной системы.

Адронный коллайдер что это

Детектор ATLAS и некоторые его сотрудники

Пучки частиц из LHC сталкиваются в центре детектора ATLAS, образуя встречные обломки в виде новых частиц, которые вылетают из точки столкновения во всех направлениях. Шесть различных детектирующих подсистем, расположенных в слоях вокруг точки столкновения, записывают пути, импульс и энергию частиц, позволяя их индивидуально идентифицировать. Огромная система магнитов искривляет пути заряженных частиц, так что их импульсы можно измерить.

Взаимодействия в детекторе ATLAS создают огромный поток данных. Чтобы обработать эти данные, ATLAS использует расширенную «триггерную» систему, позволяющую сообщать детектору, какие события записывать, а какие игнорировать. Затем для анализа зарегистрированных событий столкновения используются сложные системы сбора данных и вычисления.

Адронный коллайдер что это

Детектор ATLAS и его компоненты

Детектор имеет высоту 46 метров и ширину – 25 метров, при этом его масса составляет 7 000 тонн. Эти параметры делает ATLAS самым большим детектором частиц, когда-либо созданным. Он находится в тоннеле на глубине в 100 м вблизи главного объекта ЦЕРН, недалеко от деревни Мейрин в Швейцарии. Установка состоит из 4 основных компонентов:

Адронный коллайдер что это

Внутренний детектор ATLAS

Адронный коллайдер что это

LAr (Liquid Argon Calorimeter) — калориметр ATLAS

Адронный коллайдер что это

Мюонный спектрометр ATLAS

Адронный коллайдер что это

Магнитная система ATLAS

В эксперименте ATLAS (февраль 2012 г.) работают более 3 000 ученых из 174 институтов из 38 стран.

CMS (Compact Muon Solenoid)

Логотип эксперимента CMS

— является детектором общего назначения на Большом адронном коллайдере (LHC). Как и ATLAS, имеет широкую физическую программу, начиная от изучения стандартной модели (включая бозон Хиггса) до поиска частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент ATLAS, CMS использует иные технические решения и другую конструкцию магнитной системы.

Адронный коллайдер что это

Детектор CMS построен вокруг огромного магнита соленоида. Представляет собой цилиндрическую катушку сверхпроводящего кабеля, которая генерирует поле в 4 тесла, примерно в 100 000 раз превышающее магнитное поле Земли. Поле ограничено стальным «хамутом», который является массивнейшим компонентом детектора, масса которого — 14 000 тонн. Полный детектор имеет длину — 21 м, ширину — 15 м и высоту — 15 м. Установка состоит из 4 основных компонентов:

Адронный коллайдер что это

Схема детектора CMS и его основные компоненты

Эксперимент CMS является одним из крупнейших международных научных исследований в истории, в котором принимают участие 4300 человек: физики в области элементарных частиц, инженеры и техники, студенты и вспомогательный персонал из 182 институтов, 42 стран (февраль 2014 года).

ALICE (A Large Ion Collider Experiment)

Адронный коллайдер что это

Логотип эксперимента ALICE

— представляет собой детектор тяжелых ионов на кольцах большого адронного коллайдера (LHC). Он предназначен для изучения физики сильно взаимодействующего вещества при экстремальных плотностях энергии, где образуется фаза вещества, называемая кварк-глюонной плазмой.

Вся обычная материя в сегодняшней вселенной состоит из атомов. Каждый атом содержит ядро, состоящее из протонов и нейтронов (кроме водорода, не имеющего нейтронов), окруженного облаком электронов. Протоны и нейтроны, в свою очередь, состоят из кварков, связанных вместе с другими частицами, называемыми глюонами. Никакой кварк никогда не наблюдался изолированно: кварки, а также глюоны, по-видимому, постоянно связаны вместе и ограничены внутри составных частиц, таких как протоны и нейтроны. Это называется конфайнментом.

