Что изучает кинематика
Что изучает кинематика
Кинематика.
Кинематика – раздел теоретической механики, в котором изучается механическое движение тел без учета их масс и причин, обеспечивающих это движение.
Иными словами, в кинематике описывается движение тела (траектория движения, скорость и ускорение) без выяснения причин, почему оно так движется.
Движением обозначают всякое изменение в окружающем материальном мире. Механическое движение – изменение положения тела в пространстве, происходящее с течением времени, наблюдаемое относительно другого тела, условно принятого за неподвижное. Условно неподвижное тело называют телом отсчета. Система координатных осей, связанная с телом отсчета, определяет пространство, в котором происходит движение.
Физическое пространство трехмерно и евклидово, т. е. все измерения осуществляются на основе школьной геометрии. Основной единицей измерения расстояний служит 1 метр (м), единицей измерения углов – 1 радиан (рад.).
Время в кинематике рассматривается в качестве непрерывно изменяющейся скалярной величины t. Все другие кинематические величины считаются зависящими от времени (функциями от времени). За основную единицу времени принимают 1 сек.
Кинематика изучает движение:
Основные задачи кинематики.
1. Описание движения тела с помощью кинематических уравнений движения, таблиц и графиков. Описать движение тела – определить его положение в любой момент времени.
2. Определение кинематических характеристик движения – скорости и ускорения.
3. Изучение сложных (составных) движений и определение зависимости между их характеристиками. Сложным движением называют движение тела относительно системы координат, которая сама движется относительно другой, неподвижной системы координат.
Кинематика рассматривает следующие понятия и движения:
Кинематика
О чем эта статья:
Прямолинейное равномерное движение
Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.
Например, если у вас ограничение скорости на дороге 60 км/ч и у вас нет никаких препятствий на пути, то вы скорее всего будете двигаться прямолинейно равномерно.
Мы можем охарактеризовать это движение следующими величинами.
Скалярные величины (определяются только значением)
Векторные величины (определяются значением и направлением)
Проецирование векторов
Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.
Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.
Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.
Скорость может определяться по перемещению и пути, только это будут две разные характеристики. Скорость — это векторная физическая величина, характеризующая быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.
Скорость
— скорость [м/с]
— перемещение [м]
— время [с]
Средняя путевая скорость
V ср.путевая = S/t
V ср.путевая — средняя путевая скорость [м/с]
В чем разница между перемещением и путем?
Перемещение — это вектор, проведенный из начальной точки в конечную, а путь — это длина траектории.
Задача
Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.
Решение:
Возьмем формулу средней путевой скорости
V ср.путевая = S/t
V ср.путевая = 210/2,5 = 84 км/ч
Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч
Уравнение движения
Одна из основных задач механики — определение положения тела относительно других тел в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).
Уравнение движения
x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]
Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v
Задачка
Мотоцикл движется по закруглённому участку дороги радиусом 120 м со скоростью 36 км/ч. Чему равно центростремительное ускорение мотоцикла?
Решение:
Возьмем формулу центростремительного ускорения тела
В условии задачи скорость дана в километрах в час, а радиус в метрах. Значит, нужно перевести скорость в м/с, чтобы избежать коллапса в решении.
Теперь можно подставить значения в формулу:
aц = 10 2 /120 = 100/120 = 10/12 ≃ 0,83 м/с 2
Ответ: центростремительное ускорение мотоциклиста равно 0,83 м/с 2
Эту и другие темы мы разбираем на курсе физики за 9 класс.
Кинематика (физика)
Кинема́тика (греч. κινειν — двигаться) в физике — раздел механики, изучающий математическое описание (средствами геометрии, алгебры, математического анализа…) движения идеализированных тел (материальная точка, абсолютно твердое тело, идеальная жидкость), без рассмотрения причин движения (массы, сил и т. д.). Исходные понятия кинематики — пространство и время. Например, если тело движется по окружности, то кинематика предсказывает необходимость существования центростремительного ускорения без уточнения того, какую природу имеет сила, его порождающая. Причинами возникновения механического движения занимается другой раздел механики — динамика.
Различают классическую кинематику, в которой пространственные (длины отрезков) и временные (промежутки времени) характеристики движения считаются абсолютными, то есть не зависящими от выбора системы отсчёта, и релятивистскую. В последней длины отрезков и промежутки времени между двумя событиями могут изменяться при переходе от одной системы отсчёта к другой. Относительной становится также одновременность. В релятивистской механике вместо отдельных понятий пространство и время вводится понятие пространства-времени, в котором инвариантным относительно преобразований Лоренца является величина, называемая интервалом.
Содержание
История кинематики
Рождением современной кинематики можно считать выступление Пьера Вариньона перед Французской Академией наук 20 января 1700 года. Тогда впервые были даны понятия скорости и ускорения в дифференциальном виде.
После создания СТО, показывающей, что время и пространство не абсолютны и скорость имеет принципиальное ограничение, кинематика вошла в новый этап развития в рамках релятивистской механики (см. Релятивистская кинематика).
Основные понятия кинематики
Задачи кинематики
Главной задачей кинематики является математическое (уравнениями, графиками, таблицами и т. п.) определение положения и характеристик движения точек или тел во времени. Любое движение рассматривается в определённой системе отсчёта. Также кинематика занимается изучением составных движений (движений в двух взаимно перемещающихся системах отсчёта).
Положение точки (или тела) относительно заданной системы отсчёта определяется некоторым количеством взаимно независимых функций координат:
,
Скорость движения определяется как производная координат по времени:
,
где — единичные векторы, направленные вдоль соответствующих координат.
Ускорение определяется как производная скорости по времени:
Следовательно, характер движения можно определить, зная зависимость скорости и ускорения от времени. А если кроме этого известны ещё и значения скорости/координат в определённый момент времени, то движение полностью задано.
Деление кинематики по типам объекта исследования
В зависимости от свойств изучаемого объекта, кинематика делится на кинематику точки, кинематику твёрдого тела, кинематику деформируемого тела, кинематику газа, кинематику жидкости и т. д.
Кинематика точки
Кинематика точки изучает движение материальных точек — тел, размерами которых можно пренебречь по сравнению с характерными размерами изучаемого явления. Поэтому в кинематике точки скорость, ускорение, координаты всех точек тела считаются равными.
Частные случаи движения в кинематике точки:
где — длина пути траектории за промежуток времени от
до
,
— проекции
на соответствующие оси координат.
где — длина пути траектории за промежуток времени от
до
,
— проекции
на соответствующие оси координат,
— проекции
на соответствующие оси координат.
где — радиус окружности, по которой движется тело.
Если выбрать систему декартовых координат xyz так, чтобы центр координат был в центре окружности, по которой движется точка, оси y и x лежали в плоскости этой окружности, так чтобы движение осуществлялось против часовой стрелки, то значения координат можно вычислить по формулам:
Для перехода в другие системы координат используются преобразования Галилея для скоростей намного меньших скорости света, и преобразования Лоренца для скоростей, сравнимых со скоростью света.
Если выбрать систему декартовых координат xyz так, чтобы ускорение и начальная скорость лежали в плоскости xy и ускорение было сонаправленно с осью y, то значения координат можно вычислить по формулам:
,
где и
— проекции
на соответствующие оси.
