Что такое искусственный интеллект
Что такое искусственный интеллект
Как создать искусственный интеллект? История первая. Что такое интеллект?
В серии статей мы расскажем о новых подходах в ИИ, моделировании личности и обработке BIG Data, которые недоступны для большинства специалистов по ИИ и общественности. Ценность этой информации в том, что она вся проверена на практике и большинство теоретических наработок реализованы в прикладных проектах.
Многие из вас слышали про современные технологии, которые ассоциируются сегодня с понятием искусственный интеллект, а именно: экспертные системы, нейронные сети, лингвистические алгоритмы, гибридные системы, когнитивные технологии, имитационные(чат-боты) и пр.
Да, многие компании с помощью приведенных выше технологий решают задачи своих клиентов по обработке информации. Некоторые из этих компаний пишут, что создают или создали решения в области искусственного интеллекта. Но интеллект ли это?
Первое, что мы с вами сделаем это определим, что такое интеллект.
В первую очередь интеллект – это способность обучаться и воображать.
Для того чтобы создать алгоритм моделирующий интеллект, первое что нужно сделать это наделить его способностью к обучению, никаких знаний вкладывать в него не нужно.
Какова же роль воображения?
Представьте себе, что вы едите на автомобиле по незнакомой трассе. Проезжаете знак ограничения скорости 80 км/ч. Едите дальше, и видите еще один знак ограничения скорости, но он забрызган грязью и его практически не разобрать. Вы передвигаетесь со скоростью 95 км/ч. Что будете делать? Пока вы принимали решение из-за кустов выглянул сотрудник полиции, и вы увидели лучезарную улыбку на его лице. В голове у вас мгновенно достроился «образ знака», и вы поняли почему тут стоит полицейский, и что вам срочно нужно нажать тормоз. Вы сбрасываете скорость до 55 км/ч, улыбка с лица полицейского мгновенно пропадает, и вы едите дальше.
И еще один интересный пример работы воображения из мира животных – это наблюдение за сороками. Сорока на глазах других сорок зарыла еду на пустыре. Все сороки улетели, но наша сорока вернулась на пустырь и перепрятала еду. Что произошло? Она представила себе(вообразила), «что будет если» прилетит другая сорока, которая видела куда она спрятала еду. Она смоделировала ситуацию и нашла решение как этого избежать.
Воображение – это моделирование ситуации на произвольных условиях.
Как вы уже убедились, интеллект – это не база знаний, это не набор запрограммированных реакций или следование заранее определенным правилам.
Интеллект – это способность к обучению, познанию и адаптации к изменяющимся условиям в процессе решения трудностей.
Вам не кажется, что определяя интеллект мы упустили из виду какие-то важные компоненты или забыли о чем-то рассказать?
Да, мы упустили из виду восприятие, и забыли рассказать про память.
Представьте себе, что вы смотрите в глазок и видите часть буквы:
Что это за буква?
Конечно нет, это же японский иероглиф «вечность».
Перед вами только, что поставили задачу(проблему). Скорее всего вы нашли похожий образ буквы «К» у себя в голове и успокоились.
Ваш интеллект воспринимает все образами и ищет похожий образ в памяти, если его нет, то формируется привязка(якорь) к уже существующим образам и благодаря этому вы запоминаете новую информацию, получаете навыки или опыт.
Образ – субъективное видение реального мира, воспринимаемого при помощи органов чувств (каналов поступления информации).
Восприятие субъективно, потому что зависит от последовательности обучения, последовательности появления образов в жизни человека и их влияния.
Восприятие начинается с распознания образов светло/темно. Открываем глаза – светло, закрываем – темно. Далее человек учится распознавать все более сложные образы – «мама», «папа», мяч, стол, собака. Мы получаем опорные данные, а все последующие образы – это надстройка над предыдущими.
С этой точки зрения обучение – это процесс построения новых взаимосвязей между воспринимаемыми образами и образами, которые уже есть в памяти.
Память служит для хранения образов и их взаимосвязей.
А воображение – это способность достраивать незавершенный образ.
Для обобщения приведем еще один эксперимент из мира животных:
Шимпанзе посадили в клетку, а внутри клетки подвесили гроздь бананов довольно высоко от пола. Сначала шимпанзе прыгала, но быстро устала, и, казалось, потеряла интерес к бананам и уселась, едва обращая на них внимание. Но через некоторое время обезьяна взяла палку, оставленную в клетке, и раскачивала бананы до тех пор, пока они не упали. В другой раз, чтобы достать бананы, шимпанзе удалось соединить две палки, так как каждой палки по отдельности не хватало, чтобы до них дотянуться. Животное справилось и с более сложной задачей, неожиданно поставив под бананами коробку и используя ее как ступеньку.
Шимпанзе показали знакомый ей образ «гроздь бананов». Но образ для нее оказался незавершенным – их нельзя достать и съесть. Но так как это был единственный источник пищи из доступных, то незавершенный образ наращивал внутреннее напряжение и требовал завершения.
Средства для решения проблемы (завершения образа), всегда имелись в наличии, но возникновение решения требовало преобразования имеющихся образов (требовалось обучиться с помощью воображения). Шимпанзе необходимо было представить себе (умственно перечислить все возможные варианты): «что будет если я возьму палку», «а что будет если…» и наиболее вероятные предположения проверить на практике, попробовать и получить обратную связь, опять вообразить, попробовать, получить обратную связь и так далее до тех пор, пока мы не завершим образ(научимся).
Если бы распознание образа иероглифа «вечность» было бы для вас вопросом жизни и смерти, то вы обязательно нашли способ это сделать.
С более популярного языка перейдем к техническому и сформулируем основные понятия, которые мы будем использовать далее:
В начале статьи мы перечислили технологии, ассоциирующиеся сегодня с искусственным интеллектом, теперь вы самостоятельно сможете оценить насколько они соответствуют понятию интеллект.
В следующей статье мы рассмотрим такую задачу как интеллектуальный поиск информации в интернете. Определим критерии интеллектуальности, разработаем практические подходы и «пощупаем» реальное приложение, в котором реализованы принципы, описанные в этой статье.
Статья не претендует на истину, является частью наших разработок и исследований. Пишите комментарии, дополняйте материал своими примерами или размышлениями. Обучайтесь и воображайте…
Всё, что вам нужно знать об ИИ — за несколько минут
Приветствую читателей Хабра. Вашему вниманию предлагается перевод статьи «Everything you need to know about AI — in under 8 minutes.». Содержание направлено на людей, не знакомых со сферой ИИ и желающих получить о ней общее представление, чтобы затем, возможно, углубиться в какую-либо конкретную его отрасль.
Знать понемногу обо всё иногда (по крайней мере, для новичков, пытающихся сориентироваться в популярных технических направлениях) бывает полезнее, чем знать много о чём-то одном.
Многие люди думают, что немного знакомы с ИИ. Но эта область настолько молода и растёт так быстро, что прорывы совершаются чуть ли не каждый день. В этой научной области предстоит открыть настолько многое, что специалисты из других областей могут быстро влиться в исследования ИИ и достичь значимых результатов.
Эта статья — как раз для них. Я поставил себе целью создать короткий справочный материал, который позволит технически образованным людям быстро разобраться с терминологией и средствами, используемыми для разработки ИИ. Я надеюсь, что этот материал окажется полезным большинству интересующихся ИИ людей, не являющихся специалистами в этой области.
Введение
Искусственный интеллект (ИИ), машинное обучение и нейронные сети — термины, используемые для описания мощных технологий, базирующихся на машинном обучении, способных решить множество задач из реального мира.
В то время, как размышление, принятие решений и т.п. сравнительно со способностями человеческого мозга у машин далеки от идеала (не идеальны они, разумеется, и у людей), в недавнее время было сделано несколько важных открытий в области технологий ИИ и связанных с ними алгоритмов. Важную роль играет увеличивающееся количество доступных для обучения ИИ больших выборок разнообразных данных.
Область ИИ пересекается со многими другими областями, включая математику, статистику, теорию вероятностей, физику, обработку сигналов, машинное обучение, компьютерное зрение, психологию, лингвистику и науку о мозге. Вопросы, связанные с социальной ответственностью и этикой создания ИИ притягивают интересующихся людей, занимающихся философией.
Мотивация развития технологий ИИ состоит в том, что задачи, зависящие от множества переменных факторов, требуют очень сложных решений, которые трудны к пониманию и сложно алгоритмизируются вручную.
Растут надежды корпораций, исследователей и обычных людей на машинное обучение для получения решений задач, не требующих от человека описания конкретных алгоритмов. Много внимания уделяется подходу «чёрного ящика». Программирование алгоритмов, используемых для моделирования и решения задач, связанных с большими объёмами данных, занимает у разработчиков очень много времени. Даже когда нам удаётся написать код, обрабатывающий большое количество разнообразных данных, он зачастую получается очень громоздким, трудноподдерживаемым и тяжело тестируемым (из-за необходимости даже для тестов использовать большое количество данных).
Современные технологии машинного обучения и ИИ вкупе с правильно подобранными и подготовленными «тренировочными» данными для систем могут позволить нам научить компьютеры «программировать» за нас.
Обзор
Интеллект — способность воспринимать информацию и сохранять её в качестве знания для построения адаптивного поведения в среде или контексте
Это определение интеллекта из (англоязычной) Википедии может быть применено как к органическому мозгу, так и к машине. Наличие интеллекта не предполагает наличие сознания. Это — распространённое заблуждение, принесённое в мир писателями научной фантастики.
Попробуйте поискать в интернете примеры ИИ — и вы наверняка получите хотя бы одну ссылку на IBM Watson, использующий алгоритм машинного обучения, ставший знаменитым после победы на телевикторине под названием «Jeopardy» в 2011 г. С тех пор алгоритм претерпел некоторые изменения и был использован в качестве шаблона для множества различных коммерческих приложений. Apple, Amazon и Google активно работают над созданием аналогичных систем в наших домах и карманах.
Обработка естественного языка и распознавание речи стали первыми примерами коммерческого использования машинного обучения. Вслед за ними появились задачи другие задачи автоматизации распознавания (текст, аудио, изображения, видео, лица и т.д.). Круг приложений этих технологий постоянно растёт и включает в себя беспилотные средства передвижения, медицинскую диагностику, компьютерные игры, поисковые движки, спам-фильтры, борьбу с преступностью, маркетинг, управление роботами, компьютерное зрение, перевозки, распознавание музыки и многое другое.
ИИ настолько плотно вошёл в современные используемые нами технологии, что многие даже не думают о нём как об «ИИ», то есть, не отделяют его от обычных компьютерных технологий. Спросите любого прохожего, есть ли искусственный интеллект в его смартфоне, и он, вероятно, ответит: «Нет». Но алгоритмы ИИ находятся повсюду: от предугадывания введённого текста до автоматического фокуса камеры. Многие считают, что ИИ должен появиться в будущем. Но он появился некоторое время назад и уже находится здесь.