Адронный коллайдер что это

Детектор ALICE и его компоненты

Столкновения в LHC создают температуры более чем в 100 000 раз более горячее, чем в центре Солнца. Колллайдер обеспечивает столкновения между свинцовыми ионами, воссоздавая условия, аналогичные тем, которые имели место сразу после Большого Взрыва. В этих экстремальных условиях протоны и нейтроны «расплавляются», освобождая кварки от их связей с глюонами. Это и есть кварк-глюонная плазма.

В эксперименте ALICE используется детектор ALICE массой 10 000 тонн, 26 м в длину, 16 м в высоту и 16 м в ширину. Устройство состоит из трех основных комплектов компонентов: трэкинговых устройств, калориметров и детекторов-идентификаторов частиц. Также его разделяют на 18 модулей. Детектор находится в тоннеле на глубине 56 м под, недалеко от деревни Сент-Денис-Пуйи во Франции.

Адронный коллайдер что это

Эксперимент насчитывает более 1 000 ученых из более чем 100 институтов физики в 30 странах.

LHCb (Large Hadron Collider beauty experiment)

Логотип эксперимента LHCb

– в рамках эксперимента проводится исследование небольших различий между веществом и антиматерией, изучая тип частицы, называемый «бьюти-кварк» или «b-кварк».

Вместо того, чтобы окружать всю точку столкновения с помощью закрытого детектора, как ATLAS и CMS, эксперимент LHCb использует серию сабдетекторов для обнаружения преимущественно передних частиц — тех, которые были направлены вперед в результате столкновения в одном направлении. Первый сабдетектор установлен близко к точке столкновения, а остальные — один за другим на расстоянии 20 метров.

Адронный коллайдер что это

Схема детектора LHCb и его основные компоненты

На LHC создается большое изобилие различных типов кварков, прежде чем они быстро распадаются на другие формы. Чтобы поймать b-кварки, для LHCb были разработаны сложные движущиеся следящие детекторы, расположенные вблизи движения пучка частиц по коллайдеру.

5600-тонный детектор LHCb состоит из прямого спектрометра и плоских детекторов. Это 21 метр в длину, 10 метров в высоту и 13 метров в ширину, он находится на глубине 100 метров под землей. Около 700 ученых из 66 различных институтов и университетов вовлечены в эксперимент LHCb (октябрь 2013 г.).

Адронный коллайдер что это

Другие эксперименты на коллайдере

Помимо вышеперечисленных экспериментов на Большом адронном коллайдере есть другие два эксперимента с установками:

Адронный коллайдер что это

Схема расположения детекторов эксперимента LHCf. Нейтральные частицы, которые родились в столкновении пучков протонов в детекторе ATLAS и вылетели вперед (волнистая оранжевая линия), не отклоняются магнитным полем, вследствие чего влетают в детектор LHCf. Схема не отражает реальные масштабы.

LHCf состоит из двух детекторов, которые расположены вдоль LHC, на расстоянии 140 метров с обеих сторон он точки столкновения ATLAS. Каждый из двух детекторов весит всего 40 килограммов и имеет размеры 30 см в длину, 80 см в высоту и 10 см в ширину. В эксперименте LHCf участвуют 30 ученых из 9 институтов в 5 странах (ноябрь 2012 г.).

Адронный коллайдер что это

Схема расположения установок эксперимента TOTEM

Зачем нужен Большой адронный коллайдер?

Крупнейшая международная научная установка исследует широкий спектр физических задач:

Адронный коллайдер что это

Кроме этих задач, существует еще множество других, решение которых также позволит человечеству понимать природу и окружающий нас мир на более качественном уровне, что в свою очередь откроет возможности для создания новых технологий.