Для перехода в другие системы координат используются преобразования Галилея для скоростей намного меньших скорости света, и преобразования Лоренца для скоростей, сравнимых со скоростью света.
Кинематика твёрдого тела
Кинематика твёрдого тела изучает движение абсолютно твёрдых тел (тел, расстояние между двумя любыми точками которого не может изменяться).
Так как любое тело ненулевого объёма имеет бесконечное число точек, и соответственно бесконечное число фиксированных связей между ними, тело имеет 6 степеней свободы и его положение в пространстве определяется шестью координатами (если нет дополнительных условий).
Связь скорости двух точек твердого тела выражается через формулу Эйлера:
,
где — вектор угловой скорости тела.
Кинематика деформируемого тела, Кинематика жидкости
Основные статьи: Кинематика деформируемого тела, Кинематика жидкости
Кинематика деформируемого тела и кинематика жидкости относятся к кинематике непрерывной среды.
Кинематика газа
Кинематика газа изучает деление газа на скопления при движении и описывает движение этих скоплений. В рамках кинематики газа описываются не только основные параметры движения, но и типы движения газа.
Примечания
Литература
Полезное
Смотреть что такое «Кинематика (физика)» в других словарях:
Кинематика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение. Движение любого… … Википедия
Физика Ragdoll — Ранний пример использования физики Ragdoll, 1997 год. Физика Ragdoll (рэгдолл) вид процедурной анимации, пришедший на замену статичной, пререндеренной анимации. Название произошло от английских слов rag (русск. тряпка) и doll (русск. кукла), в… … Википедия
физика — ▲ наука ↑ относительно, основа, материя физика наука об основах строении материи. механика. статика. кинематика. динамика. магнитогидродинамика. термодинамика. кинетика. электрохимия. физическая химия. кристаллография. металлофизика.… … Идеографический словарь русского языка
Инверсная кинематика — (инверсная кинематическая анимация, англ. inverse kinematics, IK) процесс определения параметров связанных гибких объектов (например, кинематическая пара или кинематическая цепь) для достижения необходимой позиции, ориентации и расположения… … Википедия
Прямая кинематика — Манипулятор робота, который может управляться с помощью прямой кинематики. Прямая кинематика (прямая кинематическая анимация, англ. forward kinematics, FK) процесс определения параметров связанных гибких объектов (например, кинематическая… … Википедия
Ragdoll-физика — Ранний пример использования физики Ragdoll, 1997 год. Физика Ragdoll (рэгдолл) вид процедурной анимации, пришедший на замену статичной, пререндерной анимации. Название произошло от английского словосо … Википедия
Эфир (физика) — У этого термина существуют и другие значения, см. Эфир. Эфир (светоносный эфир, от др. греч. αἰθήρ, верхний слой воздуха; лат. aether) гипотетическая всепроникающая среда[1], колебания которой проявляют себя как электромагнитные волны… … Википедия
Механика (терминология) — Эта статья содержит список основных определений классической механики. Содержание 1 Кинематика 2 Вращательное дви … Википедия
Механика/Основные определения — Предупреждение. Здесь приведены определения некоторых терминов в школьной, элементарной формулировке. При этом некоторыми более сложными эффектами может быть пренебрежено. Содержание 1 Кинематика 2 Вращательное движение тела вокруг неподвижной… … Википедия
Механика — (греч. μηχανική искусство построения машин) область физики, изучающая движение материальных тел и взаимодействие между ними. Движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве[1].… … Википедия
Основные понятия кинематики
Кинематика − это раздел механики, который рассматривает движение тел без объяснения вызывающих его причин.
Механическое движение тела − это изменение положения данного тела в пространстве относительно других тел во времени.
Как мы сказали, механическое движение тела относительно. Движение одного и того же тела относительно разных тел может быть разным.
Для характеристики движения тела указывается, по отношению к какому из тел рассматривается это движение. Это будет тело отсчета.
Система отсчета − система координат, которая связана с телом отсчета и временем для отсчета. Она позволяет определить положение передвигающегося тела в любой отрезок времени.
В С И единицей длины выступает метр, а единицей времени – секунда.
У каждого тела есть определенные размеры. Разные части тела расположены в разных пространственных местах. Но в большинстве задач механики не нужно указывать положение отдельных частей тела. Если размеры тела маленькие в сравнении с расстояниями до остальных тел, тогда заданное тело считается его материальной точкой. Таким образом поступают при изучении перемещения планет вокруг Солнца.
Механическое движение называют поступательным, в случае если все части тела перемещаются одинаково.
Поступательное движение наблюдается у кабин в аттракционе «Колесо обозрения» или у автомобиля на прямолинейном участке пути.
При поступательном движении тела его также рассматривают в качестве материальной точки.
Материальная точка − это тело, размерами которого при заданных условиях можно пренебречь.
Материальная точка в механике
Термин “материальная точка” имеет важное значение в механике.
Траектория движения тела − некоторая линия, которую тело или материальная точка описывает, перемещаясь во времени от одной точки до другой.
Если движение тела рассматривается в течение довольно короткого отрезка времени, тогда вектор перемещения оказывается направленным по касательной к траектории в заданной точке, а его длина равняется преодоленному пути.
Определение средней и мгновенной скорости движения тела. Основные формулы кинематики
Вектор a → τ направлен по касательной к траектории.
Нормальное ускорение показывает, как быстро скорость тела меняется по направлению.
Вектор a n → все время направлен к центру окружности.
Путь l – скалярная величина.
Для того чтобы задать какую-нибудь векторную величину, необходимо задать ее модуль и определить направление. Вектора подчиняются математическим правилам: их можно проектировать на координатные оси, складывать, вычитать и др.
Кинематика
Механика — это раздел физики, изучающий механическое движение тел.
Кинематика — это раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих это движение.
Материальная точка — тело, обладающее массой, размерами которого в данной задаче можно пренебречь, если
Система отсчета — это тело отсчета, связанная с ним система координат и прибор для измерения времени.
Траектория — это линия, которую описывает тело при своем движении.
Путь — это скалярная величина, равная длине траектории.
Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением за данный промежуток времени.
Важно!
В процессе движения путь может только увеличиваться, а перемещение как увеличиваться, так и уменьшаться, например, когда тело поворачивает обратно.
При прямолинейном движении в одном направлении путь равен модулю перемещения, а при криволинейном — путь больше перемещения.
Перемещение на замкнутой траектории равно нулю.
Основная задача механики — определить положение тела в пространстве в любой момент времени.
Механическое движение и его виды
Механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.
Механическое движение может быть:
1. по характеру движения
2. по виду траектории
Относительность механического движения
Относительность движения — это зависимость характеристик механического движения от выбора системы отсчета.
Правило сложения перемещений
Перемещение тела относительно неподвижной системы отсчета равно векторной сумме перемещения тела относительно подвижной системы отсчета и перемещения подвижной системы отсчета относительно неподвижной системы отсчета:
где \( S \) — перемещение тела относительно неподвижной системы отсчета;
\( S_1 \) — перемещение тела относительно подвижной системы отсчета;
\( S_2 \) — перемещение подвижной системы отсчета относительно неподвижной системы отсчета.
Правило сложения скоростей
Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета:
где \( v \) — скорость тела относительно неподвижной системы отсчета;
\( v_1 \) — скорость тела относительно подвижной системы отсчета;
\( v_2 \) — скорость подвижной системы отсчета относительно неподвижной системы отсчета.