Термин «ИИ» является довольно обобщённым. В фокусе большинства исследований сейчас находится более узкое поле нейронных сетей и глубокого обучения.
Как работает наш мозг
Человеческий мозг представляет собой сложный углеродный компьютер, выполняющий, по приблизительным оценкам, миллиард миллиардов операций в секунду (1000 петафлопс), потребляющий при этом 20 Ватт энергии. Китайский суперкомпьютер под названием «Tianhe-2» (самый быстрый в мире на момент написания статьи) выполняет 33860 триллионов операций в секунду (33.86 петафлопс) и потребляющий при этом 17600000 Ватт (17.6 Мегаватт). Нам предстоит проделать определённое количество работы перед тем, как наши кремниевые компьютеры смогут сравниться со сформировавшимися в результате эволюции углеродными.
Точное описание механизма, применяемого нашим мозгом для того, чтобы «думать» является предметом дискуссий и дальнейших исследований (лично мне нравится теория о том, что работа мозга связана с квантовыми эффектами, но это — тема для отдельной статьи). Однако, механизм работы частей мозга обычно моделируется с помощью концепции нейронов и нейронных сетей. Предполагается, что мозг содержит примерно 100 миллиардов нейронов.
Нейроны взаимодействуют друг с другом с помощью специальных каналов, позволяющих им обмениваться информацией. Сигналы отдельных нейронов взвешиваются и комбинируются друг с другом перед тем, как активировать другие нейроны. Эта обработка передаваемых сообщений, комбинирование и активация других нейронов повторяется в различных слоях мозга. Учитывая то, что в нашем мозгу находится 100 миллиардов нейронов, совокупность взвешенных комбинаций этих сигналов устроена довольно сложно. И это ещё мягко сказано.
Но на этом всё не заканчивается. Каждый нейрон применяет функцию, или преобразование, к взвешенным входным сигналам перед тем, как проверить, достигнут ли порог его активации. Преобразование входного сигнала может быть линейным или нелинейным.
Изначально входные сигналы приходят из разнообразных источников: наших органов чувств, средств внутреннего отслеживания функционирования организма (уровня кислорода в крови, содержимого желудка и т.д.) и других. Один нейрон может получать сотни тысяч входных сигналов перед принятием решения о том, как следует реагировать.
Мышление (или обработка информации) и полученные в результате его инструкции, передаваемые нашим мышцам и другим органам являются результатом преобразования и передачи входных сигналов между нейронами из различных слоёв нейронной сети. Но нейронные сети в мозгу могут меняться и обновляться, включая изменения алгоритма взвешивания сигналов, передаваемых между нейронами. Это связано с обучением и накоплением опыта.
Эта модель человеческого мозга использовалась в качестве шаблона для воспроизведения возможностей мозга в компьютерной симуляции — искуственной нейронной сети.
Искусственные Нейронные Сети (ИНС)
Искусственные Нейронные Сети — это математические модели, созданные по аналогии с биологическими нейронными сетями. ИНС способны моделировать и обрабатывать нелинейные отношения между входными и выходными сигналами. Адаптивное взвешивание сигналов между искусственными нейронами достигается благодаря обучающемуся алгоритму, считывающему наблюдаемые данные и пытающемуся улучшить результаты их обработки.
Для улучшения работы ИНС применяются различные техники оптимизации. Оптимизация считается успешной, если ИНС может решать поставленную задачу за время, не превышающее установленные рамки (временные рамки, разумеется, варьируются от задачи к задаче).
ИНС моделируется с использованием нескольких слоёв нейронов. Структура этих слоёв называется архитектурой модели. Нейроны представляют собой отдельные вычислительные единицы, способные получать входные данные и применять к ним некоторую математическую функцию для определения того, стоит ли передавать эти данные дальше.
В простой трёхслойной модели первый слой является слоем ввода, за ним следует скрытый слой, а за ним — слой вывода. Каждый слой содержит не менее одного нейрона.
С усложнением структуры модели посредством увеличения количества слоёв и нейронов возрастают потенциал решения задач ИНС. Однако, если модель оказывается слишком «большой» для заданной задачи, её бывает невозможно оптимизировать до нужного уровня. Это явление называется переобучением (overfitting).
Архитектура, настройка и выбор алгоритмов обработки данных являются основными составляющими построения ИНС. Все эти компоненты определяют производительность и эффективность работы модели.
Модели часто характеризуются так называемой функцией активации. Она используется для преобразования взвешенных входных данных нейрона в его выходные данные (если нейрон решает передавать данные дальше, это называется его активацией). Существует множество различных преобразований, которые могут быть использованы в качестве функций активации.
ИНС являются мощным средством решения задач. Однако, хотя математическая модель небольшого количества нейронов довольно проста, модель нейронной сети при увеличении количества составляющих её частей становится довольно запутанно. Из-за этого использование ИНС иногда называют подходом «чёрного ящика». Выбор ИНС для решения задачи должен быть тщательно обдуманным, так как во многих случаях полученное итоговое решение нельзя будет разобрать на части и проанализировать, почему оно стало именно таким.
Глубокое обучение
Термин глубокое обучение используется для описания нейронных сетей и используемых в них алгоритмах, принимающих «сырые» данные (из которых требуется извлечь некоторую полезную информацию). Эти данные обрабатываются, проходя через слои нейросети, для получения нужных выходных данных.
Обучение без учителя (unsupervised learning) — область, в которой методики глубокого обучения отлично себя показывают. Правильно настроенная ИНС способна автоматически определить основные черты входных данных (будь то текст, изображения или другие данные) и получить полезный результат их обработки. Без глубокого обучения поиск важной информации зачастую ложится на плечи программиста, разрабатывающего систему их обработки. Модель глубокого обучения же самостоятельно способна найти способ обработки данных, позволяющий извлекать из них полезную информацию. Когда система проходит обучение (то есть, находит тот самый способ извлекать из входных данных полезную информацию), требования к вычислительной мощности, памяти и энергии для поддержания работы модели сокращаются.
Проще говоря, алгоритмы обучения позволяют с помощью специально подготовленных данных «натренировать» программу выполнять конкретную задачу.
Глубокое обучение применяется для решения широкого круга задач и считается одной из инновационных ИИ-технологий. Существуют также другие виды обучения, такие как обучение с учителем (supervised learning) и обучение с частичным привлечением учителя(semi-supervised learning), которые отличаются введением дополнительного контроля человека за промежуточными результатами обучения нейронной сети обработке данных (помогающего определить, в правильном ли направлении движется система).
Теневое обучение (shadow learning) — термин, используемый для описания упрощённой формы глубокого обучения, при которой поиск ключевых особенностей данных предваряется их обработкой человеком и внесением в систему специфических для сферы, к которой относятся эти данные, сведений. Такие модели бывают более «прозрачными» (в смысле получения результатов) и высокопроизводительными за счёт увеличения времени, вложенного в проектирование системы.
Искусственный интеллект: краткая история, развитие, перспективы
Сейчас технологии развиваются с немыслимой скоростью. Ранее те возможности, что, казалось бы, были доступны только профессиональным ученым, в современной жизни доступны каждому. Один из подобных прорывов – искусственный интеллект, прочно обосновавшийся во многих сферах человеческой жизни.
Сегодня поговорим о том, что такое ИИ, как он возник, где применяется, а также чем он отличается от человеческого разума.
Что представляет собой искусственный интеллект
Искусственный интеллект – это свойство интеллектуальной системы выполнять те функции и задачи, которые обычно характерны для разумных существ. Это может быть проявление каких-то творческих способностей, склонность к рассуждению, обобщение, обучение на основании полученного ранее опыта и так далее.
Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.
История возникновения и развития искусственного интеллекта
Впервые термин artificial intelligence (с английского переводится как «искусственный интеллект») был упомянут в 1956 году Джоном МакКарти, основателем функционального программирования и изобретателем языка Lisp, на конференции в Университете Дартмута.
Однако сама идея подобной системы была сформирована в 1935 году Аланом Тьюрингом. Ученый дал описание абстрактной вычислительной машине, состоящей из безграничной памяти и сканера, перемещающегося вперед и назад по памяти. Однако позднее, в 1950 году, он предложил считать интеллектуальными те системы, которые в общении не будут отличаться от человека.
Тогда же Тьюринг разработал эмпирический тест для оценки машинного интеллекта. Он показывает, насколько искусственная система продвинулась в обучении общению и удастся ли ей выдать себя за человека.
Самая ранняя успешная программа искусственного интеллекта была создана Кристофером Стрейчи в 1951 году. А уже в 1952 году она играла в шашки с человеком и удивляла зрителей своими способностями предсказывать ходы. По этому поводу в 1953 году Тьюринг опубликовал статью о шахматном программировании.
В 1965 году специалист Массачусетского технологического университета Джозеф Вайценбаум разработал программу «Элиза», которая ныне считается прообразом современной Siri. В 1973 году была изобретена «Стэндфордская тележка», первый беспилотный автомобиль, контролируемый компьютером. К концу 1970-х интерес к ИИ начал спадать.
Новое развитие искусственный интеллект получил в середине 1990-х. Самый известный пример – суперкомпьютер IBM Deep Blue, который в 1997 году обыграл в шахматы чемпиона мира Гарри Каспарова. Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой.
Отличие ИИ от нейросетей и машинного обучения
Нейросети представляют собой математическую модель, компьютерный алгоритм, работа которого основана на множестве искусственных нейронов. Суть этой системы в том, что ее не нужно заранее программировать. Она моделирует работу нейронов человеческого мозга, проводит элементарные вычисления и обучается на основании предыдущего опыта, но это не соотносимо с ИИ.
Искусственный интеллект, как мы помним, является свойством сложных систем выполнять задачи, обычно свойственные человеку. К ИИ часто относят узкоспециализированные компьютерные программы, также различные научно-технологические методы и решения. ИИ в своей работе имитирует человеческий мозг, при этом основывается на прочих логических и математических алгоритмах или инструментах, в том числе нейронных сетях.
Под машинным обучением понимают использование различных технологий для самообучающихся программ. Соответственно, это одно из многочисленных направлений ИИ. Системы, основанные на машинном обучении, получают базовые данные, анализируют их, затем на основе полученных выводов находят закономерности в сложных задачах со множеством параметров и дают точные ответы. Один из наиболее распространенных вариантов организации машинного обучения – применение нейросетей.
Если сравнивать с человеком, то ИИ подобен головному мозгу, машинное обучение – это один из многочисленных способов обработки поступающих данных и решения назревающих задач, а нейросети соответствуют объединению более мелких, базовых элементов мозга – нейронов.
Разница между искусственным и естественным интеллектом
Сравнивать искусственный и естественный интеллект можно лишь по некоторым общим параметрам. Например, человеческий мозг и компьютер работают по примерно схожему принципу, включающему четыре этапа – кодирование, хранение данных, анализ и предоставление результатов. И естественный, и искусственный разум склонны к самообучению, они решают те или иные задачи и проблемы, используя специальные алгоритмы.