Практическая польза Большого адронного коллайдера и фундаментальной науки

Прежде всего, следует отметить, что фундаментальные исследования привносят вклад в фундаментальную науку. Применением же этих знаний занимается прикладная наука. Сегмент общества, не осведомленный в пользе фундаментальной науки зачастую не воспринимает открытие бозона Хиггса или создание кварк-глюонной плазмы, как нечто значимое. Связь подобных исследований с жизнью рядового человека – неочевидно. Рассмотрим краткий пример с атомной энергетикой:

Материалы по теме

ИТЭР — международный термоядерный реактор (ITER)

Адронный коллайдер что это

В 1896-м году французский физик Антуан Анри Беккерель открыл явление радиоактивности. Долгое время считалось, что к ее промышленному использованию человечество перейдет нескоро. Всего за пять лет до запуска первого в истории ядерного реактора великий физик Эрнест Резерфорд, собственно открывший атомное ядро в 1911-м году, говорил, что атомная энергия никогда не найдет своего применения. Переосмыслить свое отношение к энергии, заключенной в ядре атома, специалистам удалось в 1939 году, когда немецкие ученые Лиза Мейтнер и Отто Ган обнаружили, что ядра урана при облучении их нейтронами делятся на две части с выделением огромного количества энергии — ядерной энергии.

И лишь после этого последнего звенья ряда фундаментальных исследований в игру вступила прикладная наука, которая на основе этих открытий изобрела устройство для получения ядерной энергии – атомный реактор. Масштаб открытия можно оценить, ознакомившись с долей выработки электроэнергии атомными реакторами. Так в Украине, например, на АЭС выпадает 56% выработки электроэнергии, а во Франции и вовсе – 76%.

Все новые технологии основываются на тех или иных фундаментальных знаниях. Приведем еще пару кратких примеров:

Адронный коллайдер что это

Схема работы спутника с учетом ОТО

Если сегодня практическое применение открытиям, произошедшим на LHC еще не найдено – это не значит, что ученые «возятся на коллайдере зря». Как известно, человек разумный всегда намеревается получить максимум практического применения из имеющихся знаний, а потому знания о природе, накопленные в процессе исследования на БАК, определенно найдут свое применение, рано или поздно. Как уже было продемонстрировано выше – связь фундаментальных открытий и использующих их технологий иногда может быть совсем не очевидна.

Напоследок, отметим так называемые косвенные открытия, которые не ставятся как изначальные цели исследования. Они встречаются довольно часто, так как для совершения фундаментального открытия, обычно, требуется внедрение и использование новых технологий. Так развитие оптики получило толчок от фундаментальных исследований космоса, строящихся на наблюдениях астрономов через телескоп. В случае с ЦЕРН – так возникла повсеместно применяемая технология – Интернет, проект, предложенный Тимом Бернерсом-Ли в 1989-м году для облегчения поиска данных организации ЦЕРН.

Похожие статьи

Понравилась запись? Расскажи о ней друзьям!

Источник

Большой адронный коллайдер (БАК) – что это такое?

Адронный коллайдер что это

Большой адронный коллайдер (сокр. БАК, англ. LHC) – это самый большой и мощный ускоритель частиц в мире, расположенный на франко-швейцарской границе около города Женева. Он предназначен для ускорения и столкновения встречных пучков протонов и тяжелых ионов (ионов свинца). БАК создан при Европейском совете ядерных исследований ЦЕНР. В его строительстве и обслуживании, участвовало более 10 тыс инженеров и ученых из более чем 100 стран мира. Стоимость проекта оценивается в 10 млрд. долларов.

Коллайдер по сути является замкнутой туннельной системой, расположенной под земной поверхностью на глубине до 180 м. Название «коллайдер» уместно перевести на русский как «устройство для сталкивания». А сталкивает он адроны (класс составных частиц, подверженных сильному взаимодействию). Отсюда и название «адронный коллайдер». Приставку «большой» он получил за свои внушительные размеры, длина основного туннеля БАК составляет 26,7 км.

По большей части эксперименты проводятся с протонами. Протон – элементарная частица, составляющая часть атома, ее отличительное свойство – наличие положительного заряда. БАК разгоняет потоки протонов внутри подземного туннеля до более 99,9% скорости света, направляя их навстречу друг другу. При столкновении на такой скорости моделируются условия, сходные с состоянием нашей Вселенной на ранних стадиях ее существования.

Каково происхождение протонов для экспериментов в БАК?

Их получают методом ионизации атома водорода. Как известно, в его составе имеется 1 протон и 1 электрон. Ионизация помогает избавиться от электрона, и сохранить необходимый для научных опытов протон.