Относительная скорость
Важно! Чтобы определить скорость одного тела относительно другого, надо мысленно остановить то тело, которое мы принимаем за тело отсчета, а к скорости оставшегося тела прибавить скорость остановленного, изменив направление его скорости на противоположное.
Пусть \( v_1 \) — скорость первого тела, а \( v_2 \) — скорость второго тела.
Определим скорость первого тела относительно второго \( v_ <12>\) :
Определим скорость второго тела относительно первого \( v_ <21>\) :
Следует помнить, что траектория движения тела и пройденный путь тоже относительны.
Если скорости направлены перпендикулярно друг к другу, то относительная скорость рассчитывается по теореме Пифагора:
Если скорости направлены под углом \( \alpha \) друг к другу, то относительная скорость рассчитывается по теореме косинусов:
Скорость
Скорость — это векторная величина, характеризующая изменение перемещения данного тела относительно тела отсчета с течением времени.
Обозначение — \( v \) , единицы измерения — м/с (км/ч).
Средняя скорость — это векторная величина, равная отношению всего перемещения к промежутку времени, за которое это перемещение произошло:
Средняя путевая скорость — это скалярная величина, равная отношению всего пути, пройденного телом, к промежутку времени, за которое этот путь пройден:
Важно! Чтобы определить среднюю скорость на всем участке пути, надо время разделить на отдельные промежутки и все время представить в виде суммы этих промежутков.
Чтобы определить среднюю скорость за все время движения, надо путь разделить на отдельные участки и весь путь представить как сумму этих участков.
Мгновенная скорость — это скорость тела в данный момент времени или в данной точке траектории.
Мгновенная скорость направлена по касательной к траектории движения.
Ускорение
Ускорение – это векторная физическая величина, характеризующая быстроту изменения скорости.
где \( v \) – конечная скорость; \( v_0 \) – начальная скорость;
\( t \) – промежуток времени, за который произошло изменение скорости.
В проекциях на ось ОХ:
где \( a_n \) – нормальное ускорение, \( a_ <\tau>\) – тангенциальное ускорение.
Тангенциальное ускорение сонаправлено с вектором линейной скорости, а значит, направлено вдоль касательной к кривой:
Нормальное ускорение перпендикулярно направлению вектора линейной скорости, а значит, и касательной к кривой:
Ускорение характеризует быстроту изменения скорости, а скорость – векторная величина, которая имеет модуль (числовое значение) и направление.
Важно!
Тангенциальное ускорение характеризует быстроту изменения модуля скорости. Нормальное ускорение характеризует быстроту изменения направления скорости.
Если \( a_ <\tau>\) ≠ 0, \( a_n \) = 0, то тело движется по прямой;
если \( a_ <\tau>\) = 0, \( a_n \) = 0, \( v \) ≠ 0, то тело движется равномерно по прямой;
если \( a_ <\tau>\) = 0, \( a_n \) ≠ 0, тело движется равномерно по кривой;
если \( a_ <\tau>\) = 0, \( a_n \) = const, то тело движется равномерно по окружности;
если \( a_ <\tau>\) ≠ 0, \( a_n \) ≠ 0, то тело движется неравномерно по окружности.
Равномерное движение
Равномерное движение – это движение, при котором тело за любые равные промежутки времени совершает равные перемещения.
Скорость при равномерном движении – величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло:
Проекция вектора скорости на ось ОХ:
Проекция вектора скорости на координатную ось равна быстроте изменения данной координаты:
График скорости (проекции скорости)
График скорости (проекции скорости) представляет собой зависимость скорости от времени:
График скорости при равномерном движении – прямая, параллельная оси времени.
График 1 лежит над осью \( t \) , тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью \( t \) , тело движется против оси ОХ.
Перемещение при равномерном движении – это величина, равная произведению скорости на время:
Проекция вектора перемещения на ось ОХ:
График перемещения (проекции перемещения)
График перемещения (проекции перемещения) представляет собой зависимость перемещения от времени:
Координата тела при равномерном движении рассчитывается по формуле:
График координаты представляет собой зависимость координаты от времени: \( x=x(t) \) .
График координаты при равномерном движении – прямая.
График 1 направлен вверх, тело движется по направлению оси ОХ:
График 2 параллелен оси ОХ, тело покоится.
График 3 направлен вниз, тело движется против оси ОХ:
Прямолинейное равноускоренное движение
Прямолинейное равноускоренное движение – это движение по прямой, при котором тело движется с постоянным ускорением:
При движении с ускорением скорость может как увеличиваться, так и уменьшаться.
Скорость тела при равноускоренном движении рассчитывается по формуле:
При разгоне (в проекциях на ось ОХ):
При торможении (в проекциях на ось ОХ):
График ускорения (проекции ускорения) при равноускоренном движении представляет собой зависимость ускорения от времени:
График ускорения при равноускоренном движении – прямая, параллельная оси времени.
График 1 лежит над осью t, тело разгоняется, \( a_x \) > 0.
График 2 лежит под осью t, тело тормозит, \( a_x \) \( v_ <0x>\) > 0, \( a_x \) > 0.
График 2 направлен вниз, тело движется равнозамедленно в положительном направлении оси ОХ, \( v_ <0x>\) > 0, \( a_x \) \( v_ <0x>\) \( a_x \) \( t_2-t_1 \) . Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).
Перемещение при равноускоренном движении рассчитывается по формулам:
Перемещение в \( n \) -ую секунду при равноускоренном движении рассчитывается по формуле:
Координата тела при равноускоренном движении рассчитывается по формуле:
Свободное падение (ускорение свободного падения)
Свободное падение – это движение тела в безвоздушном пространстве под действием только силы тяжести.
Все тела при свободном падении независимо от массы падают с одинаковым ускорением, называемым ускорением свободного падения.
Ускорение свободного падения всегда направлено к центру Земли (вертикально вниз).
Движение тела по вертикали
Тело падает вниз, вектор скорости направлен в одну сторону с вектором ускорения свободного падения:
Если тело падает вниз без начальной скорости, то \( v_0 \) = 0.
Время падения рассчитывается по формуле:
Тело брошено вверх:
Если брошенное вверх тело достигло максимальной высоты, то \( v \) = 0.
Время подъема рассчитывается по формуле:
Движение тела, брошенного горизонтально
Движение тела, брошенного горизонтально, можно представить как суперпозицию двух движений:
Скорость тела в любой момент времени:
Угол между вектором скорости и осью ОХ:
Движение тела, брошенного под углом к горизонту (баллистическое движение)
Движение тела, брошенного под углом к горизонту, можно представить как суперпозицию двух движений:
Скорость тела в любой момент времени:
Угол между вектором скорости и осью ОХ:
Время подъема на максимальную высоту:
Максимальная высота подъема:
Максимальная дальность полета:
Важно!
При движении вверх вертикальная составляющая скорости будет уменьшаться, т. е. тело вдоль вертикальной оси движется равнозамедленно.
При движении вниз вертикальная составляющая скорости будет увеличиваться, т. е. тело вдоль вертикальной оси движется равноускоренно.
Скорость \( v_0 \) , с которой тело брошено с Земли, будет равна скорости, с которой оно упадет на Землю. Угол \( \alpha \) , под которым тело брошено, будет равен углу, под которым оно упадет.
При решении задач на движение тела, брошенного под углом к горизонту, важно помнить, что в точке максимального подъема проекция скорости на ось ОУ равна нулю:
Это облегчает решение задач:
Движение по окружности с постоянной по модулю скоростью
Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения.
Траектория движения – окружность. Вектор скорости направлен по касательной к окружности.
Модуль скорости тела с течением времени не изменяется, а ее направление при движении по окружности в каждой точке изменяется, поэтому движение по окружности – это движение с ускорением.
Ускорение, которое изменяет направление скорости, называется центростремительным.
Центростремительное ускорение направлено по радиусу окружности к ее центру.
Движение тела по окружности с постоянной по модулю скоростью является периодическим движением, т. е. его координата повторяется через равные промежутки времени.
Период – это время, за которое тело совершает один полный оборот.
Обозначение – \( T \) , единицы измерения – с.
где \( N \) – количество оборотов, \( t \) – время, за которое эти обороты совершены.
Частота вращения – это число оборотов за единицу времени.
Обозначение – \( \nu \) , единицы измерения – с –1 (Гц).
Период и частота – взаимно обратные величины:
Линейная скорость – это скорость, с которой тело движется по окружности.
Обозначение – \( v \) , единицы измерения – м/с.
Линейная скорость направлена по касательной к окружности:
Направление угловой скорости можно определить по правилу правого винта (буравчика).
Если вращательное движение винта совпадает с направлением движения тела по окружности, то поступательное движение винта совпадает с направлением угловой скорости.
Связь различных величин, характеризующих движение по окружности с постоянной по модулю скоростью:
Важно!
При равномерном движении тела по окружности точки, лежащие на радиусе, движутся с одинаковой угловой скоростью, т. к. радиус за одинаковое время поворачивается на одинаковый угол. А вот линейная скорость разных точек радиуса различна в зависимости от того, насколько близко или далеко от центра они располагаются:
Если рассматривать равномерное движение двух сцепленных тел, то в этом случае одинаковыми будут линейные скорости, а угловые скорости тел будут различны в зависимости от радиуса тела:
Мгновенная скорость нижней точки \( (m) \) равна нулю, мгновенная скорость в верхней точке \( (n) \) равна удвоенной скорости \( v_1 \) , мгновенная скорость точки \( (p) \) , лежащей на горизонтальном радиусе, рассчитывается по теореме Пифагора, а мгновенная скорость в любой другой точке \( (c) \) – по теореме косинусов.
Содержание:
Кинематика, изучает конкретные механические та их взаимодействия с другими телами. Она фактически объединяет простейшие пространственно-временные зависимости, в частности изменение координат тела со временем (как функцию времени).
Поэтому кинематику часто называют геометрией движения.
Кинематика изучает механические движения тел без учета их взаимодействия с другими телами.
Кинематика
Физика изучает разнообразные явления и процессы, происходящие вокруг нас. Как вам известно, в зависимости от их природы различают механические, тепловые, электрические, магнитные, световые и другие физические явления. Раздел физики, который объясняет движение и взаимодействие тел, называется механикой.
Основная задача механики состоит в том, чтобы найти уравнение движения тела с помощью параметров, описывающих это движение.
Т. е. если мы при помощи этих физических величин сможем установить положение тела в любой момент времени, то основная задача механики считается решенной. В зависимости от способов ее решения в механике выделяют три раздела: кинематика, динамика и статика.
Кинематика изучает, как движется тело, не вникая в причины, вызывающие именно такое движение. Поэтому кинематические уравнения состоят лишь из пространственных характеристик механического движения: пройденного пути, изменения координат тела, скорости и т. д. В них нет сил, изменяющих это движение.
В переводе с греческого слово кинематика» (kinematos) означает движение.
Механическое движение и траектория движения
Чаще всего в обыденной жизни мы наблюдаем явление, которое называется механическим движением. Например, автомобиль едет по дороге, в небе «плывут» тучи, ребенок катается на качелях, Луна вращается вокруг Земли и т. д. Во всех этих случаях происходит изменение положения одного тела или его частей относительно других. Чтобы убедиться в этом, необходимо выбрать тело отсчета, относительно которого можно фиксировать положение движущегося тела в любой момент времени. Тело отсчета выбирают произвольно. В приведенных примерах это может быть столб или дерево возле дороги, дом, поверхность Земли и т. д.
Для того чтобы описать движение тела, необходимо точно знать его местоположение в пространстве в произвольный момент времени, т. е. уметь определять изменение положения тела в пространстве относительно других тел с течением времени. Как известно, легче всего это можно сделать с помощью системы координат. Например, зафиксировать «адрес» тела как определенное его положение в пространстве, измерив расстояния или углы в некоторой системе координат.
Систему координат, как правило, связывают с телом отсчета. В данном случае движущееся тело характеризуется изменением положения в пространстве относительно тела отсчета, т. е. изменением его координат с течением времени.
Математически это можно записать в таком виде: х = x(t); у = y(t).
Для того чтобы определить такое изменение в любой момент времени, с телом отсчета и системой координат необходимо связать средство измерения времени, к примеру секундомер или хронометр. Тогда тело отсчета, связанную с ним систему координат и секундомер как единое целое называют системой отсчета.
Как известно, реальные физические тела имеют форму и объем. Поэтому однозначно задать их положение в пространстве не всегда представляется возможным, поскольку различные их части имеют разные координаты. Однако эту проблему можно упростить, если не брать во внимание размеры тела. Такое возможно лишь при определенных условиях.
Часто кроме движущихся предметов мы наблюдаем тела, пребывающие в состоянии покоя. Однако абсолютно неподвижных тел в природе не существует.
Следовательно, состояние покоя является относительным, равно как и состояние движения, поскольку зависит от выбранной системы отсчета. Поэтому в дальнейшем при рассмотрении движения тела мы в первую очередь будем определяться с выбором системы отсчета, потому что от этого нередко зависит сложность уравнений, описывающих данное движение. Правильный выбор системы отсчета ведет к упрощению уравнений движения.
Состояние покоя и состояние движения тела относительны, поскольку зависят от выбора системы отсчета.
Рассмотрим движущееся тело, последовательно фиксируя его положение в определенные моменты времени. Если теперь соединить все точки, в которых побывало тело во время своего движения, то получим мнимую линию, которая называется траекторией движения. Траектория движения может быть видимой (след от самолета на небосклоне, линия от карандаша или ручки при записи в тетради) и невидимой (полет птички, движение теннисного мяча и т. д.).
По форме траектории механическое движение бывает прямолинейным и криволинейным (рис. 1.3).
Положение броуновской частички через определенные промежутки времени.
Рис. 1.3. Различные формы траектории
Поскольку движение тел происходит в определенных системах отсчета, то и траектория рассматривается относительно них. Ведь она отображает во времени последовательные положения тела в некоторой системе отсчета. Поэтому она будет отличаться формой в различных системах отсчета, т. е. траектории движения также относительны. Например, все точки колеса велосипеда относительно его оси описывают окружность, однако в системе отсчета, связанной с землей, эта линия более сложная (рис. 1.4).
Рис. 1.4. Траектория движения точки обода колеса велосипеда
Путь и перемещение
Зная траекторию движения, можно определить путь, пройденный телом: для этого необходимо измерить длину траектории между начальной и конечной точками движения.
Часто, для того чтобы более полно охарактеризовать движение тела и найти его новое положение, кроме пройденного пути (длины траектории), необходимо указать также направление, в котором двигалось тело. Например, водителю автомобиля приходится ехать по извилистой дороге (рис. 1.5).
Путь и перемещение могут отличаться своими значениями. Чтобы убедиться в этом, рассмотрим движение велосипедиста по окружности радиуса R= 100 м (рис. 1.6).
Допустим велосипедист стартует в точке А. Проехав половину окружности, он окажется в точке В. Пройденный им путь равен дуге а модуль перемещения
= 2R = 200 м.
В момент времени, когда велосипедист проедет окружности, пройденный им путь будет равен
значение перемещения
Когда велосипедист сделает полный оборот, пройденный путь будет равен
модуль перемещения при этом равен нулю
Таким образом, перемещение может равняться нулю даже в том случае, если тело перед этим осуществляло движение. Это возможно, когда начальное и конечное положения тела совпадают.
Путь и перемещение имеют также одинаковые значения, когда тело движется прямолинейно лишь в одном направлении.
В рассмотренном нами примере пройденный путь и перемещение разные, отличаются по своему значению. Возникает вопрос: могут ли они совпадать, быть одинаковыми? Можно легко убедиться в том, что такое возможно, если, во-первых, траектория движения будет прямой, во-вторых, движение происходит в одну сторону. Как подтверждение этого, рассмотрим — такой пример.
Допустим, что автомобиль движется прямолинейно по шоссе из пункта А в пункт В, а затем возвращается в пункт С. Расстояние между пунктами 2 км и 4 км соответственно, все они размещены на одной прямой (рис. 1.7).
Двигаясь из пункта А в пункт В, автомобиль проходит путь = 2 км + 4 км = 6 км, и модуль его перемещения равен
= 6 км. Т. е. в данном случае путь и перемещение совпадают:
После того как автомобиль развернулся и приехал в пункт С, его перемещение равно
= 2 км, а пройденный путь составляет
= 6 км + 4 км = 10 км, т. е. пройденный путь и перемещение отличаются:
Следовательно, пройденный путь и перемещение по своему значению одинаковы лишь в том случае, если тело движется по прямой и не изменяет направление движения.
Равномерное прямолинейное движение
При равномерном движении значение скорости остается постоянным, поскольку за любые равные интервалы времени совершаются равные перемещения.
Из рисунков 1.8 и 1.9 понятно, что Воспользовавшись формулой (2), получим уравнение равномерного прямолинейного движения:
поэтому
Уравнения равномерного прямолинейного движения:
Рассмотрим теперь различные случаи равномерного прямолинейного движения (рис. 1.10).
Если же направление движения тела противоположно направлению координатной оси, то 0) либо устремляться вниз (
0 (рис. 1.15) либо
0 и
0, скорость движения увеличивается, ведь
—
> 0, вектор
совпадает с направлением движения.
Если скорость тела со временем уменьшается то вектор ускорения будет противоположным к направлению движения (рис. 1.25).
В данном случае в соответствии с выбранным направлением координатной оси ОХ проекция ускорения будет отрицательной
Из формул (1) и (2) можно получить кинематическое уравнение скорости для равноускоренного движения:
или в проекциях на ось ОХ:
Выведем теперь кинематическое уравнение перемещения для равноускоренного движения. Учтем, что скорость во время такого движения постоянно изменяется, например сначала она равна а в конце движения она будет v. Поэтому в формуле перемещения можно воспользоваться понятием средней скорости (известное из курса физики 8-го класса):
Подставив в данную формулу уравнение (3) и произведя некоторые преобразования, получим:
или в проекциях на ось ОХ:
Если начальная скорость тела равна 0 то кинематическое уравнение перемещения приобретает вид:
или в проекциях на ось ОХ:
Для прямолинейного движения, учитывая, что получим кинематическое уравнение для координат или уравнение равноускоренного движения:
или для случая, когда = 0:
Следует помнить, что в ходе решения задач необходимо учитывать знаки проекций в соответствующих уравнениях.
При определении проекции перемещения не всегда известно время, в течение которого происходило движение. Тогда можно воспользоваться иным уравнением. Чтобы его получить, подставим в кинематическое уравнение выражение
Сделав некоторые математические преобразования (предлагаем произвести их самостоятельно), получим формулу:
Отсюда Если
Задача №5
Водитель начинает тормозить в тот момент, когда спидометр автомобиля фиксирует скорость 72 км/ч. Через какое время автомобиль остановится, если он двигался с ускорением Каким был его тормозной путь?
Дано:
следовательно, 0 =
— at, отсюда
Ответ: автомобиль остановился через 10 с, проехав 100 м.
Задача №6
Шарик толкнули по наклонному желобу вверх со скоростью 6 м/с. Шарик движется с ускорением 0,5 Найти скорость шарика через 8 с и 14 с после начала движения.
Дано:
Решение
Направим ось ОХ вдоль желоба (см. рис.).
Учитывая знаки проекций скорости и ускорения, имеем
Отсюда уравнение для имеет такой вид:
Для
имеем:
Анализируя полученные результаты, можно сделать вывод, что в первом случае шарик двигался вверх (
> 0), а во втором случае он скатывался вниз, поскольку
0), либо падать вниз (
0, то график имеет вид, представленный на рисунке 1.28. На графике зависимости координаты от времени, если
вершина параболы смещается по оси ординат вверх или вниз в зависимости от значения
Если = 0 и
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Кинематика — основные определения и формулы
Зачем знать основные определения кинематики?
Почему этот раздел очень важен?
Как он поможет тебе на экзамене?
Все очень просто. В этом разделе мы «дадим имена самым важным вещам».
Тебе в детстве сказали, что вот это стул и на нем сидят, а вот это стол, на нем едят? Сказали. И после этого ты сидишь на стуле, а ешь за столом. Ну чаще всего 🙂
Так и здесь. Все, о чем мы будем говорить на этом уроке, нужно, чтобы мы говорили на одном языке.
И чтобы на экзамене ты не перепутал, например, траекторию, путь и перемещение.
Кинематика — основные определения и формулы
Основные определения кинематики
Что ты вспоминаешь при слове «движение»?
Слова учителя физкультуры: «Движение – это жизнь, ребята»? Движение за права человека? Или ту задачку по математике, где пришлось складывать скорости?
Все это означает какие-то изменения. Экологическое движение меняет мир, очищая его. Спорт меняет наше тело. А мы в свою очередь можем изменить свое положение в пространстве, сходив погулять.
Все это и есть движение. Но это понятие очень широкое. Давайте сузим его и определим, а что такое механическое движение?
Что такое механическое движение?
Мы говорили, что движение – это всегда какое-то изменение. Но что меняется при механическом движении?
Ты можешь сказать: «Меняется положение тела». Хорошо, это действительно так.
Но давай представим, что мы сидим в купе поезда, который мчится из Москвы во Владивосток.
Движемся мы или нет? А движется ли поезд?
Кажется, очень легко дать ответы на эти вопросы, потому что и мы вместе с поездом движемся. Но если ты посмотришь на соседей по купе, а они посмотрят на тебя, то никаких изменений (никакого движения) вы не увидите.
Дело в том, что все зависит от точки отсчета.
Так, например, если за точку отсчета взять поезд, то ни мы ни наши соседи по купе относительно поезда двигаться не будем. И поезд не будет двигаться относительно нас.
А вот люди, стоящие на перроне, относительно поезда движутся. И поезд движется относительно них.
Значит для того, чтобы сказать движется тело или нет, нам нужно определить точку отсчета.
Точка отсчета – тело, относительно которого мы рассматриваем движение.
Что еще нам нужно?
Любое движение происходит с течением времени. Если бы не было времени, ничего бы не менялось и не было бы никакого движения.
Значит для того, чтобы было механическое движение, нам нужно чтобы изменялось время.
Механическое движение – это изменение положения тела в пространстве относительно других тел с течением времени.
В чем состоит основная задача механики?
Ты абсолютно прав, движение бывает очень разным!
Основная задача механики – указать положение тела в пространстве в любой момент времени, не только в настоящем, но и в будущем.
То есть уметь предсказывать его!
Если мы хотим знать почему тело движется, мы обращаемся к разделу механики, который называется динамикой. Но пока, чтобы не усложнять все сразу, мы не будем интересоваться причинами движения тела…
Если нам не интересна причина движения тела, мы обращаемся к разделу механики, который называется кинематикой.
Что такое кинематика?
Кинематика – это раздел механики, который изучает движение тела, не рассматривая причину этого движения.
Она просто описывает движение тела, но не объясняет его.
Движение – изменение положения тела в пространстве с течением времени.
Но тело состоит из множества точек. Неужели придется описывать движение каждой из них? Будет, наверное, трудно…
Вовсе нет! Есть два способа облегчить себе эту задачу.
Первый способ. Если все точки тела движутся одинаково, почему бы не рассмотреть движение лишь одной из них?
Такое движение, при котором все точки тела движутся одинаково, называется поступательным движением.
Что такое поступательное движение?
Соединим прямой любые две точки тела. Когда тело движется поступательно, эта прямая будет параллельна каждому своему положению в любой момент времени. Наверное, это трудно представить, но вот тебе рисунок:
Видишь, прямая a параллельна прямой b, и они обе параллельны прямой c.
Записывается это так: \(a\parallel b\parallel c\)
И, соответственно, еще одно определение поступательного движения:
Поступательное движение – то, при котором любая прямая, соединяющая две любых точки тела, остается параллельна своему начальному положению в любой момент времени.
Слово «любая» здесь важно. Потому что если в теле найдется хотя бы одна прямая, соединяющая две любых его точки, которая не будет параллельна самой себе при движении, то такое движение не будет считаться поступательным.
Хорошо, с поступательным движением разобрались. А есть ли еще какое-нибудь движение? Что если наш треугольник, перевернуть, сделать из него юлу и раскрутить ее? Будет ли в этом случае тело двигаться поступательно?
Нет. Потому что, например, грань юлы не будет параллельна самой себе во время движения. Тогда какое это движение?
Это вращательное движение.
Что такое вращательное движение?
Что общего у колеса и нашей планеты? Точки этих тел вращаются вокруг прямой по разным окружностям.
И эта прямая называется осью вращения. А такое движение называется вращательным.
Вращательное движение – это такое движение тела, при котором все его точки движутся по окружностям, центры которых лежат на одной прямой, называемой осью вращения.
И, кстати, ось вращения не обязательно должна проходить через центр тела. Например, когда вы крутите ключи от машины вокруг пальца, ось вращения проходит через кольцо, на котором висят ключи, а не через центр ключей.
И вот что интересно…
Даже самое сложное движение можно описать комбинацией поступательного и вращательного!
Вернемся к тому моменту, когда мы сидели в купе движущегося поезда. Представь, что в твоих руках чашка с чаем и ты размешиваешь в нем кубик сахара. Он будет вращаться вокруг своей оси (вращательное движение) и при этом двигаться вместе с поездом относительно деревьев за окнами (поступательное движение).
Что такое материальная точка и зачем она нужна?
Земля, вращаясь вокруг Солнца, к тому же вращается вокруг своей оси. И все их точки движутся по-разному. Что в этом случае делать? Чтобы ответить на этот вопрос, нужно понять, действительно ли нам это важно.
Если по реке плывут лодка с парусами и яхта, будем ли мы описывать движение всех их точек?
Нам не важны их размеры и формы и движение всех точек этих тел. Но нам важно, например, время, за которое они преодолеют определенное расстояние.
Парусник и яхта – тела, размерами которых в данной задаче можно пренебречь.
Такие тела называются материальными точками.
Следует помнить, что пренебречь их размерами и формой можно не всегда. Так, например, если в задаче необходимо выяснить, смогут ли они пройти через узкое место в реке, их размеры имеют огромное значение!
Решая задачи по кинематике, будем считать тела материальными точками, если условия задачи не требуют другого.
Материальной точкой называется тело, размерами которого В ДАННОЙ ЗАДАЧЕ можно пренебречь.
С этого момента для того чтобы решить основную задачу механики, определить тело в пространстве в любой момент времени мы будем оперировать не всем телом, а ТОЧКОЙ!
Если задача не требует другого – важная оговорка!
Мы можем рассмотреть движение точки в любой момент времени, спрогнозировать положение в будущем и так далее.
Но что для этого необходимо?
Прежде всего понять, что положение тела можно задать числами. И вы наверняка знаете, как они называются…
Координаты тела и положение тела на прямой, плоскости и в пространстве
Как думаете, что связывает дороги, шахматы и спрятанные сокровища?
Координаты.
Координаты — это числа, с помощью которых задается положение материальной точки в пространстве.
Сколько чисел нам нужно, чтобы задать координаты материальной точки? Одно? Два? Три? Давайте разберемся.
Допустим мы заблудились в лесу, долго блуждали и в конце концов вышли на дорогу, где стоит столбик с цифрой «25». Как мы вызовем помощь? Мы позвоним и скажем: «Я нахожусь на 25 километре такого-то шоссе!»
Шоссе – это прямая (ну почти). Значит, чтобы задать координаты на прямой нам достаточно одного числа.
А сколько чисел нам нужно чтобы понять где находится шахматная фигура?
Позиция фигуры в шахматах задается двумя числами, например, Е6 («Е» можно заменить числом). Так мы определяем координаты на плоскости.
На уроке географии, когда мы только начинаем учиться работать с картой, мы определяем координаты географических объектов и нам тоже требуются два числа: широта и долгота.
А вот если мы захотим найти клад, нам потребуются три числа, одно из которых – глубина. Нам важно, насколько глубоко копать.
Так мы определяем положение тела в трехмерном пространстве. Мы с вами живем в таком трехмерном пространстве. У нас трехмерная система координат.
Система координат – это способ определять положение тела в пространстве с помощью чисел.
Давай подытожим. Вырисовывается некоторая система, которая позволяет нам определить положение тела.
Система отсчета или три вещи, необходимые для определения движения
Время
Можем ли мы двигаться вне времени? Движение вне времени невозможно. И значит, его нужно его как-то измерить. У нас должны быть часы или что-то в этом роде для измерения времени.
Тело отсчета
Можем ли мы двигаться сами по себе? Нет. Мы всегда движемся относительно чего-то. И, соответственно, нам нужно что-то, относительно чего мы начнем отсчет движения.
И это что-то называется телом отсчета.
Система координат
Когда мы решаем задачу по механике мы должны определиться в какой системе координат мы будем определять положение точки с помощью чисел.
Система отчета
Таким образом, для определения движения нам нужны три вещи:
В совокупности они образуют систему отсчета.
Система отсчёта — это совокупность неподвижных относительно друг друга тел (тело отсчёта) в связанной с ними системе координат, и отсчитывающих время часов (прибор), по отношению к которой рассматривается движение каких-либо тел.
Для одной и той же ситуации можно выбрать множество разных систем отсчета. В зависимости от этого мы либо упрощаем, либо усложняем себе задачу.
Во времена Коперника люди считали, что Солнце движется вокруг Земли. Ведь Земля относительно нас неподвижна, верно? А солнце восходит и заходит. Поэтому нам кажется, что солнце движется вокруг нас.
Но Коперник немного подумал (ну как немного :)) и поменял систему отсчета! Гипотеза Коперника о том, что это мы вращаемся вокруг Солнца, объяснила множество вещей.
Перемещение. Траектория. Путь.
Перейдем еще ближе к задачам. Пусть некоторая материальная точка двигалась из пункта А в пункт В.
Давай нарисуем это. А чтобы было понятно куда двигалась эта материальная точка, давай обозначим направление движения стрелкой!
Но что есть стрелка?
Это ведь направленный отрезок, то есть вектор. Иными словами, движение – это всегда вектор! Об этом нужно всегда помнить. Нам все время нужно указывать, куда направлено движение.
Этот вектор связывает начальное и конечное положение точки и называется перемещением тела. На рисунке перемещение обозначено как \(vec\).
Перемещением называется вектор, проведенный из начального положения тела в конечное.
Как много идеально прямых дорог между городами ты видел в своей жизни? Могу поспорить, что ни одной. Если тело оказалось из пункта А в пункте В, оно вовсе не обязательно двигалось по прямой. Тело могло двигаться по кривой или ломаной линии.
Линия, по которой движется тело – это траектория.
А длина траектории – это путь.
Перемещение – это всегда вектор, а путь – это всегда число! Запомните это.
Путь всегда больше или равен модулю вектора перемещения:
Почему мы говорим «модулю вектора перемещения», а не просто «вектору перемещения»? Потому что мы не можем сравнивать белое и горячее. Мы не можем сравнить вектор (перемещение) с числом (путь).
Но мы можем сравнить число с числом. Для этого мы «делаем» из вектора число, заключив его под знак модуля. Это число есть длина вектора. А длина вектора — его модуль.
Самый короткий путь совпадает с перемещением, то есть это прямая. В этом случае они равны.
А может ли перемещение быть равно нулю?
Попробуем это представить…
Но это вовсе не значит, что мы будем бежать на месте!
Мы можем выбежать на улицу, пробежать через парк, но как только вернемся домой, наше перемещение станет равным нулю, ведь мы оказались в том же месте, откуда и начинали движение. Путь, однако, нулю не равен.
Таким образом, мы разобрали основные понятия кинематики. Успешное решение задач напрямую зависит от понимания того, с чем мы работаем и что пытаемся найти. Поэтому давайте еще раз выпишем все определения.
Основы механики для чайников. Часть 1: Кинематика
В прошлой статье мы немножко разобрались с тем, что такое механика и зачем она нужна. Мы уже знаем, что такое система отсчета, относительность движения и материальная точка. Что ж, пора двигаться дальше! Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики и приведем практический пример решения задачи.
Присоединяйтесь к нам в телеграм и получайте ежедневную рассылку с полезной информацией по актуальным студенческим вопросам.
Траектория, радиус-вектор, закон движения тела
Кинематикой занимался еще Аристотель. Правда, тогда это не называлось кинематикой. Затем очень большой вклад в развитие механики, и кинематики в частности, внес Галилео Галилей, изучавший свободное падение и инерцию тел.
Итак, кинематика решает вопрос: как тело движется. Причины, по которым оно пришло в движение, ее не интересуют. Кинематике не важно, сама поехала машина, или ее толкнул гигантский динозавр. Абсолютно все равно.
Сейчас мы будем рассматривать самую простую кинематику – кинематику точки. Представим, что тело (материальная точка) движется. Не важно, что это за тело, все равно мы рассматриваем его, как материальную точку. Может быть, это НЛО в небе, а может быть, бумажный самолетик, который мы запустили из окна. А еще лучше, пусть это будет новая машина, на которой мы едем в путешествие. Перемещаясь из точки А в точку Б, наша точка описывает воображаемую линию, которая называется траекторией движения. Другое определение траектории – годограф радиус вектора, то есть линия, которую описывает конец радиус-вектора материальной точки при движении.
Радиус-вектор – вектор, задающий положение точки в пространстве.
Для того, чтобы узнать положение тела в пространстве в любой момент времени, нужно знать закон движения тела – зависимость координат (или радиус-вектора точки) от времени.
Перемещение и путь
Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории. Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.
В системе СИ перемещение и длина пути измеряются в метрах.
Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.
Скорость и ускорение
Средняя скорость – векторная физическая величина, равная отношению вектора перемещения к промежутку времени, за которое оно произошло
А теперь представим, что промежуток времени уменьшается, уменьшается, и становится совсем коротким, стремится к нулю. В таком случае о средней скорости говорить на приходится, скорость становится мгновенной. Те, кто помнит основы математического анализа, тут же поймут, что в дальнейшем нам не обойтись без производной.
Мгновенная скорость – векторная физическая величина, равная производной от радиус вектора по времени. Мгновенная скорость всегда направлена по касательной к траектории.
В системе СИ скорость измеряется в метрах в секунду
Если тело движется не равномерно и прямолинейно, то у него есть не только скорость, но и ускорение.
Ускорение (или мгновенное ускорение) – векторная физическая величина, вторая производная от радиус-вектора по времени, и, соответственно, первая производная от мгновенной скорости
Ускорение показывает, как быстро изменяется скорость тела. В случае прямолинейного движения, направления векторов скорости и ускорения совпадают. В случае же криволинейного движения, вектор ускорения можно разложить на две составляющие: ускорение тангенциальное, и ускорение нормальное.
Тангенциальное ускорение показывает, как быстро изменяется скорость тела по модулю и направлено по касательной к траектории
Нормальное же ускорение характеризует быстроту изменения скорости по направлению. Векторы нормального и тангенциального ускорения взаимно перпендикулярны, а вектор нормального ускорения направлен к центру окружности, по которой движется точка.
Здесь R – радиус окружности, по которой движется тело.
Закон равноускоренного движения
Рассмотрим далее закон равноускоренного движения, то есть движения с постоянным ускорением. Будем рассматривать простейший случай, когда тело движется вдоль оси x.
Производная по скорости от времени даст значение ускорения a, которое является константой.
Пример решения задачи
Теперь, когда мы рассмотрели физические основы кинематики, пора закрепить знания на практике и решить какую-нибудь задачу. Причем, чем быстрее, тем лучше.
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.
Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.
Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.
Что изучает кинематика
Механическое движение – изменение положения тела относительно других тел с течением времени. Способы описания: словесный, табличный, графический, формулами.
Материальная точка – тело, собственными размерами которого в данных условиях можно пренебречь.
Траектория – линия, которую описывает материальная точка при своём движении в пространстве. По виду траектории все движения делятся на прямолинейные и криволинейные.
Система отсчёта – часы и система координат, связанные с условно выбираемым телом отсчёта (наблюдателем).
Относительность движения – различие скорости, направления и траектории движения в различных системах отсчёта.
Перемещение – вектор, проведённый из начального положения материальной точки в её конечное положение.
Типы движений
1. Равномерное движение
1.1. Равномерное прямолинейное движение
Равномерное движение – движение тела, при котором за равные интервалы времени оно преодолевает равные части пути.
Скорость равномерного движения равна отношению пройденного пути к интервалу времени, за который этот путь пройден.
Скорость равномерного прямолинейного движения равна отношению перемещения к интервалу времени его совершения.
Уравнение равно-прямолинейного движения x = x o + υ ox t показывает, что координата линейно зависит от времени.
Мгновенная скорость равна отношению перемещения к бесконечно малому интервалу времени, за который оно произошло.
1.2 Равномерное движение по окружности (равномерное вращение)
Равномерное движение по окружности — это движение, при котором материальная точка за равные промежутки времени проходит равные по длине дуги окружности.
Равномерное движение тела по окружности — это частный и наиболее простой случай криволинейного движения. Хотя при таком движении модуль скорости остается постоянным, это движение с ускорением, которое является следствием изменения направления вектора скорости.
2. Движение с постоянным ускорением
Равноускоренное движение – движение, при котором мгновенная скорость за любые равные интервалы времени меняется одинаково.
Мгновенное ускорение равно отношению изменения мгновенной скорости тела к бесконечно малому интервалу времени, за который это изменение произошло.
Ускорение равноускоренного движения равно отношению изменения мгновенной скорости тела к интервалу времени, за который это изменение произошло.
Уравнение равноускоренного движения y = yo + υoyt + ½ay t² показывает, что координата квадратично зависит от времени. Уравнение υy = υoy + ay t показывает, что скорость линейно зависит от времени.
Центростремительное ускорение – ускорение, всегда направленное к центру окружности при равномерном движении по ней материальной точки. Модуль центростремительного ускорения равен отношению квадрата модуля скорости равномерного движения по окружности к её радиусу.
Тема 1.6. Основные понятия кинематики
§1. Кинематика точки. Введение в кинематику.
Кинематикой (от греческого «кинема» — движение) называется раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (массы) и действующих на них сил.
Основной задачей кинематики является нахождение положения тела в любой момент времени, если известны его положение, скорость и ускорение в начальный момент времени.
Для определения положения движущегося тела (или точки) в разные моменты времени с телом, по отношению к которому изучается движение, жестко связывают какую-нибудь систему координат, образующую вместе с этим телом систему отсчета.
Рис.1. Система отчета
Изображать систему отсчета будем в виде трех координатных осей (не показывая тело, с которым они связаны).
Движение тел совершается в пространстве с течением времени. Пространство в механике мы рассматриваем, как трехмерное евклидово пространство.
Время является скалярной, непрерывно изменяющейся величиной. В задачах кинематики время t принимают за независимое переменное (аргумент). Все другие переменные величины (расстояния, скорости и т. д.) рассматриваются как изменяющиеся с течением времени, т.е. как функции времени t.
Для решения задач кинематики надо, чтобы изучаемое движение было как-то задано (описано).
Основная задача кинематики точки твердого тела состоит в том, чтобы, зная закон движения точки (тела), установить методы определения всех кинематических величин, характеризующих данное движение.
Положение тела можно определить с помощью радиус-вектора или с помощью координат.
Рис.2. Радиус-вектор
Рис.3. Координаты точки М
Этой моделью пользуются в тех случаях, когда линейные размеры рассматриваемых тел много меньше всех прочих расстояний в данной задаче или когда тело движется поступательно.
Поступательным называется движение тела, при котором прямая, проходящая через любые две точки тела, перемещается, оставаясь параллельной самой себе. При поступательном движении все точки тела описывают одинаковые траектории и в любой момент времени имеют одинаковые скорости и ускорения. Поэтому для описания такого движения тела достаточно описать движение его одной произвольной точки.
В дальнейшем под словом «тело» будем понимать «материальная точка».
Линия, которую описывает движущееся тело в определенной системе отсчета, называется траекторией. Вид траектории зависит от выбора системы отсчета.
В зависимости от вида траектории различают прямолинейное и криволинейное движение.
где и — радиус-векторы тела в эти моменты времени.Единицы измерения в системе СИ: м (метр).
Модуль перемещения не может быть больше пути: ≤s.
Знак равенства относится к случаю прямолинейного движения, если направление движения не изменяется.
Зная перемещение и начальное положение тела, можно найти его положение в момент времени t:
Видео-урок «Механическое движение»
§2. Способы задания движения точки
Для задания движения точки можно применять один из следующих трех способов:
1) векторный, 2) координатный, 3) естественный.
1. Векторный способ задания движения точки.
Рис.4. Движение точки М
При движении точки М вектор будет с течением времени изменяться и по модулю, и по направлению. Следовательно, является переменным вектором (вектором-функцией), зависящим от аргумента t:
Равенство определяет закон движения точки в векторной форме, так как оно позволяет в любой момент времени построить соответствующий вектор и найти положение движущейся точки.
2. Координатный способ задания движения точки.
Положение точки можно непосредственно определять ее декартовыми координатами х, у, z (рис.4), которые при движении точки будут с течением времени изменяться. Чтобы знать закон движения точки, т.е. ее положение в пространстве в любой момент времени, надо знать значения координат точки для каждого момента времени, т.е. знать зависимости
Уравнения представляют собой уравнения движения точки в прямоугольных декартовых координатах. Они определяют закон движения точки при координатном способе задания движения.
3. Естественный способ задания движения точки.
Рис.5. Движение точки М
Естественным способом задания движения удобно пользоваться в тех случаях, когда траектория движущейся точки известна заранее. Пусть кривая АВ является траекторией точки М при ее движении относительно системы отсчета Oxyz (рис.5) Выберем на этой траектории какую-нибудь неподвижную точку О’, которую примем за начало отсчета, и установим на траектории положительное и отрицательное направления отсчета (как на координатной оси).
Чтобы знать положение точки М на траектории в любой момент времени, надо знать зависимость s=f(t).
§3. Вектор скорости точки
Одной из основных кинематических характеристик движения точки является векторная величина, называемая скоростью точки. Понятие скорости точки в равномерном прямолинейном движении относится к числу элементарных понятий.
Единица измерения скорости – м/с. Часто используют и другие единицы, например, км/ч: 1 км/час=1/3,6 м/с.
Движение точки называется равномерным, если приращения радиуса-вектора точки за одинаковые промежутки времени равны между собой. Если при этом траекторией точки является прямая, то движение точки называется прямолинейным.
Для равномерно-прямолинейного движения ∆r=v∆t, где v – постоянный вектор скорости.
Из соотношения видно, что скорость прямолинейного и равномерного движения является физической величиной, определяющей перемещение точки за единицу времени.
- Что изобрели армяне
- Что изучает прикладная информатика