Помимо общих умственных способностей к рассуждению, обучению и решению проблем, человеческое мышление также имеет эмоциональную окраску и сильно зависит от влияния социума. Искусственный интеллект не имеет никакого эмоционального характера и не ориентирован социально.
Если говорить об IQ – большинство ученых склонны считать, что сей параметр оценки никак не связан с искусственным интеллектом. С одной стороны, это действительно так, ведь стандартные IQ-тесты направлены на измерение «качества» человеческого мышления и связаны с развитием интеллекта на разных возрастных этапах.
С другой стороны, для ИИ создан собственный «IQ-тест», названный в честь Тьюринга. Он помогает определить, насколько хорошо машина обучилась и способна ли она уподобиться в общении человеку. Это своего рода планка для ИИ, установленная людьми. А ведь все больше ученых склоняется к тому, что скоро компьютеры обгонят человечество по всем параметрам… Развитие технологий идет по непредсказуемому сценарию, и вполне допустимо, что так и будет.
Применение ИИ в современной жизни
В зависимости от области и обширности сферы применения, выделяют два вида ИИ – Weak AI, называемый еще «слабым», и Strong AI, «сильный». В первом случае перед системой ставят узкоспециализированные задачи – диагностика в медицине, управление роботами, работа на базе электронных торговых платформ. Во втором же подразумевается решение глобальных задач.
Так, одна из наиболее популярных сфер применения ИИ – это Big Data в коммерции. Крупные торговые площадки используют подобные технологии для исследования потребительского поведения. Компания «Яндекс» вообще создает с их помощью музыку. В некоторые мобильные приложения встроены голосовые помощники вроде Siri, Алисы или Cortana. Они упрощают процесс навигации и совершения покупок в сервисе. И не стоит забывать про программы с нейросетями, обрабатывающими фото и видео.
ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…
Люксовые бренды внедряют ИИ в свои системы для анализа потребностей клиентов. Стремительно развивается использование подобных систем в системах здравоохранения, в основном при диагностике заболеваний, разработке лекарств, создании медицинских страховок, проведении клинических исследований и так далее.
Перечислить разом все области, в которых задействован искусственный интеллект, практически нереально. На данный момент он затрагивает все больше самых разных сфер. И причин на то немало – та же автоматизация производственных процессов, стремительный рост информационного оборота и инвестиций в эту сферу, даже социальное давление.
Влияние на различные области
ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают.
Искусственный интеллект может оказать существенное влияние на рынок труда. Это может привести к массовому увольнению рабочего персонала из-за автоматизации большинства процессов. Ну и росту востребованности разработчиков, конечно.
Перспективы развития искусственного интеллекта
Современные компьютеры приобретают все больше знаний и «умений». Скептики же утверждают, что все возможности ИИ – не более чем компьютерная программа, а не пример самообучения. Однако это не мешает технологии широко распространяться в самых различных сферах и открывать невиданные ранее потенциалы для развития. Со временем компьютеры будут становиться все мощнее, а ИИ еще быстрее совершенствоваться в своем развитии.
Заключение
Не так давно, казалось бы, ученые ввели понятие «искусственный интеллект», а чуть больше полвека спустя технология уже находит широкий спрос в самых различных сферах. Сейчас искусственный разум, можно сказать, находится в шаговой доступности для любого человека – компьютер и ноутбук, смартфон и электронные часы, даже многие простейшие приложения работают именно с его помощью. ИИ в самых разных своих проявлениях проник во многие сферы человеческой жизни и прочно обосновался в них.
Возможно, страхи ученых вполне обоснованы? Как знать 🙂
Основы современного искусственного интеллекта: как он работает, и уничтожит ли наше общество уже в этом году?
Сегодняшний ИИ технически «слабый» – однако он сложный и может значительно повлиять на общество
Не нужно быть Киром Дулли, чтобы знать, насколько пугающим может стать хорошо соображающий искусственный интеллект [американский актёр, исполнявший роль астронавта Дэйва Боумена в фильме «Космическая одиссея 2001 года» / прим. перев.]
ИИ, или искусственный интеллект, сейчас одна из самых важных областей знания. Решаются «нерешаемые» задачи, инвестируются миллиарды долларов, а Microsoft даже нанимает Коммона, чтобы он рассказал нам поэтическим штилем, какая это замечательная штука – ИИ. Вот ведь.
И, как с любой новой технологией, бывает сложно пробраться через всю эту шумиху. Я годами занимаюсь исследованиями в области беспилотников и «ИИ», однако даже мне бывает сложно успевать за всем этим. В последние годы я много времени провёл в поисках ответов даже на простейшие вопросы типа:
Что такое ИИ?
В информатике есть такая старая шутка: в чём разница между ИИ и автоматизацией? Автоматизация – это то, что можно делать с помощью компьютера, а ИИ – это то, что мы хотели бы уметь делать. Как только мы узнаём, как что-то делать, это переходит из области ИИ в разряд автоматизации.
Эта шутка справедлива и сегодня, поскольку ИИ не определён достаточно чётко. «Искусственный интеллект» – это просто не технический термин. Если залезть в Википедию, то там написано, что ИИ – это «интеллект, демонстрируемый машинами, в отличие от естественного интеллекта, демонстрируемого людьми и другими животными». Менее чётко и не скажешь.
В целом, есть два типа ИИ: сильный и слабый. Сильный ИИ представляет себе большинство людей, когда слышат об ИИ – это какой-то богоподобный всезнающий интеллект типа Skynet или Hal 9000, способный на рассуждения и сравнимый с человеческим, при этом превосходящий его возможности.
Слабые ИИ – высоко специализированные алгоритмы, разработанные для получения ответов на определённые полезные вопросы в узко определённых областях. К примеру, в эту категорию попадает очень хорошая шахматная программа. То же можно сказать о ПО, очень точно подстраивающем страховые платежи. В своей области такие ИИ достигают впечатляющих результатов, но в целом они весьма ограничены.
За исключением голливудских опусов, сегодня мы даже близко не подошли к сильному ИИ. Пока что любой ИИ – слабый, и большинство исследователей в данной области согласны с тем, что придуманные нами техники создания прекрасных слабых ИИ, скорее всего, не приблизят нас к созданию сильного ИИ.
Так что сегодняшний ИИ представляет собой больше маркетинговый термин, чем технический. Причина, по которой компании рекламируют свой «ИИ» вместо «автоматизации» заключается в том, что они хотят внедрить в общественное сознание голливудский ИИ. Однако это не так уж и плохо. Если отнестись к этому не слишком строго, то компании хотят лишь сказать, что, хотя мы ещё очень далеко от сильного ИИ, сегодняшний слабый ИИ куда как способнее существовавших несколько лет назад.
И если отвлечься от маркетинга, то так оно и есть. В определённых областях возможности машин резко возросли, и в основном благодаря ещё двум модным нынче словосочетаниям: машинное обучение и глубокое обучение.
Кадр из короткого видео от инженеров Facebook, демонстрирующего, как ИИ в реальном времени распознаёт кошек (задача, также известная, как святой Грааль интернета)
Машинное обучение
МО – это особый способ создания машинного интеллекта. Допустим, вы хотите запустить ракету, и предсказать, куда она попадёт. В общем и целом это не так уж и сложно: гравитация довольно неплохо изучена, вы можете записать уравнения и рассчитать, куда она отправится, на основании нескольких переменных – таких, как скорость и начальная позиция.
Однако такой подход становится неуклюжим, если мы обращаемся к той области, правила которой не так хорошо известны и ясны. Допустим, вы хотите, чтобы компьютер сказал вам, есть ли на каких-то изображениях из выборки кошки. Как вы будете записывать правила, описывающие вид во всех возможных точек зрения на все возможные комбинации усов и ушей?
Сегодня МО-подход хорошо известен: вместо того, чтобы пытаться записать все правила, вы создаёте систему, способную самостоятельно вывести набор внутренних правил после изучения огромного количества примеров. Вместо того, чтобы описывать кошек, вы просто показываете своему ИИ кучу фотографий кошек, и даёте ему самостоятельно понять, что является кошкой, а что – нет.
И на сегодня это идеальный подход. Систему, самостоятельно обучающуюся правилам на основе данных, можно улучшать, просто добавляя данных. А если наш вид что-то и умеет очень хорошо делать, так это генерировать, хранить и управлять данными. Хотите научиться лучше распознавать кошек? Интернет генерирует миллионы примеров прямо в эту минуту.
Всё возрастающий поток данных – одна из причин взрывного роста алгоритмов МО в последнее время. Другие причины связаны с использованием этих данных.
Кроме данных, для МО есть ещё два связанных с этим вопроса:
В МО вычислительным представлением обучения, которое мы храним, является модель. Тип используемой модели очень важен: он определяет то, как учится ваш ИИ, на каких данных он может обучаться, и какие вопросы можно будет ему задавать.
Давайте посмотрим на очень простой пример. Допустим, мы покупаем в продуктовом магазине инжир, и хотим сделать ИИ с МО, который говорил бы нам, спелый ли он. Это должно быть легко сделать, поскольку в случае инжира, чем он мягче, тем слаще.
Мы можем взять несколько образцов спелого и неспелого инжира, посмотреть, насколько они сладкие, а потом разместить их на графике и подстроить под него прямую. Эта прямая будет нашей моделью.
Зародыш ИИ в виде «чем они мягче, тем слаще»
С добавлением новых данных задача усложняется
Посмотрите-ка! Прямая неявным образом следует идее о том, что «чем они мягче, тем слаще», и нам даже не пришлось ничего записывать. Наш зародыш ИИ не знает ничего о содержании сахара или созревании фруктов, но может предсказывать сладость фрукта, сжимая его.
Как натренировать модель, чтобы она стала лучше? Мы можем собрать ещё больше образцов и провести ещё одну прямую, чтобы получить более точные предсказания (как на второй картинке выше). Однако проблемы сразу становятся очевидными. Пока что мы обучали наш инжирный ИИ на качественных ягодах – а что, если мы возьмём данные из фруктового сада? Внезапно у нас появляются не только спелые, но и гнилые фрукты. Они очень мягкие, но определённо не подходят для еды.
Что нам делать? Ну, раз это модель МО, мы просто можем скормить ей больше данных, правильно?
Как показывает первая картинка внизу, в этом случае мы получим совершенно бессмысленные результаты. Прямая просто не подходит для описания того, что происходит, когда фрукт становится слишком спелым. Наша модель уже не вписывается в структуру данных.
Вместо этого нам придётся её поменять, и использовать более хорошую и сложную модель – возможно, параболу, или что-то похожее. Это изменение усложняет обучение, потому что для рисования кривых требуется более сложная математика, чем для рисования прямой.
Ладно, наверное, идея использовать прямую для сложного ИИ была не очень удачной
Требуется математика посложнее
Пример довольно глупый, но он показывает, что выбор модели определяет возможности обучения. В случае инжира данные простые, и модели могут быть простыми. Но если вы пытаетесь обучиться чему-то более сложному, требуются более сложные модели. Точно так же, как никакое количество данных не заставит линейную модель отражать поведение гнилых ягод, так невозможно подобрать простую кривую, соответствующую куче картинок, чтобы создать алгоритм компьютерного зрения.