Предназначение

Большой адронный коллайдер помогает исследовать сами элементарные частицы и особенности процессов их взаимодействия. БАК уже принес науке немало бесценных сведений в области квантовой физики, и ученым не терпится получить больше информации о том, как устроены наше пространство и время. Процессы, уловленные детекторами БАК во время столкновения протонов, дают исследователям возможность прийти к лучшему пониманию того, что представляла собой Вселенная в продолжение первых мгновений после Большого взрыва.

Как известно, к началу 1970-х физики разработали так называемую Стандартную модель (СМ), в которой объединились 3 из 4 фундаментальных взаимодействий (кроме гравитационного):

Однако СМ невозможно принять исчерпывающей теорией элементарных частиц. Предположительно, она – не более чем фрагмент более масштабной теоретической картины устройства микромира. Основополагающая цель создание Большого адронного коллайдера – приблизиться к пониманию сущности новой теории (поиск новой физики).

В наше время наука применяет различные способы объединения фундаментальных взаимодействий:

— петлевая квантовая гравитация и пр.

Не все они являются совершенными, и ни одна из них не была подтверждена экспериментальным методом. Препятствие заключается в недостатке энергии, доступной ученым на современных устройствах для ускорения частиц.

Большой адронный коллайдер дал науке возможность реализовать эксперименты с недоступной прежде энергией, и по-видимому, это позволит оценить корректность некоторых из вышеупомянутых теоретических подходов. В частности, имеется большое число теоретических систем, допускающих наличие такого явления, как суперсимметрия – в частности, теория струн (она же теория суперструн), которая в случае доказанного отсутствия суперсимметрии утратит свой логический смысл. Соответственно, если будет получено доказательство существования суперсимметрии, то это станет и косвенным аргументом в подтверждение правоты данных теорий.

Исследование топ-кварков

Эти частицы – наиболее тяжелые не только из кварков, но также из всех известных науке элементарных частиц. Их масса слишком велика для того, чтобы топ-кварки можно было изучать на большинстве ускорителей. Помимо прямого научного интереса, данные частицы используются как средство для исследований бозона Хиггса. Бозоны появляются на свет в БАК совместно с парой топ-кварк/антикварк. Поэтому следует лучше представлять свойства кварков, чтобы выделять из их среды бозоны.

Исследование электрослабой симметрии

Среди основных задач БАК, помимо подтверждения существования бозона Хиггса, следует отметить то, каким образом данная нестабильная частица оказывает влияние на симметрию электрослабого взаимодействия. Бозон, как известно, — квант такого физического явления, как поле Хиггса. Преодолевающее эту среду элементарные частицы сталкиваются с сопротивлением, что физика осознает как поправки к массе.

Исследование кварк-глюонной плазмы

Помимо прочих экспериментов, в БАК проводятся опыты со столкновением ядер атомов свинца. В процессе неупругого контакта пары таких ядер на ультрарелятивистских скоростях на короткий срок появляется и исчезает сгусток ядерного в-ва высокой плотности и температуры. Изучение характерных для этого процессов (преобразование в-ва в кварк-глюонную плазму) необходимо для выстраивания более корректной теоретической модели сильных ядерных взаимодействий, которая позволит добиться существенного прогресса как собственно в физической науке, так и в понимании астрономических процессов.

Исследование фотонных взаимодействий

ЭМ взаимодействие понимается как обмен фотонами. Проще говоря, фотоны считаются носителями ЭМ поля. Протоны же обладают электрическим зарядом и электростатическим полем, которое допустимо считать совокупностью виртуальных фотонов.

Когда протоны приходят в столкновение, окружающие их фотоны вступают во взаимодействие. Тем самым, изучая процесс столкновения протонов, физики занимаются исследованием поведения фотонов высокой энергии.

Помимо этого, имеет место особая разновидность реакций – прямое взаимодействие пары фотонов.

Как устроен БАК

Коллайдер состоит из 3 базовых структур;

— ускоритель элементарных частиц. Он позволяет разогнать и столкнуть адроны (тяжелые элементарные частицы из кварков), используя электрические магниты огромной мощности, которые распределены параллельно всей протяженности подземного туннеля;

— детекторы. Процесс, а также итоги взаимодействия ускоренных магнитами протонов невозможно наблюдать непосредственно в туннеле, по этой причине особые устройства-детекторы собирают максимально возможный объем информации с целью дальнейшей ее обработки;

— грид. Детекторы набирают петабайты экспериментальных данных. Для того, чтобы корректно обработать столь внушительный массив информации, применяют грид-систему – компьютерную сеть, расположенную в 36 государствах, она формирует своего рода единый супер-компьютер. Но даже он способен интерпретировать приблизительно 1% параметров реакции в БАК.

Детекторы

ATLAS (A Toroidal LHC ApparatuS)
ALICE (A Large Ion Collider Experiment)
LHCb (The Large Hadron Collider beauty experiment)

CMS (Compact Muon Solenoid)
LHCf (The Large Hadron Collider forward)

TOTEM (TOTal Elastic and diffractive cross section Measurement)
MoEDAL (Monopole and Exotics Detector At the LHC).

ATLAS, ALICE, CMS, LHCb — это большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf являются вспомогательными, находятся в нескольких десятках метров от точек столкновения и используются параллельно с основными.

ATLAS и CMS участвовали в поиске бозона Хиггса, а также тёмной материи. Детектор ALICE — изучает кварк-глюонную плазму при столкновении тяжёлых ионов свинца. LHCb — исследует физику b-кварков, для лучшего понимания различия между антиматерией и материей. TOTEM — изучает рассеивание частиц на малые углы (а также ведет анализ не столкнувшихся частиц). LHCf — исследует космические лучи, которые моделируются теми же не сталкивающимися частицами. MoEDAL — нацелен на поиск медленно движущихся тяжёлых частиц

Как работает БАК

В туннеле коллайдера частицы разгоняют почти до скорости света, при этом увеличивая их массу в несколько тысяч раз. Весь процесс можно разделить на 5 ключевых этапов:

Интересные факты:
Всего за 1 секунду частицы пролетают всю протяженность основного туннеля более 11000 раз (т.е на 1 цикл уходит не более, чем 0,0001 с). За ту же секунду в БАК происходит около 1 миллиарда столкновений, каждое из которых генерирует 1,5 мегабайта данных.

Каковы научные достижения БАК

Поскольку БАК располагает большей энергией в сравнении с коллайдерами ранних версий, он дал ученым возможность исследовать неизведанную до того область энергий и обрести научные данные, которые помогают уточнить некоторые теоретические построения.

Сегодня к наиболее заметным научным «прорывом», достигнутым при помощи коллайдера, относят открытие бозона Хиггса. Уже сейчас его многие называют одним из наиболее громких открытий XXI столетия, поскольку бозон Хиггса помогает объяснить наличие массы частиц в нашем пространстве. Следовательно, тем самым получено подтверждение Стандартной модели, на основе каковой в наше время физика моделирует поведение и реакции элементарных частиц. И как раз это их взаимодействие является фундаментом, на котором построено все наше мироздание.

Сущность действия бозона Хиггса заключается в том, что он участвует в формировании массы и обмене ею среди прочих элементарных частиц. Однако это крайне упрощенное изложение функций бозона, и всем заинтересовавшимся этой частицей рекомендуем изучить соответствующие научные публикации.

Прочие научные результаты БАК:

— проведены исследования базовых статистических параметров столкновений протонов, оценка числа рожденных адронов, корреляции мезонов;

— продемонстрировано, что не существует асимметрия протонов и антипротонов;

— наблюдались необычные корреляции протонов, летящих по весьма различным траекториям;

— уточнены параметры возможных контактных взаимодействий кварков;

— зафиксированы существенные признаки образования кварк-глюонной плазмы и т.д.

Способен ли БАК разрушить планету

С первых дней своей постройки адронный коллайдер вызывал всевозможные спекулятивные опасения и фантазии. В частности, в интернете прошел слух, что вследствие экспериментальной работы БАК способен создать черную дыру, и та проглотит Землю.