Поэтому трудность для МО состоит в создании и выборе правильных моделей для соответствующих задач. Нам нужна модель, достаточно сложная для того, чтобы описать на самом деле сложные связи и структуры, но достаточно простая для того, чтобы с ней можно было работать и тренировать её. Так что, хотя интернет, смартфоны и так далее породили невероятные горы данных, на которых можно обучаться, нам всё равно нужны правильные модели, чтобы воспользоваться этими данными.
Именно тут и вступает в игру глубокое обучение.
Глубокое обучение
Глубокое обучение – это машинное обучение, использующее модель определённого вида: глубокие нейросети.
Нейросети – это тип модели МО, использующей структуру, напоминающую нейроны в мозге, для вычислений и предсказаний. Нейроны в нейросетях организуются послойно: каждый слой выполняет набор простых вычислений и передаёт ответ следующему.
Послойная модель позволяет проводить более сложные вычисления. Простой сети с небольшим количеством слоёв нейронов достаточно для воспроизводства использовавшейся нами выше прямой или параболы. Глубокие нейросети – это нейросети с большим количеством слоёв, с десятками, или даже сотнями; отсюда и их название. С таким количеством слоёв можно создавать невероятно мощные модели.
Эта возможность – одна из основных причин огромной популярности глубоких нейросетей в последнее время. Они могут обучаться различным сложным вещам, не заставляя человека-исследователя определять какие-то правила, и это позволило нам создать алгоритмы, способные решать самые разные задачи, к которым раньше компьютеры не могли подступиться.
Однако в успех нейросетей сделал свой вклад и ещё один аспект: обучение.
«Память» модели – это набор числовых параметров, определяющий то, как она выдаёт ответы на задаваемые ей вопросы. Обучать модель – значит, подстраивать эти параметры так, чтобы модель выдавала наилучшие ответы из возможных.
В нашей модели с инжиром мы искали уравнение прямой. Это задача простой регрессии, и существуют формулы, которые дадут вам ответ за один шаг.
Простая нейросеть и глубокая нейросеть
С более сложными моделями всё не так просто. Прямую и параболу легко представить несколькими числами, но глубокая нейросеть может иметь миллионы параметров, а набор данных для её обучения также может состоять из миллионов примеров. Аналитического решения в один шаг не существует.
К счастью, существует один странный трюк: можно начать с плохой нейросети, а потом улучшать её при помощи постепенных подстроек.
Обучение модели МО таким способом похоже на проверку ученика при помощи тестов. Каждый раз мы получаем оценку, сравнивая то, какие ответы должны быть по мнению модели, с «правильными» ответами в обучающих данных. Затем мы проводим улучшение и запускаем проверку снова.
Как мы узнаем, какие параметры надо подстраивать, и насколько? У нейросетей есть такое прикольное свойство, когда для многих видов обучения можно не только получить оценку в тесте, но и подсчитать, насколько именно она изменится в ответ на изменение каждого параметра. Говоря математическим языком, оценка – это функция значения, и для большинства таких функций мы легко можем подсчитать градиент этой функции относительно пространства параметров.
Теперь мы точно знаем, в какую сторону надо подстраивать параметры для увеличения оценки, и можно подстраивать сеть последовательными шагами во всё лучших и лучших «направлениях», пока вы не дойдёте до точки, в которой уже ничего нельзя улучшить. Это часто называют восхождением на холм, поскольку это действительно похоже на движение вверх по холму: если постоянно двигаться вверх, в итоге попадёшь на вершину.
Видали? Вершина!
Благодаря этому нейросеть улучшать легко. Если ваша сеть обладает хорошей структурой, получив новые данные, вам не нужно начинать с нуля. Можно начать с имеющихся параметров, и заново обучиться на новых данных. Ваша сеть будет постепенно улучшаться. Наиболее видные из сегодняшних ИИ – от распознавания кошек на Facebook до технологий, которые (наверное) использует Amazon в магазинах без продавцов – построены на этом простом факте.
Это ключ ещё к одной причине, по которой ГО распространилось так быстро и так широко: восхождение на холм позволяет взять одну нейросеть, обученную какой-то задаче, и переобучить её на выполнение другой, но сходной. Если вы обучили ИИ хорошо распознавать кошек, эту сеть можно использовать для обучения ИИ, распознающего собак, или жирафов, без необходимости начинать с нуля. Начните с ИИ для кошек, оценивайте его по качеству распознавания собак, и потом забирайтесь на холм, улучшая сеть!
Поэтому в последние 5-6 лет произошло резкое улучшение возможностей ИИ. Несколько кусочков головоломки сложились синергетическим образом: интернет сгенерировал огромный объём данных, на котором можно учиться. Вычисления, особенно параллельные вычисления на графических процессорах сделали возможной обработку этих огромных наборов. Наконец, глубокие нейросети позволили воспользоваться преимуществами этих наборов и создать невероятно мощные модели МО.
И всё это означает, что некоторые вещи, бывшие ранее крайне сложными, теперь делать очень легко.
И что мы теперь можем делать? Распознавание образов
Возможно, глубочайшее (пардон за каламбур) и скорейшее влияние глубокое обучение оказало на область компьютерного зрения – в особенности, на распознавание объектов на фотографиях. Несколько лет назад этот комикс от xkcd прекрасно описывал передний край информатики:
Сегодня распознавание птиц и даже определённых видов птиц – тривиальная задача, которую может решить правильно мотивированный старшеклассник. Что поменялось?
Идею визуального распознавания объектов легко описать, но сложно реализовать: сложные объекты состоят из наборов более простых, которые в свою очередь состоят из более простых форм и линий. Лица состоят из глаз, носов и ртов, а те состоят из кружочков и линий, и так далее.
Поэтому распознавание лиц становится вопросом распознавания закономерностей, в которых расположены глаза и рты, что может потребовать распознавания форм глаза и рта из линий и кружочков.
Эти закономерности называются особенностями, и до появления глубокого обучения для распознавания было необходимо описать все особенности вручную и запрограммировать компьютер на их поиск. К примеру, есть знаменитый алгоритм распознавания лиц «метод Виолы — Джонса», основанный на том факте, что брови и нос обычно светлее глазниц, поэтому они формируют яркую Т-образную форму с двумя тёмными точками. Алгоритм, по сути, ищет подобные Т-образные формы.
Метод Виолы-Джонса работает хорошо и удивительно быстро, и служит основой распознавания лиц в дешёвых фотоаппаратах и т.п. Но, очевидно, не каждый объект, который вам нужно распознать, поддаётся подобному упрощению, и люди придумывали всё более сложные и низкоуровневые закономерности. Чтобы алгоритмы работали правильно, требовалась работа команды докторов наук, они были очень чувствительными и подверженными отказам.
Большой прорыв случился благодаря ГО, а в частности – определённому виду нейросетей под названием «свёрточные нейросети». Свёрточные нейросети, СНС – это глубокие сети с определённой структурой, вдохновлённой строением зрительной коры мозга млекопитающих. Такая структура позволяет СНС самостоятельно обучаться иерархии линий и закономерностей для распознавания объектов вместо того, чтобы ждать, пока доктора наук потратят годы на исследования того, какие из особенностей лучше подходят для этого. К примеру, СНС, обученная на лицах, выучит собственную внутреннюю репрезентацию линий и кружочков, складывающихся в глаза, уши и носы, и так далее.
Старые зрительные алгоритмы (метод Виолы-Джонса, слева) полагаются на вручную выделенных особенностях, а глубокие нейросети (справа) на собственную иерархию более сложных особенностей, составленных из более простых
СНС потрясающе хорошо подошли для компьютерного зрения, и вскоре исследователи смогли обучить их на выполнение всяческих задач по визуальному распознаванию, от поиска кошек на фото до определения пешеходов, попавших в камеру робомобиля.
Это всё замечательно, но есть и другая причина такого быстрого и широкого распространения СНС – это то, насколько легко они адаптируются. Помните восхождение на холм? Если наш старшеклассник захочет распознать определённую птицу, он может взять любую из множества зрительных сетей с открытым кодом, и обучить её на собственном наборе данных, даже не понимая, как работает лежащая в её основе математика.
Естественно, это можно расширить и ещё дальше.
Кто там? (распознавание лиц)
Допустим, вы хотите обучить сеть, распознающую не просто лица, но одно определённое лицо. Вы могли бы обучить сеть распознавать определённого человека, потом другого человека, и так далее. Однако на обучение сетей тратится время, и это значило бы, что для каждого нового человека требовалось бы переобучать сеть. Нет уж.
Вместо этого мы можем начать с сети, обученной распознавать лица в целом. Её нейроны настроены на распознавание всех лицевых структур: глаз, ушей, ртов, и так далее. Затем вы просто меняете выходные данные: вместо того, чтобы заставлять её распознавать определённые лица, вы командуете ей выдавать описание лица в виде сотен чисел, описывающих кривизну носа или форму глаз, и так далее. Сеть может делать это, поскольку уже «знает», из каких компонентов состоит лицо.
Вы, конечно, не определяете всё это напрямую. Вместо этого вы обучаете сеть, показывая ей набор лиц, а потом сравнивая выходные данные. Вы также обучаете её так, чтобы она давала схожие друг с другом описания одного и того же лица, и сильно отличающиеся друг от друга описания разных лиц. Математически говоря, вы обучаете сеть на построение соответствия изображениям лиц точки в пространстве особенностей, где картезианское расстояние между точками можно использовать для определения их схожести.
Изменение нейросети с распознавания лиц (слева) до описания лиц (справа) требует лишь изменения формата выходных данных, без смены её основы
Теперь можно распознавать лица, сравнивая описания каждого из лиц, создаваемые нейросетью
Обучив сеть, вы уже легко можете распознавать лица. Вы берёте изначальное лицо и получаете его описание. Затем берёте новое лицо и сравниваете описание, выдаваемое сетью, с вашим оригиналом. Если они находятся достаточно близко, вы говорите, что это одно и то же лицо. И вот вы перешли от сети, способной распознавать одно лицо, к тому, что можно использовать для распознавания любого лица!
Подобная структурная гибкость – ещё одна причина такой полезности глубоких нейросетей. Было разработано уже огромное количество разнообразных МО-моделей для компьютерного зрения, и хотя они развиваются в очень разных направлениях, базовая структура многих из них основана на таких ранних СНС, как Alexnet и Resnet.
Я даже слышал истории о людях, использующих визуальные нейросети для работы с данными временного ряда или измерениями датчиков. Вместо того, чтобы создавать специальную сеть для анализа потока данных, они обучали предназначенную для компьютерного зрения нейросеть с открытым кодом буквально смотреть на формы линий графиков.
Подобная гибкость – дело хорошее, но не бесконечное. Чтобы решать некоторые другие проблемы, требуется использовать другие типы сетей.
И даже до этой точки виртуальные ассистенты добирались очень долго
Что ты сказал? (Распознавание речи)
Каталогизация картинок и компьютерное зрение – не единственные области возрождения ИИ. Ещё одна область, в которой компьютеры продвинулись очень далеко – это распознавание речи, особенно в переводе речи в письменность.
Базовая идея в распознавании речи довольно похожа на принцип компьютерного зрения: распознавать сложные вещи в виде наборов более простых. В случае с речью распознавание предложений и фраз строится на распознавании слов, которое основано на распознавании слогов, или, если быть более точным, фонем. Так что, когда кто-то говорит «Bond, James Bond», на самом деле мы слышим BON+DUH+JAY+MMS+BON+DUH.
В зрении особенности организованы пространственно, и эту структуру обрабатывают СНС. В слухе эти особенности организованы во времени. Люди могут говорить быстро или медленно, без чёткого начала и конца речи. Нам нужна модель, способная воспринимать звуки по мере поступления, как человек, вместо того, чтобы ждать и выискивать в них законченные предложения. Мы не можем, как в физике, сказать, что пространство и время – это одно и то же.
Распознавать отдельные слоги довольно легко, однако их сложно изолировать. К примеру, «Hello there» может звучать похоже на «hell no they’re»… Так что для любой последовательности звуков обычно существует несколько комбинаций слогов, произнесённых на самом деле.
Чтобы во всём этом разобраться, нам нужна возможность изучать последовательность в определённом контексте. Если я слышу звук, то что более вероятно – что человек сказал «hello there dear» или «hell no they’re deer?» Здесь опять на помощь приходит машинное обучение. С достаточно большим набором образцов произнесённых слов можно выучить наиболее вероятные фразы. И чем больше примеров у вас есть, тем лучше это будет получаться.
Для этого люди используют рекуррентные нейросети, РНС. В большинстве типов нейросетей, как, например, в СНС, занимающихся компьютерным зрением, связи между нейронами работают в одном направлении, от входа к выходу (математически говоря, это направленные ациклические графы). В РНС выход нейронов может быть перенаправлен обратно на нейроны этого же уровня, на них самих или даже ещё дальше. Это позволяет РНС иметь свою память (если вам знакома двоичная логика, то эта ситуация похожа на работу триггеров).
СНС работает за один подход: скармливаем ей изображение, и она выдаёт какое-то описание. РНС поддерживает внутреннюю память о том, что ей давали раньше, и выдаёт ответы на основе того, что она уже видела, плюс того, что видит сейчас.
Такое свойство памяти у РНС позволяет им не только «слушать» слоги, поступающие к ней один за другим. Это позволяет сети обучаться тому, какие слоги идут вместе, формируя слово, и тому, насколько вероятны определённые их последовательности.
Используя РНС, возможно получить очень хорошую транскрипцию человеческой речи – до такой степени, что по некоторым измерениям точности транскрипций компьютеры сейчас могут превосходить людей. Конечно, звуки – не единственная область, где проявляются последовательности. Сегодня РНС используют также и для определения последовательностей движений для распознавания действий на видео.
Покажи мне, как ты умеешь двигаться (глубокие подделки и генеративные сети)
Пока что мы говорили о МО-моделях, предназначенных для распознавания: скажи мне, что изображено на картинке, скажи мне, что сказал человек. Но эти модели способны на большее – сегодняшние модели ГО можно использовать и для создания контента.
Это имеется в виду, когда люди рассказывают о deepfake – невероятно реалистичных поддельных видеороликах и изображениях, созданных с использованием ГО. Некоторое время назад один сотрудник немецкого телевидения вызвал обширную политическую дискуссию, создав поддельное видео, на котором министр финансов Греции показывал Германии средний палец. Для создания этого видео потребовалась команда редакторов, работавших для создания телепередачи, но в современном мире это может за несколько минут сделать любой человек с доступом к игровому компьютеру средней мощности.
Всё это довольно грустно, но не в этой области так мрачно – вверху показано моё любимое видео на тему этой технологии.
Эта команда создала модель, способная обработать видеоролик с танцевальными движениями одного человека и создать видео с другим человеком, повторяющим эти движения, волшебным образом выполняя их на уровне эксперта. Также интересно почитать сопутствующую этому научную работу.
Можно представить, что, используя все рассмотренные нами техники, возможно обучить сеть, получающую изображение танцора и сообщающую, где находятся его руки и ноги. А в таком случае, очевидно, на каком-то уровне сеть обучилась тому, как связывать пиксели в изображении с расположением конечностей человека. Учитывая то, что нейросеть – это просто данные, хранящиеся на компьютере, а не биологический мозг, должно быть возможно взять эти данные и пойти в обратную сторону – чтобы получить пиксели, соответствующие расположению конечностей.
Начните с сети, извлекающей позы из изображений людей
МО-модели, способные делать это, называются генеративными [англ. generate – порождать, производить, создавать / прим. перев.]. Все предыдущие рассмотренные нами модели называются дискриминационными [англ. discriminate – различать / прим. перев.]. Разницу между ними можно представить себе так: дискриминационная модель для кошек смотрит на фотографии и различает фото, содержащие кошек, и фото, где их нет. Генеративная модель создаёт изображения кошек на основе, допустим, описания того, какая это должна быть кошка.
Генеративные модели, «рисующие» изображения объектов, создаются при помощи тех же СНС-структур, что и модели, использующиеся для распознавания этих объектов. И эти модели можно обучать в основном так же, как и другие модели МО.
Однако хитрость заключается в том, чтобы придумать для их обучения «оценку». При обучении дискриминационной модели есть простой способ оценить правильность и неправильность ответа – типа, правильно ли сеть отличила собаку от кошки. Однако как оценить качество полученного рисунка кошки, или его точность?
И вот тут для человека, любящего теории заговоров и считающего, что мы все обречены, ситуация становится немного страшноватой. Видите ли, лучший из придуманных нами способов для обучения генеративных сетей заключается в том, чтобы не делать этого самостоятельно. Для этого мы просто используем другую нейросеть.
Эта технология называется генеративно-состязательная сеть, или ГСС. Вы заставляете две нейросети состязаться друг с другом: одна сеть пытается создавать подделки, к примеру, рисуя нового танцора на основе поз старого. Другая сеть обучена на поиск разницы между реальными и поддельными примерами с использованием кучи примеров реальных танцоров.
И две эти сети играют в состязательную игру. Отсюда и слово «состязательный» в названии. Генеративная сеть пытается делать убедительные подделки, а дискриминационная пытается понять, где подделка, а где реальная вещь.
В случае видеоролика с танцором в процессе обучения была создана отдельная дискриминационная сеть, выдававшая простые ответы да/нет. Она смотрела на изображение человека и на описание положения его конечностей, и решала, является ли изображение реальной фотографией или картинкой, нарисованной генеративной моделью.
ГСС заставляют две сети состязаться друг с другом: одна выдаёт «фейки», а другая пытается отличать фейк от оригинала
В итоговом рабочем процессе используется только генеративная модель, создающая нужные изображения
Во время повторяющихся раундов обучения модели становились всё лучше и лучше. Это похоже на состязание эксперта по ювелирным подделкам со специалистом по оценке – соревнуясь с сильным соперником, каждый из них становится сильнее и умнее. Наконец, когда работа моделей оказывается достаточно хорошей, можно взять генеративную модель и использовать её отдельно.
Генеративные модели после обучения могут оказаться очень полезными для создания контента. К примеру, они могут генерировать изображения лиц (которые можно использовать для обучения программ по распознаванию лиц), или фонов для видеоигр.
Чтобы всё это работало правильно, требуется большая работа по подстройкам и исправлениям, но по сути человек тут выступает в роли арбитра. Именно ИИ работают друг против друга, внося основные улучшения.
Так что, ждать ли нам в ближайшее время появления Skynet и Hal 9000?
В каждом документальном фильме о природе в конце есть эпизод, где авторы рассказывают о том, как вся эта грандиозная красота скоро исчезнет из-за того, насколько люди ужасны. Думаю, что в том же духе каждая ответственная дискуссия касательно ИИ должна включать раздел о его ограничениях и социальных последствиях.
Во-первых, давайте ещё раз подчеркнём текущие ограничения ИИ: главная мысль, которую вы, как я надеюсь, извлекли из прочтения этой статьи, состоит в том, что успех МО или ИИ чрезвычайно сильно зависит от выбранных нами моделей обучения. Если люди плохо организуют сеть или используют негодные материалы для обучения, то эти искажения могут оказаться весьма явными для всех.
Глубокие нейросети невероятно гибкие и мощные, но не имеют волшебных свойств. Несмотря на то, что вы используете глубокие нейросети для РНС и СНС, их структура сильно отличается, и поэтому всё равно определять её должны люди. Так что, даже если вы можете взять СНС для автомобилей, и переобучить её на распознавание птиц, вы не можете взять эту модель и переобучить её на распознавание речи.
Если описать это в человеческих терминах, то всё выглядит так, будто мы поняли, как работают зрительная кора и слуховая кора, однако понятия не имеем о том, как работает кора головного мозга, и откуда вообще можно начать к ней подступаться.
Это значит, что в ближайшее время мы, вероятно, не увидим голливудского богоподобного ИИ. Но это не значит, что в своём нынешнем виде ИИ не может оказать серьёзное влияние на социум.
Мы часто представляем себе, как ИИ «заменяет» нас, то есть, как роботы буквально делают нашу работу, но на самом деле это будет происходить не так. Взгляните, например, на рентгенологию: иногда люди, смотря на успехи компьютерного зрения, говорят о том, что ИИ заменит рентгенологов. Возможно, мы не дойдём до такой точки, когда у нас вообще не будет ни одного рентгенолога-человека. Но вполне возможно такое будущее, в котором на сотню сегодняшних рентгенологов ИИ позволит пяти-десяти из них делать работу всех остальных. Если такой сценарий реализуется, куда пойдут оставшиеся 90 врачей?
Даже если современное поколение ИИ не оправдает надежд наиболее оптимистичных его сторонников, он всё равно приведёт к весьма обширным последствиям. И эти проблемы нам придётся решать, поэтому неплохим началом, вероятно, будет овладеть основами этой области.
Что такое искусственный интеллект
Разумный робот Дзенъятта. Скриншот из игры Overwatch. © Blizzard.
Тем, кто только начинает свой путь в изучении искусственного интеллекта (ИИ, ИскИн, Artificial Intelegence, AI), подчас бывает сложно разобраться с тем, что это вообще такое. Несмотря на то, что в окружающем инфополе этот термин встречается довольно часто, помощи в понимании это не добавляет, а иногда и просто вредит. Проблема в том, что практически везде он трактуется по-разному.
В этой статье мы проведем обзор существующих определений ИИ, попытаемся их систематизировать и разложить полученные знания по полочкам.
Наше исследование начнем с поиска и анализа существующих определений ИИ, а первым источником, к которому мы обратимся, будет Википедия.
(1) Так в русскоязычной версии Вики термин ИИ определяется следующим образом:
Искусственный интеллект — свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека.
Artificial intelligence is intelligence demonstrated by machines, as opposed to natural intelligence displayed by animals including humans.
Искусственный интеллект — это интеллект, демонстрируемый машинами, в отличие от естественного интеллекта, демонстрируемого животными, включая людей.
По фату мы видим, что в одной статье термин ИИ определяется через свойство системы, а в другой через противопоставление естественного и машинного интеллектов. Причем оба вида интеллекта рассматриваются через призму поведения.
(3) В книге Романа Душкина «Искусственный интеллект» [1] термин ИИ определяется следующим образом:
«… искусственный интеллект – это междисциплинарная область исследований и набор технологий, позволяющий создавать технические системы, решающие задачи, ранее доступные только человеку. …»
Искусственный интеллект, раздел информатики, в котором разрабатываются методы и средства компьютерного решения интеллектуальных задач, традиционно решаемых человеком.
В двух последних рассмотренных источниках мы видим, что авторы рассматривают ИИ не как техническую систему, а как науку, изучающую подобные системы.
(5) В книге «Искусственный интеллект: современный подход» [2] авторы тоже попытались сформулировать определение ИИ (правда, потом отказались от этой идеи и выбрали другой подход). Они, также как и мы сейчас, провели поиск определений ИИ, после чего свели в таблицу найденные результаты:
Примечание. За расшифровкой ссылок из таблицы прошу обращаться в первоисточник.
В этих определениях ИИ рассматривался скорее с позиции области исследования, нежели с позиции технической системы.
Книги книгами, но давайте теперь посмотрим на что-то более официальное. В рамках Росстандарта работает технический комитет (ТК 164) «Искусственный интеллект», который занимается стандартизацией в интересующей нас области. Проанализируем плоды его трудов.
3.6 искусственный интеллект, ИИ: Способность технической системы имитировать когнитивные функции человека (включая самообучение и поиск решений без заранее заданного алгоритма) и получать при выполнении конкретных практически значимых задач обработки данных результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека.
3.18 искусственный интеллект (artificial intelligence): Комплекс технологических решений, позволяющий имитировать когнитивные функции человека (включая самообучение, поиск решений без заранее заданного алгоритма и достижение инсайта) и получать при выполнении конкретных практически значимых задач обработки данных результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека. Примечание — Комплекс технологических решений включает в себя информационно-коммуникационную инфраструктуру, программное обеспечение (в том числе, в котором используются методы машинного обучения). процессы и сервисы по обработке данных, анализу и синтезу решений.
ГОСТы смотрят на ИИ с позиции технической системы. Первый стандарт определяет ИИ как «способность технической системы. », что по сути характеризует поведение, а второй определяет ИИ как «комплекс технологических решений. », что в общем-то указывает на состав системы. На самом деле очень удивило, что в двух, выпущенных одним и тем же комитетом и утверждённых в один и тот же день стандартах используются разные определения. Ну да ладно, с отечественных стандартов переведем взор на международные.
3.1.2 artificial intelligence AI (engineered system) set of methods or automated entities that together build, optimize and apply a model (3.1.26) so that the system can, for a given set of predefined tasks (3.1.37), compute predictions (3.2.12), recommendations, or decisions
Note 1 to entry: AI systems are designed to operate with varying levels of automation (3.1.7).
Note 2 to entry: Predictions (3.2.12) can refer to various kinds of data analysis or production (including translating text, creating synthetic images or diagnosing a previous power failure). It does not imply anteriority.
3.1.3 artificial intelligence AI (discipline) study of theories, mechanisms, developments and applications related to artificial intelligence (engineered system) (3.1.2)
2.1.2 искусственный интеллект (ИИ) (artificial intelligence, AI): Способность приобретать, обрабатывать, создавать и применять знания (2.1.5), определенные в форме модели (2.1.6), для выполнения одной или нескольких поставленных задач (2.1.7). Примечание — Данный термин приведен в контексте системы.
2.1.3 искусственный интеллект (artificial intelligence, AI): Дисциплина о создании и изучении ИИ (2.1.2). Примечание — Данный термин приведен в контексте инженерной дисциплины.
Интересно то, что анализируемый ISO разделят точку зрения на ИИ как на техническую систему и точку зрения на ИИ как на научную дисциплину. Техническая система при этом определяется через демонстрируемые ей свойства.
Со стандартами все, перейдем на законодательный уровень. Практически в каждой стране есть понимание того, что ИИ — это ключевое направление ближайшего будущего. Все страны хотят его развивать, чтобы стать первыми и самыми крутыми по этому вопросу. Свой взгляд на развитие ИИ страны, как правило, оформляют в виде национальных стратегий развития ИИ. Хороший обзор подобных стратегий можно посмотреть на Medium’е. Мы же с вами глянем лишь несколько наиболее значимых стратегий и посмотрим, как в них определяется термин ИИ.
The term ‘‘artificial intelligence’’ means a machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations or decisions influencing real or virtual environments. Artificial intelligence systems use machine and human-based inputs to—
( A ) perceive real and virtual environments;
( B ) abstract such perceptions into models through analysis in an automated manner; and
( C ) use model inference to formulate options for information or action.
Термин ‘искусственный интеллект’ означает техническую систему, которая для определенных человеком целей может делать прогнозы, выдавать рекомендации или принимать решения, влияющие на реальную или виртуальную среду. Системы искусственного интеллекта используют машинные и предоставленные человеком входные данные для:
( A ) восприятия реальной и виртуальной среды;
( B ) автоматического абстрагирования подобного восприятия в модели;
( C ) использования полученных моделей для формирования информации или выполнения действий.
Artificial intelligence (AI) refers to systems that display intelligent behaviour by analysing their environment and taking actions – with some degree of autonomy – to achieve specific goals.
Искусственный интеллект (ИИ) относится к системам, демонстрирующим разумное поведение, которое заключается в анализе окружающей среды и совершении действий – с некоторой степенью автономии – для достижения поставленных целей.
Для систематизации всего этого хаоса определений распишем учебную модель предполагаемого ИИ, к которой затем применим найденные определения и посмотрим, что из этого получится.
Модель
Как несложно было догадаться, в качестве модели будет выступать разумный робот-монах Дзенъятта, путешествующий по миру в поисках духовного просветления.
Применяем определения к модели
Что в нашей модели будет является искусственным интеллектом?
По определениям (1), (2), (6), (11) ИИ — это не какая-либо часть робота, а особенности его поведения, проявляемые им в ходе функционирования.
Определения (3), (4), (5) рассматривают ИИ как область исследования и не применимы к технической системе, которой является робот.
Определения (7), (8) и (10) рассматривают ИИ как «софт и железо», на котором он функционирует. Соответственно в нашем случае к ИИ можно отнести всего робота целиком.
Классная статья получилась! Вроде в начале обещали разложить все по полочкам, а в итоге вышло непонятно что. К сожалению, так и есть, и с определениями ИИ творится действительно непонятно что, вернее понятно — полный бардак.
Подобный расклад происходит по множеству причин, и самая главная заключается в том, что ИИ до сих пор не изобрели. Тот, кто это сделает, тот и даст ему единое правильное толкование. Но почему его еще не изобрели? Во многом потому, что сам термин очень неудачный.
Что не так с терминологией ИИ
Основной проблемой с термином ИИ является использование в его трактовке человека (человеческого интеллекта, человеческого поведения, человеческих когнитивных способностей и т.д.). Конечно, понятно, почему так происходит — в глубине души люди мечтают разработать искусственную разумную жизнь по своему образу и подобию. А поскольку считается, что разумом обладает только человек, то и все определения делаются на основании сравнения ИИ с человеческим разумом. Однако, понятие «человеческий интеллект (разум)» в технических терминах не определено, и нет никакой уверенности, что его вообще можно определить.
Кроме того, говоря про разум или разумное поведение, часто имеют в виду поведение нормального здорового человека, мотивированного в решении поставленной задачи. Ок, а что, если поведение человека не вписывается в это правило? Например, человек болен шизофренией в стадии дебильности или всячески саботирует решение стоящей перед ним задачи. Получается, что у подобных людей нет интеллекта, но ведь это не так.
Еще одна проблема в том, что нет точной уверенности, что человеческий разум можно представить в виде алгоритма или программы. Ведь, если это так, то никакой пресловутой свободы воли нет, и человек по сути не решает ничего, все его действия предрешены и обусловлены его внутренним состоянием и состоянием окружающей среды. Но это уже религиозный спор, развивать его не будем.
Если бы люди пытались в лоб повторить полет бабочки, то авиации у человечества не было бы до сих пор. Вывод: для описания «разумных машин» следует использовать термины, не содержащие в себе отсылки к человеку.
Одним из шагов, направленных на то, чтобы в исследовании ИИ уйти от сравнения с человеком, послужило введение понятия агент. В проекте международного стандарта ISO/IEC DIS 22989 этому понятию дается следующая трактовка:
3.1.1 agent — automated entity that perceives its environment and takes actions to achieve its goals
Note 1 to entry: An AI agent is an agent that maximizes its chance of successfully achieving its goals by using AI techniques.
3.1.1 агент — автоматизированный объект, который воспринимает свое окружение и предпринимает действия для достижения своих целей.
Примечание 1 к записи: Агент ИИ — это агент, который максимизирует свои шансы на успешное достижение своих целей с помощью методов ИИ.
«Агентом считается все, что действует. Но предполагается, что компьютерные агенты обладают некоторыми другими атрибутами, которые отличают их от обычных „программ“, такими как способность функционировать под автономным управлением, воспринимать свою среду, существовать в течение продолжительного периода времени, адаптироваться к изменениям и обладать способностью взять на себя достижение целей, поставленных другими.»
Как отмечалось ранее, авторы этой книги разочаровались в термине ИИ как объекте исследования и выбрали вместо него термин «рациональный агент».
Сила интеллекта
(с) Яндекс.Картинки
До этого момента мы рассматривали термин ИИ только в контексте «разумного» робота, вернее агента, но в инфополе данный термин используется шире. Например, к технологиям ИИ относят разработки в области распознавания речи, синтеза изображений по описанию и др.
Тут следует дать поясниние. Дело в том, что все разработки в области ИИ условно разделяют на несколько категорий: слабый ИИ и сильный ИИ. Простыми словами можно сказать, что слабый ИИ проявляет ограниченные возможности и позволяет решать узкоспециализированные задачи, которые раньше мог решать только человек. Сильный ИИ, в отличии от слабого, обладает всеми возможностями человеческого разума, а возможно и лучше (причем это «лучше» в итоге может привести к технологической сингулярности). Различные варианты слабого ИИ, такие как голосовые помощники, автопилоты и др., прочно вошли в нашу жизнь, в то время как сильный ИИ — это пока не достижимая мечта. Ну и рассматриваемый нами разумный робот — это, конечно, сильный ИИ. Не исключено, что сильный ИИ будет сделан в результате удачного объединения нескольких технологий слабого ИИ. Далее под ИИ будем понимать только сильный ИИ.
Свои пять копеек
Данное качество направлено на повышение эффективности решения стоящих перед агентом задач. Оно может проявляться в уменьшении ресурсов, требуемых для решения задачи, повышения скорости достижения целей и т.д. Совершенствование ИИ заключается в виде совершенствования моделей данных, с помощью которых он описывает среду функционирования, и совершенствование (или создание новых) алгоритмов, используемых для решения задач.
Если сравнивать предлагаемое качество с самообучением, речь о котором шла в определении ИИ в ранее рассмотренных ГОСТах, то самосовершенствование несколько шире и на, мой взгляд, лучше отражает интеллектуальность.
Что такое искусственный интеллект (ИИ): определение понятия простыми словами
Теории и практики
Искусственный интеллект — это способность цифрового компьютера или управляемого компьютером робота выполнять задачи, обычно связанные с разумными существами. Термин часто применяется к проекту развития систем, наделенных интеллектуальными процессами, характерными для человека, такими как способность рассуждать, обобщать или учиться на прошлом опыте. Кроме того, определение понятия ИИ (искусственный интеллект) сводится к описанию комплекса родственных технологий и процессов, таких как, например, машинное обучение, виртуальные агенты и экспертные системы. Говоря простыми словами, ИИ — это грубое отображение нейронов в мозге. Сигналы передаются от нейрона к нейрону и, наконец, выводятся — получается числовой, категориальный или генеративный результат. Это можно проиллюстрировать на таком примере. если система делает снимок кошки и обучена распознавать, кошка это или нет, первый слой может идентифицировать общие градиенты, которые определяют общую форму кошки. Следующий слой может идентифицировать более крупные объекты, такие как уши и рот. Третий слой определяет более мелкие объекты (например, усы). Наконец, основываясь на этой информации, программа выведет «да» или «нет», чтобы сказать, является ли это кошкой или нет. Программисту не нужно «говорить» нейронам, что это те функции, которые они должны искать. ИИ изучил их сам по себе, тренируясь на многих изображениях (как с кошками, так и без кошек).
Содержание
Что такое искусственный интеллект?
Описание искусственного нейрона
Искусственный нейрон — это математическая функция, задуманная как модель биологических нейронов, нейронной сети. Искусственные нейроны — элементарные единицы в искусственных нейросетях. Искусственный нейрон получает один или несколько входов и суммирует их, чтобы произвести выход или активацию, представляющую потенциал действия нейрона, который передается вдоль его аксона. Обычно каждый вход анализируется отдельно, и сумма передается через нелинейную функцию, известную как функция активации, или передаточная функция.
Когда началось исследование ИИ?
В 1935 году британский исследователь А.М. Тьюринг описал абстрактную вычислительную машину, которая состоит из безграничной памяти и сканера, перемещающегося вперед и назад по памяти, символ за символом. Сканер считывает то, что он находит, записывая дальнейшие символы. Действия сканера диктуются программой инструкций, которая также хранится в памяти в виде символов. Самая ранняя успешная программа ИИ была написана в 1951 году Кристофером Стрейчи. В 1952 году эта программа могла играть с человеком в шашки, удивляя всех своими способностями предсказывать ходы. В 1953 году Тьюринг опубликовал классическую раннюю статью о шахматном программировании.
Отличие искусственного интеллекта от естественного
Интеллект можно определить как общую умственную способность к рассуждению, решению проблем и обучению. В силу своей общей природы интеллект интегрирует когнитивные функции, такие как восприятие, внимание, память, язык или планирование. естественный интеллект отличает осознанное отношение к миру. Мышление человека всегда эмоционально окрашено, и его нельзя отделить от телесности. Кроме того, человек — существо социальное, поэтому на мышление всегда влияет социум. ИИ не имеет отношения к эмоциональной сфере и социально не ориентирован.
Как сравнить человеческий и компьютерный интеллекты?
Сравнить мышление человека с искусственным интеллектом можно исходя из нескольких общих параметров организации мозга и машины. Деятельность компьютера, как и мозга, включает четыре этапа: кодирование, хранение, анализ данных и выдачу результата. Кроме того, мозг человека и ИИ могут самообучаться в зависимости от данных, полученных из окружающей среды. Также человеческий мозг и машинный интеллект решают проблемы (или задачи), используя определенные алгоритмы.
У компьютерных программ есть IQ?
Нет. Показатель IQ связан с развитием интеллекта человека в зависимости от возраста. ИИ в превышает некоторые человеческие способности, например может удерживать в памяти огромное количество цифр, но это не имеет отношения к IQ.
Что такое тест Тьюринга?
Символьный подход
Символьный подход к ИИ — совокупность всех методов исследования искусственного интеллекта, основанных на высокоуровневых символических (читаемых человеком) представлениях о задачах, логике и поиске. Символьный подход широко применялся в исследованиях ИИ в 1950–80-х годах. Одной из популярных форм символьного подхода являются экспертные системы, использующие сочетание определенных правил производства. Производственные правила связывают символы в логические связи, которые подобны алгоритму If-Then. Экспертная система обрабатывает правила, чтобы сделать выводы и определить, какая дополнительная информация ей нужна, то есть какие вопросы задавать, используя удобочитаемые символы.
Логический подход
Термин «логический подход» предполагает апеллирование к логике, размышлениям, решению задач с помощью логических шагов. Логики еще в XIX веке разработали точные обозначения для всех видов объектов в мире и отношений между ними. К 1965 году существовали программы, которые могли решить любую логическую задачу (пик популярности данного подхода пришелся на конец 1950–70-х годов). Сторонники логического подхода в рамках логического искусственного интеллекта надеялись выстроить на таких программах (в частности, записанных на языке Prolog) интеллектуальные системы. Однако у такого подхода два ограничения. Во-первых, нелегко взять неформальное знание и изложить его в формальных терминах, которые требуются для обработки ИИ. Во-вторых, есть большая разница между решением проблемы в теории и ее решением на практике. Даже проблемы с несколькими сотнями фактов могут исчерпать вычислительные ресурсы любого компьютера, если у него нет каких-либо указаний относительно того, какие рассуждения надо использовать в первую очередь.
Агентно-ориентированный подход
Агент — это то, что действует (от лат. agere, «делать»). Конечно, все компьютерные программы что-то делают, но ожидается, что компьютерные агенты будут делать больше: работать автономно, воспринимать сигналы окружающей среды (с помощью специальных датчиков), адаптироваться к изменениям, создавать цели и выполнять их. Рациональный агент — это тот, кто действует так, чтобы достичь наилучшего ожидаемого результата.
Гибридный подход
Предполагается, что этот подход, который стал популярным в конце 80-х, работает наиболее эффективно, так как представляет собой сочетание символьных и нейронных моделей. Гибридный подход увеличивает когнитивные и вычислительные возможности машины.
Рынок технологий искусственного интеллекта
Ожидается, что рынок к 2025 году вырастет до 190,61 млрд долларов, при ежегодном темпе прироста — 36,62%. На рост рынка влияют такие факторы, как внедрение облачных приложений и сервисов, появление больших массивов данных и активный спрос на интеллектуальных виртуальных помощников. Однако экспертов, разрабатывающих и внедряющих технологии ИИ, пока немного, и это сдерживает рост рынка. Системам, созданным на основе ИИ, необходима интеграция и техническая поддержка при обслуживании.
Процессоры для ИИ
В России
В конце 2018 года в России запустили серию серверов «Эльбрус-804», показывающих высокую производительность. Каждый из компьютеров оснащен четырьмя восьмиядерными процессорами. С помощью данных устройств можно выстроить вычислительные кластеры, они позволяют работать с приложениями и базами данных.
Мировой рынок
Драйверами и лидерами рынка являются две корпорации — Intel и AMD, производители самых мощных процессоров. Intel традиционно концентрируется на выпуске машин с более высокой тактовой частотой, AMD ориентирована на постоянное увеличение числа ядер и обеспечение многопоточной производительности.
Национальная концепция развития
Национальные стратегии развития ИИ уже утвердили три десятка стран. В октябре 2019 года проект Национальной стратегии развития ИИ должен быть принят в России. Предполагается, что в Москве будет введен правовой режим, облегчающий разработку и внедрение технологий ИИ.
Исследования в сфере ИИ
Вопросы, что такое искусственный интеллект и как он работает, волнуют ученых разных стран уже не одно десятилетие. Госбюджет США ежегодно направляет 200 млн долларов на исследования. В России за 10 лет — с 2007-го по 2017-й — было выделено около 23 млрд рублей. Разделы по поддержке исследований в сфере ИИ станут важной частью концепции национальной стратегии. В скором времени в России откроются новые научные центры, а также будет продолжена разработка инновационного ПО для ИИ.
Стандартизация в области ИИ
Нормы и правила в области ИИ в России находятся в процессе постоянной доработки. Предполагается, что в конце 2019 — начале 2020 года будут утверждены национальные стандарты, которые сейчас разрабатывают лидеры рынка. Параллельно формируется План национальной стандартизации на 2020 год и далее. В мире работает стандарт «Искусственный интеллект. Концепция и терминология», и в 2019 году эксперты начали разрабатывать его русифицированную версию. Документ должен быть утвержден в 2021 году.
Влияние искусственного интеллекта
Внедрение ИИ неразрывно связано с прогрессом, и сферы применения расширяются с каждым годом. Мы сталкиваемся с этим каждый день в жизни, когда крупная розничная сеть в интернете рекомендует нам какой-то товар или, только открыв компьютер, мы видим рекламу фильма, который как раз хотели посмотреть. Эти рекомендации основаны на алгоритмах, анализирующих то, что купил или смотрел потребитель. За этими алгоритмами стоит искусственный интеллект.
На экономику и бизнес
Проникновение технологии ИИ во все сферы экономики увеличит к 2030 году объем глобального рынка услуг и товаров на 15,7 трлн долларов. США и Китай пока лидеры с точки зрения всевозможных проектов в сфере ИИ. Развитые страны — Германия, Япония, Канада, Сингапур — также стремятся реализовать все возможности. Многие страны, экономика которых растет умеренными темпами, такие как Италия, Индия, Малайзия, развивают сильные стороны в конкретных областях применения ИИ.
На рынок труда
Глобальное влияние ИИ на рынок труда будет идти по двум сценариям. Во-первых, распространение некоторых технологий будет приводить к увольнению большого количества людей, так как выполнение многих задач возьмут на себя компьютеры. Во-вторых, в связи с развитием технического прогресса специалисты в сфере ИИ будут очень востребованы во многих отраслях.
Предвзятость ИИ
Предвзятость системы ИИ, вероятно, станет все более распространенной проблемой, поскольку искусственный интеллект выходит из лабораторий в реальный мир. Исследователи опасаются, что без надлежащей подготовки по оценке данных и выявлению потенциала предвзятости в данных уязвимые группы общества могут пострадать или их права будут ущемлены. До сих пор у исследователей нет данных, не будут ли угрожать человечеству системы, построенные на основе машинного обучения.
Сферы применения
Искусственный интеллект и его области применения претерпевают трансформацию. Определение Weak AI («слабый ИИ») используется, когда речь идет о реализации узких задач в медицинской диагностике, электронных торговых платформах, управлении роботами. Тогда как Strong AI («сильный ИИ») исследователи определяют как интеллект, перед которым ставятся глобальные задачи, как если бы их ставили перед человеком.
Использование в целях обороны и в военном деле
В образовании
Многие школы включают в образовательный курс информатики ознакомительные уроки по ИИ, а университеты широко применяют технологии больших данных. Некоторые программы контролируют поведение учащихся, оценивают тесты и эссе, распознают ошибки в произношении слов и предлагают варианты исправления.
Также существуют онлайн-курсы по искусственному интеллекту. Например, у образовательного портала GeekBrains.
В бизнесе и торговле
В ближайшие пять лет у ведущих ретейлеров появятся мобильные приложения, которые будут работать с цифровыми помощниками, такими как Siri, чтобы упростить процесс совершения покупок. ИИ позволяет зарабатывать огромные суммы в интернете. Один из примеров — Amazon, который постоянно анализирует потребительское поведение и совершенствует алгоритмы.
Где можно учиться по теме #искусственный интеллект
Аналитик Big Data с гарантированным трудоустройством
Специализация «Машинное обучение: углубленный уровень»
Основы искусственного интеллекта: нейросети
В электроэнергетике
ИИ помогает прогнозировать генерацию и спрос на энергоресурсы, снижать потери, предотвращает кражи ресурсов. В электроэнергетике использование ИИ при анализе статистических данных помогает выбрать наиболее выгодного поставщика или автоматизировать обслуживание клиентов.
В производственной сфере
Согласно опросу McKinsey, проведенному среди 1300 руководителей, 20% предприятий уже применяют ИИ. Недавно компания «Моссельпром» внедрила ИИ у себя на производстве в цеху упаковки. Используется способность ИИ к распознаванию изображения. Камера фиксирует все действия работника, сканируя штрих-код, нанесенный на одежду, и отправляет данные в компьютер. Количество совершенных операций напрямую влияет на оплату труда сотрудника.
В пивоварении
В банковской сфере
Потребность в надежной обработке данных, развитие мобильных технологий, доступность информации и распространение программного обеспечения с открытым исходным кодом делают ИИ востребованной технологией в банковском секторе. Все больше банков привлекают заемные средства с помощью компаний-разработчиков мобильных приложений. Новые технологии улучшают обслуживание клиентов, и, как предсказывают аналитики, уже через пять лет ИИ в банках будет принимать большинство решений самостоятельно.
На транспорте
Развитие технологий ИИ — драйвер транспортной отрасли. Мониторинг состояния дорог, обнаружение пешеходов или объектов в неположенных местах, автономное вождение, облачные сервисы в автомобилестроении — лишь немногие примеры применения ИИ на транспорте.
В логистике
Возможности ИИ позволяют компаниям более эффективно прогнозировать спрос и выстраивать цепи поставок с минимальными затратами. ИИ помогает сократить количество используемых транспортных средств, необходимых для перевозки, оптимизировать время доставки, снизить эксплуатационные расходы транспорта и складских помещений.
На рынке предметов и услуг роскоши
Люксовые бренды также обратились к цифровым технологиям, чтобы анализировать потребности клиентов. Одна из задач, которая ставится перед разработчиками в этом сегменте, — управление эмоциями клиентов и влияние на них. Dior уже адаптирует ИИ для управления взаимодействием клиента и бренда с помощью чат-ботов. Люксовые бренды будут конкурировать в будущем, и решающим будет уровень персонализации, которого они смогут достичь с помощью ИИ.
В госуправлении
Государственные аппараты многих стран пока не готовы к вызовам, которые спрятаны в технологиях ИИ. Согласно прогнозам экспертов, многие из существующих правительственных структур и процессов, которые развивались в течение последних нескольких столетий, вероятно, станут неактуальными в ближайшем будущем.
В криминалистике
В судебной системе
В спорте
В медицине здравоохранении
Эта сфера применения стремительно развивается. ИИ используется в диагностике заболеваний, клинических исследованиях, при разработке лекарств и при создании медицинских страховок. Кроме того, сейчас наблюдается бум инвестирования в многочисленные медицинские приложения и устройства.
Анализ поведения граждан
В развитии культуры
Алгоритмы ИИ начинают генерировать художественные произведения, которые сложно отличить от созданных человеком. ИИ предлагает людям творческих профессий множество инструментов для воплощения замыслов. Именно сейчас меняется понимание роли художника в широком смысле, так как ИИ дает массу новых методов, но и ставит перед человечеством много новых вопросов.
Живопись
Искусство издавна считалось исключительной сферой человеческого творчества. Но оказалось, что машины могут сделать гораздо больше в творческой сфере, чем люди могут себе представить. В октябре 2018 года Christie’s продал первую картину, созданную ИИ, за 432 500 долларов. Использовался алгоритм генеративной состязательной сети, который анализировал 15 000 портретов, созданных между XV и XX веком.
Музыка
Фотография
ИИ быстро меняет наше представление о фотографии. Всего через пару лет большинство достижений в этой сфере будут ориентированы на ИИ, а не на оптику или сенсоры, как раньше. Прогресс в технологии фотографии впервые не будет связан с физикой и создаст совершенно новый способ фотомышления. Уже сейчас нейросеть распознает малейшие изменения при моделировании лиц в фоторедакторах.
Видео: замена лиц
В 2015 году Facebook начала тестировать на сайте технологию DeepFace. В 2017 Reddit-юзер DeepFakes придумал алгоритм, позволяющий создавать реалистичные видео с заменой лица, используя нейросети и машинное обучение.
СМИ и литература
В 2016 году ИИ Google, проанализировав 11 тысяч неизданных книг, начал писать свои первые литературные произведения. Исследователи Facebook AI Research в 2017 году придумали систему нейросетей, которая умеет писать стихи на любую тему. В ноябре 2015 года направление подготовки автоматических текстов открыла российская компания «Яндекс».
Игры го, покер, шахматы
Распознавание лиц
Технология распознавания лиц применяется как для фото-, так и видеопотоков. Нейронные сети выстраивают векторный, или «цифровой», шаблон лица, далее происходит сравнение этих шаблонов внутри системы. Она находит опорные точки на лице, которые определяют индивидуальные характеристики. Алгоритм вычисления характеристик различен для каждой из систем и является главным секретом разработчиков.
Для дальнейшего развития и применения ИИ необходимо обучать прежде всего человека
Сергей Ширкин
Декан факультета Искусственного интеллекта GeekUniversity
Нужно понимать, что ИИ, как и любая программа, — это прежде всего код, то есть определенным образом оформленный текст. Этот код нуждается в развитии, обслуживании и совершенствовании. К сожалению, само собой это не происходит, без программиста код не может «ожить». Поэтому все страхи о всемогуществе ИИ не имеют оснований. Программы создаются под строго определенные задачи, они не обладают чувствами и устремлениями подобно человеку, они не совершают действий, которые в них не заложил программист.
Можно сказать, что в наше время ИИ обладает лишь отдельными навыками человека, хотя и может в быстроте их применения опережать среднестатистического человека. Правда, на выработку каждого такого навыка тратятся многочасовые усилия тысяч программистов. Самое большое, на что пока способен ИИ — автоматизировать некоторые физические и умственные операции, освобождая тем самым людей от рутины.
Несет ли применение ИИ какие-то риски? Скорее сейчас существует риск не разглядеть возможность применения технологий искусственного интеллекта. Многие компании осознают это и пытаются развиваться сразу в нескольких направлениях в расчете на то, что какое-то из них может «выстрелить». Показателен пример интернет-магазинов: сейчас на плаву остались только те, кто осознал необходимость применения ИИ, когда это еще не было в тренде, хотя вполне можно было «сэкономить» и не приглашать непонятно зачем нужных математиков-программистов.
Перспектива развития искусственного интеллекта
Компьютеры теперь могут делать многое из того, что раньше могли делать только люди: играть в шахматы, распознавать буквы алфавита, проверять орфографию, грамматику, распознавать лица, диктовать, говорить, выигрывать игровые шоу и многое другое. Но скептики упорствуют. Как только удается автоматизировать очередную человеческую способность, скептики говорят, что это лишь еще одна компьютерная программа, а не пример самообучающегося ИИ. Технологии ИИ только находят широкое применение и имеют огромный потенциал роста во всех сферах. Со временем человечество будет создавать все более мощные компьютеры, которые будут все более совершенствоваться в развитии ИИ.
Является ли целью ИИ поместить человеческий разум в компьютер?
Существует только приблизительное понимание того, как работает человеческий мозг. Пока далеко не все свойства разума возможно имитировать с помощью ИИ.
Сможет ли ИИ достичь человеческого уровня интеллекта?
Ученые стремятся к тому, чтобы ИИ мог решать еще больше разнообразных задач. Но о достижении уровня человеческого интеллекта говорить преждевременно, так как мышление не сводится только к одним алгоритмам.
Когда искусственный интеллект сможет достичь уровня человеческого мышления?
На данном этапе накопления и анализа информации, который сейчас достигнут человечеством, ИИ далек от человеческого мышления. Однако в будущем могут возникнуть прорывные идеи, которые повлияют на резкий скачок в развитии ИИ.
Может ли компьютер стать интеллектуальной машиной?
Часть любой сложной машины — это компьютерная система, и тут возможно говорить только об интеллектуальных компьютерных системах. Сам компьютер не обладает интеллектом.
Есть ли связь между скоростью и развитием интеллекта у компьютеров?
Нет, скорость отвечает только за некоторые свойства интеллекта. Самой по себе скорости обработки и анализа информации недостаточно, чтобы появился интеллект.
Возможно ли создать детскую машину, которая могла бы развиваться с помощью чтения и самообучения?
Это обсуждается исследователями уже почти сто лет. Вероятно, идея когда-нибудь будет реализована. На сегодня программы ИИ не обрабатывают и не используют столько информации, сколько могут делать дети.
Как связаны с ИИ теория вычислимости и вычислительная сложность?
Теория вычислительной сложности фокусируется на классификации вычислительных задач в соответствии с присущей им сложностью и связывании этих классов друг с другом. Вычислительная задача — это задача, решаемая компьютером. Задача вычисления разрешима механическим применением математических шагов, таких как алгоритм.
Заключение
Искусственный интеллект уже оказал огромное влияние на развитие нашего мира, что было невозможно предсказать еще столетие назад. «Умные» телефонные сети маршрутизируют звонки более эффективно, чем любой человек-оператор. Автомобили строятся на беспилотных заводах автоматизированными роботами. Искусственный интеллект интегрируется в самые обычные бытовые предметы, например в пылесос. Механизмы ИИ до конца не изучены, но эксперты прогнозируют, что развитие ИИ еще более приблизится к развитию человеческого мозга уже в ближайшие годы.