Разумеется, эти опасения имеют под собой определенную основу, однако:

— в случае, если теоретически БАК сформировал бы черную дыру, то ее размеры оказались бы микроскопическими. И есть предположение, что чем они миниатюрнее, тем быстрее такой объект аннигилируется, превращаясь в энергию, не успев нанести ни малейшего ущерба. Но здесь нельзя утверждать ничего наверняка, потому что все это основано на гипотезах и теориях.

С другой стороны, возможно, при столкновении в БАК недостаточно кинетической энергии, чтобы выполнилось условие R=2GM/c 2 (гравитационный радиус), необходимое для образования черной дыры.

Планы на будущее

По мере того, как Большой адронный коллайдер приступит к работе на полной мощности и светимости (2021 — 2023 гг.), его разработчики планируют остановку на 2,5 года для модернизации детекторов и ускорителей (проект HL-LHC). Тем самым будет усилена светимость БАК и обеспечена возможность проведения опытов с еще большей энергией. Ученые также намерены организовать опыты путем столкновения протонов и электронов, что потребует дополнительного оборудования для разгона элементарных частиц.

Кроме того, в планах ЦЕРНа есть куда более амбициозный международный проект, создание коллайдера с 100 км. кольцом. Текущее название проекта Future Circular Collider (FCC, «Будущий циклический коллайдер»).

Дорогие друзья, мы все люди и можем ошибаться, а информация имеет тенденцию устаревать. Поэтому, если найдете неверную информацию или грубые смысловые и прочие ошибки, то, пожалуйста, дайте знать об этом в комментариях.

Источник

Большой Адронный Коллайдер своими глазами

Большинство, конечно, знают о существовании Большого Адронного Коллайдера и видели его фотографии, но вот вероятность посмотреть на него своими глазами для обыкновенного человека, я думаю, меньше, чем вероятность появления бозона Хиггса на этом самом коллайдере. Поэтому, когда летом на элементах.ру появилась маленькая заметка о том, что CERN (Центр Европейских Ядерных Исследований) в конце сентября проводит день открытых дверей, у меня не было сомнений — надо ехать.

Особенностью всего этого является то, что CERN — это не музей, а работающие лаборатории и то, что они показывают является реальными научными установками.

Оказалось, однако, что свободно можно посещать только те места, которые находятся на поверхности земли, а коллайдер, как всем известно, находится глубоко под землей. Для посетителей CERN выбрал несколько точек в коллайдере на которые можно было взять именной билет (бесплатно) на специальном сайте и количество этих билетов было строго ограничено. Причем одному человеку разрешалось взять только один билет. Не буду вдаваться в подробности, как я мониторил их сайт на предмет появления билетов — как я потом понял билеты появлялись в случайные промежутки времени (что вобщем-то справедливо, поскольку давало шанс всем желающим получить билет). В конце концов мне досталось посещение CMS — Compact Muon Solenoid — одного из двух детекторов, на котором был открыт бозон Хиггса (второй детектор — Атлас).

Compact Muon Solenoid — это такой самый большой в мире соленоид, в котором создается магнитное поле и исследуются распады заряженных частиц, в основном мюонов. Мое путешествие к данному детектору началось с поезки на автобусе к точке 5 — где этот самый прибор находится. Надо сказать, что длина окружности коллайдера составляет 27 километров на территории Франции и Швейцарии и перемещаться между различными точками представляет непростую транспортную задачу. К счастью, организаторы пустили бесплатные автобусы между всеми интересными местами и я приехал туда на таком автобусе. Само здание на поверхности представляет собой довольно большое сооружение с воротами.

Адронный коллайдер что это

На этой фотографии видно, что находится внутри здания.

Адронный коллайдер что это

Надо сказать, что посетители должны регистрироваться по своему билету и получить бэдж. Перед самыми воротами людей делят на группы по 15 человек и выделяют по одному гиду из числа местных сотрудников. Нашей группе достался молодой американский аспирант, работающий на коллайдере. У всех отбирают сумки и выдают каски. Это я, готов к погружению спуску.

Адронный коллайдер что это

Перед спуском под землю наш аспирант рассказывает о том, что такое CMS и для чего он нужен. Народ внимательно слушает рассказ про мюоны и магнитное поле.

Адронный коллайдер что это

Далее аспирант говорит, что детектор построен группой стран, кажная из которых внесла определенное количество денег. Кроме России. Россия оказалась самой хитрой умной и получила свое место за сцинтилляционные кристаллы, которые раньше использовались в какой-то военной программе, а потом их хотели выбросить, но не выбросили, а отдали в CERN. После рассказа, заставившего меня гордиться своей Родиной, наш гид провел короткий инструктаж по технике безопасности, который заключался в том, что все будет хорошо, и если даже мы застрянем в лифте то нас быстро вытащат.

Адронный коллайдер что это

Адронный коллайдер что это

Наконец мы идем к лифту:

Адронный коллайдер что это

И набиваемся в него как сельди в бочке.

Адронный коллайдер что это

После непродолжительного спуска, при котором у всех заложило уши, мы оказываемся на глубине около 100 метров. Двери лифта открываются и мы оказываемся в half-life:

Адронный коллайдер что это

Мы идем по длинному подземному коридору:

Адронный коллайдер что это

Коридор резко заканчивается и мы оказываемся в огромном зале высотой с пятиэтажный дом и огромным цилиндром посередине. Невозможно описать словами это зрелище. Пожалуй, даже фотографии не передают грандиозности сооружения!

Адронный коллайдер что это

Адронный коллайдер что это

Тысячи проводов опутывают цилиндр. Как сказал наш гид, в этом детекторе миллионы измерительных каналов, а энергии, запасенной магнитным полем достаточно, чтобы расплавить десять тонн золота.

Адронный коллайдер что это

Адронный коллайдер что это

Адронный коллайдер что это

Грандиозность сооружения вызывает уважение и восторг за возможности человеческого гения.

Адронный коллайдер что это

Адронный коллайдер что это

Адронный коллайдер что это

Наш гид что-то объясняет зачарованным гостям.

Адронный коллайдер что это

А там у нас есть та-а-акой прибор.

Адронный коллайдер что это

Видно, что здесь несколько этажей.

Адронный коллайдер что это

Интересно, как местные инженеры разбираются со всеми этими проводами?

Адронный коллайдер что это

Адронный коллайдер что это

Адронный коллайдер что это

Постепенно продвигаемся вдоль детектора.

Адронный коллайдер что это

Адронный коллайдер что это

Адронный коллайдер что это

Видны детали крупным планом.

Адронный коллайдер что это

Адронный коллайдер что это

Адронный коллайдер что это

Наконец детектор заканчивается и мы поднимаемся по лестнице вверх.

Адронный коллайдер что это

Автопортрет на фоне детектора.

Адронный коллайдер что это

Адронный коллайдер что это

Опять попадаем в коридор.

Адронный коллайдер что это

Здесь находится телепорт в другое измерение хитрый шлюз. Для того, чтобы пройти через него, надо посмотреть в такую штуку, которая находится на уровне головы.

Адронный коллайдер что это

Но сегодня она не работает.

Адронный коллайдер что это

а стене висят различные знаки. Особенно впечатляет знак, висящий под красной лампой.

Адронный коллайдер что это

Мы попадаем в вычислительный центр. Конечно, это небольшой вычислительный центр, который используется для предварительной обработки и хранения информации.

Адронный коллайдер что это

Видны стойки с оборудованием.

Адронный коллайдер что это

Далее находится шахта, по которой доставляется оборудование.

Адронный коллайдер что это

Напоследок, наш гид рассказывает про историю создания этого детектора.

Адронный коллайдер что это

Все идут к лифту и едут наверх.

Как известно, все это создается с целью познания природы и попыткой описать с помощью как можно меньшего числа уравнений. И вот к чему это привело на сегодняшний день: все наши текущие знания записаны в виде лагранжиана стандартной модели на этом камне. Надо добавить только гравитацию?

Адронный коллайдер что это

Если данная тема вызовет интерес я могу также рассказать про центр управления коллайдером и главный вычислительный центр.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *