Что является определением термина искусственный заземлитель
Что является определением термина искусственный заземлитель
Искусственный заземлитель
ИСКУССТВЕННЫЙ ЗАЗЕМЛИТЕЛЬ — заземлитель, специально выполняемый для целей заземления.
Смотреть что такое «Искусственный заземлитель» в других словарях:
Искусственный заземлитель — 1.7.16. Искусственный заземлитель заземлитель, специально выполняемый для целей заземления. Источник: Приказ Минэнерго РФ от 08.07.2002 N 204 Об утверждении глав Правил устройства электроустановок (вместе с Правилами устройства электроустановок … Официальная терминология
Заземлитель — проводящая часть (или совокупность соединенных между собой проводящих частей), находящаяся в контакте с землей непосредственно или через промежуточную проводящую среду. Различают искусственные З. и естественные заземлители. Искусственный З. З.,… … Российская энциклопедия по охране труда
Заземление — Статья не является нормативным документом. Предупреждение: статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться … Википедия
сеть — 3.48 сеть (network): Совокупность систем связи и систем обработки информации, которая может использоваться несколькими пользователями. Источник: ГОСТ Р ИСО/ТО 13569 2007: Финансовые услуги. Рекомендации по информационной безопасности 3.13 Сеть TN … Словарь-справочник терминов нормативно-технической документации
Какое определение соответствует термину «искусственный заземлитель»?
Ответы Ростехнадзора по электробезопасности (ЭБ) для электротехнического персонала организаций, осуществляющего эксплуатацию электроустановок потребителей по аттестационным вопросам на тестовые задания. Вопросы с правильными ответами подтверждаются выдержкой из нормативной документации по которым составлены тесты Олимпокс.
Какое определение соответствует термину «искусственный заземлитель»?
• Заземлитель, специально выполняемый для целей заземления
• Преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством
• Сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления
Выдержка из нормативной документации:
Правила устройства электроустановок-1
1.7.16. Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления.
На сайте Тест24.ру подготовлены и размещены тесты по электробезопасности актуальные на 2020 год. Вы можете пройти онлайн тестирование по курсам ЭБ 1260.9, ЭБ 1259.8, ЭБ 1258.8, ЭБ 1257.8, ЭБ 1256.8, ЭБ 1255.8, ЭБ 1254.8 и ЭБ 1547.3 для подготовки к сдаче экзамена на едином портале тестирования Ростехнадзора на группу допуска до и выше 1000 В.
Виды и назначение искусственных заземлителей
Металлоконструкции, специально выполняемые для заземляющих цепей, характеризуются в качестве искусственного заземлителя. Используется этот вид электродов в таких случаях:
Такой структурный элемент заземления имеет определенную конфигурацию (материал, количество элементов, длина, месторасположение электродов).
Что выступает в роли искусственного заземлителя
Заземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей.
Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.
Важно! Совокупность соединенных искусственных стержней, вмонтированных в землю и объединенных с электрооборудованием при помощи проводника, образует заземляющий контур.
Искусственный заземлитель изготавливается из таких материалов:
Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип).
Чем отличаются вертикальные и горизонтальные заземлители
Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.
Стандартные показатели заглубления:
Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.
Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.
Функции искусственного заземляющего элемента
Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.
Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.
Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.
Как устанавливать искусственный электрод в грунт
Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:
Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.
Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.
Как определить сопротивление
Согласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов.
Факторы, которые оказывают первостепенное влияние на показатель:
Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.
Обратите внимание! Для электроустановки с напряжением в 380 В показатель сопротивления не должен превышать 30 Ом. Системы видеонаблюдения, серверные блоки и медаппаратура выполняется заземлением с сопротивлением заземляющих элементов в 0,5–1 Ом.
Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления.
Основные требования
Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:
Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:
Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.
Как подбираются размеры искусственных электродов
Все параметры основной конфигурации проводников в обязательном порядке должны соответствовать нормативным требованиям профильной документации, в частности ГОСТ Р 50571.5.54-2013.
Правильно подобранные материалы и размеры электродов, применение оптимальной вариации производства такого электромонтажа — основные рабочие моменты заземления, которые влияют на качество работы заземлителя.
Искусственный электрод обладает важным эксплуатационным преимуществом, обусловленным принципом монтажа. Такой вид чаще монтируется глубоко в грунт. За счет грунтовых вод уменьшается показатель удельного сопротивления материала. Итог — реализация оптимальной характеристики и стабильности конечного сопротивления заземлителя.
Назначение и характеристики искусственного заземлителя
Если коротко ответить на вопрос, что является определением понятия искусственного заземлителя, можно сказать, что это проводящий элемент, напрямую контактирующий с землей. Элементов может быть несколько, и контакт может осуществляться посредством промежуточной среды, проводящей электрический ток. От естественного заземления искусственное приспособление отличается тем, что сделано специально с применением расчетов и должной подготовки.
Основные функции
В электротехнике используются такие понятия, как заземление рабочее и защитное. Рабочее заземление применяется с целью обеспечения эффективной и бесперебойной работы установки. Молниеотводы, защищающие электроустановки от небесного электричества и воспламенений, также принадлежат к категории рабочих, поскольку в этом случае заземление никак не ограждает от поражений электрическим током.
Для защиты человека от электротока или удара молнией применяется защитное заземление. Другими словами, защитное заземление выполняется с целью снизить напряжение прикосновения до безопасного уровня. Это особенно важно на электрооборудовании с высоким, опасным для жизни напряжением.
Заземлитель является частью заземляющего устройства (заземления, ЗУ). Он плотно контактирует с грунтом. Один его конец подключен к электроприбору, благодаря чему происходит выравнивание потенциалов прибора и земли, и это защищает от удара током.
Согласно пункту 1.7.28 ПУЭ, заземлением является преднамеренно выполненное электрическое соединение точки электросети, электроустановки или оборудования с заземляющим устройством. Заземление подключают на всех электроустановках.
Расположение в грунте
Искусственное заземление применяется там, где нет возможности воспользоваться естественным заземлением, либо когда токовые нагрузки на естественные заземлители превышают допустимые нормы. Искусственные заземляющие устройства изготавливаются из стальных конструкций, но если в почвах превышена кислотность, или напротив, она подвержена ощелачиванию, применяются ЗУ из меди или оцинкованного металла.
По форме и структуре искусственный заземлитель похож на классический электрод. Чаще, это стержень, выполненный из стальной полосы или круглого прута. По типу расположения существуют 2 основных вида ЗУ. В горизонтальном типе заземлители укладывают по периметру фундамента на дне траншеи.
Вертикальные заземлители делают из стержней диаметром 12-15 мм и длиной до 4-5 метров. Их забивают в грунт на глубину 0,5-0,7 м.
Допускается расположение искусственных заземлителей под некоторым углом, и тогда понятия вертикальный или горизонтальный становится условным.
Наклонное расположение применяют в том случае, если стена строения расположена под углом к вертикали. Наклон не сказывается существенным образом на выполняемых функциях устройства.
В заземлении электроустановок с высоким напряжением используются так называемые сложные заземлители, в которых вертикальные элементы соединены с горизонтальными.
Когда устройство искусственных заземлителей оказывается на пахотной земле, все электроды должны размещаться на глубине не менее 1 метра. Это позволяет увеличить контакт с грунтом.
Какие требования предъявляются к искусственным заземлителям
Искусственные заземлители не подлежат окрашиванию, так как окраска играет роль изолятора и препятствует отведению электротока в землю. Таким образом, цвет заземлителя должен быть естественным, которым обладает применяемый в заземляющих устройствах, металл. Но места соединения проводников (сварочные швы) должны быть окрашены битумной краской, для предотвращения разрушения.
Нельзя размещать искусственные или применять естественные заземлители вблизи источников тепла, которые сушат землю. Для засушливых территорий существует особая железобетонная конструкция. Заземлитель делают в форме емкости, и помещают ниже поверхности земли. Емкость заполняют водой через люк. Таким образом, в заземлении принимает участие водораспределительная система. Стальные электроды соединены с выводом из емкости. Так обеспечивается оптимальное сопротивление.
Для создания искусственных заземлителей используются следующие материалы с указанными параметрами:
Только для временных электроустановок можно применять электроды с минимальными значениями. Чтобы заземляющее устройство служило 40-50 лет в благоприятных грунтовых условиях, достаточно выбрать стержни для него на 2-3 мм больше. Во влажных грунтах толщина и диаметры ЗУ должны быть в 2 раза выше минимального.
Из всех названых материалов наиболее оптимальным признано использование круглой арматуры, поскольку расход металла в этом случае снижается в 1,5 раза, уменьшается соответственно и себестоимость заземляющих устройств.
Коррозионная стойкость у круглой стали выше, чем у линейной, потому что у круглого электрода площадь соприкосновения с землей самая малая в сравнении с другими формами ИЗ. Еще одно преимущество состоит в том, что стержневые круглые электроды легче монтируются, экономится время, затрачиваемое на устройство ЗУ.
При заземлении мощных высоковольтных установок применяются контуры, состоящие из горизонтальных лучей, раскинувшихся на сотни метров и нескольких десятков вертикально установленных стержней. Чтобы искусственные заземлители не экранировали друг на друга, лучи разводят горизонтально в противоположные стороны. Если лучей 3, или 4, их располагают под углом 90 и 120 градусов соответственно.
Сопротивление искусственного заземлителя
Чтобы ЗУ эффективно выполняло свою задачу, оно должно иметь сопротивление растекания, не превышающее определенных значений. Данный параметр показывает, насколько хорошо устройство проводит электрический ток.
Для заземляемой электроустановки с напряжением 380В сопротивление искусственного заземлителя не должно превышать 30 Ом. Работающие под высоким напряжением, медицинская аппаратура, серверные блоки, системы видеонаблюдения заземляются с сопротивлением 0,5-1 Ом.
Расчет для искусственных заземлителей производится с целью определить, какое количество вертикальных и горизонтальных токопроводящих стержней должно быть смонтировано для получения оптимального сопротивления.
Что является определением понятия искусственный заземлитель?
Металлоконструкции, специально выполняемые для заземляющих цепей, характеризуются в качестве искусственного заземлителя. Используется этот вид электродов в таких случаях:
Такой структурный элемент заземления имеет определенную конфигурацию (материал, количество элементов, длина, месторасположение электродов).
Что выступает в роли искусственного заземлителя
Заземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей.
Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.
Важно! Совокупность соединенных искусственных стержней, вмонтированных в землю и объединенных с электрооборудованием при помощи проводника, образует заземляющий контур.
Искусственный заземлитель изготавливается из таких материалов:
Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип).
Элементы искусственного контура
Несмотря на то что естественные и искусственные заземлители выполняют одинаковую функцию, заключающуюся в защите от поражения электрическим током, использование первых не всегда оказывается целесообразным. Установка искусственной конструкции необходима, когда:
Вам это будет интересно Подключение проходного выключателя света по схеме
И в том, и в другом случае оптимальным решением является создание искусственной заземлительной системы с проведением предварительных расчётов. В процессе таких расчётов определяется форма, размер контура и материал, из которого будут выполнены электроды. В качестве основы для них обычно используют сталь, которая имеет покрытие:
Ещё один вариант изготовления электродов (из чёрных металлов) обладает существенным недостатком, выражающимся в низкой устойчивости к коррозии и ржавчине. Из-за высокой прочности сопротивление растеканию тока возрастает, в результате этого создаётся очень опасная для человека ситуация.
Чем отличаются вертикальные и горизонтальные заземлители
Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.
Стандартные показатели заглубления:
Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.
Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.
Искусственный заземлитель, его сопротивление, цвет, применение в электроустановках
Требование к проводам заземления
Заземляющий провод является одним из неотъемлемых элементов любой электроустановки. Его основное назначение — защита от косвенного прикосновения к частям электроустановки, находящимся под напряжением. Косвенным называется прикосновение к частям оборудования, которые в нормальных условиях не находятся под напряжением, например, корпуса двигателей, трансформаторов или даже ручка фена.
Но вследствие нарушения изоляции токоведущих частей (проводов), они могут оказаться под напряжением. Именно для защиты от таких случайностей и предназначено защитное заземление.
Что выступает в роли искусственного заземлителя
Заземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей.
Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.
Важно! Совокупность соединенных искусственных стержней, вмонтированных в землю и объединенных с электрооборудованием при помощи проводника, образует заземляющий контур.
Искусственный заземлитель изготавливается из таких материалов:
Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип).
Чем отличаются вертикальные и горизонтальные заземлители
Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.
Стандартные показатели заглубления:
Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.
Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.
Инструкция по устройству сетей заземления и молниезащите
2.1.1. В качестве естественных заземлителей рекомендуется использовать сооружения, указанные в табл. 2.
Таблица 2.
Естественные заземлители | Пояснения, требования к использованию |
Железобетонные фундаменты зданий, в том числе имеющие защитные гидроизоляционные покрытия в неагрессивных и слабоагрессивных средах | Для соединения арматуры железобетонных колонн с арматурой фундамента необходимо использовать перемычку диаметром не менее 12 мм (рис. 1). |
Соединение металлических колонн с арматурой фундамента следует выполнять по рис. 2. | |
Необходимость приварки анкерных болтов стальных колонн (арматурных стержней железобетонных колонн) к арматурным стержням железобетонных фундаментов определяется допустимой плотностью тока в приарматурном слое бетона в соответствии с ПЭУ | |
Железобетонные фундаменты технологических, кабельных, совмещенных эстакад в неагрессивных и слабоагрессивных грунтах во всех климатических зонах СССР | Металлическое соединение арматуры железобетонных опор и фундаментов не является обязательным |
Кабельные тоннели из сборного железобетона при условии установки в них закладных деталей, приваренных к арматуре тоннеля, и последующего соединения закладных деталей стальными перемычками | Допускается использовать в качестве дополнительных естественных заземлителей, если сопротивление растеканию железобетонных фундаментов производственного здания или напряжение прикосновения превышает нормы, установленные ПЭУ |
Рельсы электрифицированных железных дорог на станциях и перегонах, а также рельсы подъездных путей тяговых подстанций переменного тока | Заземляющие проводники должны присоединяться к рельсам только механическим способом без применения сварки (рис. 3). |
Рельсы кранового пути при установке крана на открытом воздухе. Стыки рельсов должны быть надежно соединены сваркой, приваркой перемычек | Рельсы должны быть присоединены к дополнительному заземлителю, располагаемому вблизи крана |
Обсадные трубы скважин | – |
Заземлители опор воздушных линий электропередачи, соединенные с заземляющим устройством электроустановки при помощи грозозащитного троса линии, если трос не изолирован от опор линии | – |
Металлические шпунты гидротехнических сооружений, водоводы, затворы и т.п. | – |
Заземлители повторных заземлений нулевых проводников воздушных линий напряжением до 1 кВ в случае использования не менее двух воздушных линий | – |
Проложенные в земле металлические трубопроводы, кроме трубопроводов канализации и центрального отопления. Запрещается применять в качестве естественных заземлителей чугунные трубопроводы и временные трубопроводы строительных площадок | Если на трубопроводах, используемых в качестве протяженных заземлителей, установлены задвижки, водомеры или болтовые фланцевые соединения, то в этих местах следует смонтировать обходные перемычки из полосовой стали сечением не менее 100 мм2. Перемычки приваривают непосредственно к трубам или хомутам, установленным на трубопроводе. |
Свинцовые оболочки кабелей, проложенных в земле. | Алюминиевые оболочки кабелей не допускается использовать в качестве заземлителей |
Оболочки кабелей могут служить единственными заземлителями при числе кабелей не менее двух |
Рис. 1. Соединение арматуры железобетонных конструкций: 1 – молниеприемная сетка; 2 – токоотвод; 3 – арматура колонны; 4 – заземляющая перемычка; 5 – арматура фундамента
Рис. 2. Соединение металлической колонны с арматурой железобетонного фундамента: 1 – арматура подошвы; 2 – арматура фундамента; 3 – фундамент; 4 – фундаментные болты (не менее двух), соединенные с арматурой фундамента; 5 – пластины для приварки проводников заземления; 6 – стальная колонна
Функции искусственного заземляющего элемента
Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.
Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.
Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.
Расположение электродов
Входящие в общую заземлительную конструкцию детали могут располагаться вертикально или горизонтально. При первом способе монтажа электроды закапываются в грунт на 70 см. При этом их длина не должна превышать 5 м, а диаметр должен находиться в диапазоне 10−16 мм.
Горизонтальный метод укладки предполагает углубление заземлителей на 50 см (в случае с пахотной землёй на — 1 м). Горизонтально расположенные стальные пруты диаметром более 1 см (либо стальные полосы толщиной более 4 мм) используются для связывания вертикально установленных элементов, стыки между ними фиксируются при помощи сварки. Такой метод показывает свою эффективность лишь при достаточной электропроводимости верхнего слоя грунта.
Правила устройства электроустановок обязывают обеспечить заземление для электрооборудования бытового и промышленного назначения. Чётких требований относительно того, как электроды должны располагаться в грунте, не существует. В каждом конкретном случае это определяется индивидуально.
Вам это будет интересно Электротехника и электроника как основа физики
Электрическая безопасность, созданная с помощью искусственных заземлителей, реализуется с помощью уменьшения разности потенциалов и отвода блуждающего тока. Ток утечки возникает вследствие взаимодействия заземляющего элемента и фазного кабеля. Одновременно обеспечивается бесперебойное и эффективное функционирование электротехники.
Как устанавливать искусственный электрод в грунт
Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:
Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.
Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.
Особенности установки
Для того чтобы искусственная заземлительная конструкция эффективно выполняла защитную функцию, она должна быть правильно установлена с применением техники и специального оборудования. При укладке двух горизонтальных электродов от заземляемой части установки их необходимо располагать в противоположном направлении. Если количество заземлителей больше двух, их монтаж требуется проводить под наклоном в 90−120 градусов. Таким образом удастся достичь улучшенного показателя сопротивляемости деталей.
В процессе установки происходит распределение электрических потенциалов. Наличие существенной разницы показателей на поверхности земли и внутри неё повлечёт за собой возникновение опасных напряжений. С целью предотвращения такой ситуации и выравнивания параметров применяется искусственный заземлительный элемент в виде сетки, когда горизонтальные электроды располагаются вдоль и поперёк, а места их пересечений фиксируются сваркой.
При таком способе укладки необходимо избегать слишком близкого расположения электродов друг к другу. Иначе возникнет экранирование, которое существенно уменьшит эффективность заземлителей.
Заземлители искусственного типа должны иметь естественный цвет, их нельзя окрашивать, поскольку это приведёт к образованию изоляционного слоя. Он ограничит протекание электричества в грунт. Покрывать битумной краской разрешается только места соединения проводников, обработанные сваркой. Такое покрытие защитит элементы от раннего разрушения.
Самой простой и эффективной (с точки зрения монтажа и эксплуатации) считается установка круглой заземлительной конструкции. Она имеет низкую себестоимость, поскольку для её изготовления требуется минимальное количество материалов. Коррозийная устойчивость круглого контура значительно выше, чем контуров другой формы.
Как определить сопротивление
Согласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов.
Факторы, которые оказывают первостепенное влияние на показатель:
Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.
Обратите внимание! Для электроустановки с напряжением в 380 В показатель сопротивления не должен превышать 30 Ом. Системы видеонаблюдения, серверные блоки и медаппаратура выполняется заземлением с сопротивлением заземляющих элементов в 0,5–1 Ом.
Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления.
Измерение сопротивления
Завершающим этапом монтажа конструкции является измерение сопротивления, которым обладают электроды. Этот параметр является главной качественной характеристикой работы заземлительного контура искусственного типа. Он зависит от таких факторов, как площадь электродов и удельное электрическое сопротивление грунта.
Вам это будет интересно Понятие и нахождение электрической мощности по формулам
Удельное сопротивление показывает уровень электропроводности грунта, выступающего в роли проводника. В разных почвах оно разное, на его величину оказывает влияние влажность, температура, состав и плотность грунта, а также наличие в нём солей, кислотных и щелочных остатков.
Проверка сопротивления установленного контура происходит с применением специальной техники. Если система содержит разветвления, то сначала делают замеры на отдельных участках магистрали и сравнивают их с показателями на участке, связанном с заземлителем. После этого снимают показания между заземляемыми электроустановками и соотносят их с показателями на ранее проверенных участках.
Основные требования
Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:
Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:
Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.
Какие требования предъявляются к искусственным заземлителям
Искусственные заземлители не подлежат окрашиванию, так как окраска играет роль изолятора и препятствует отведению электротока в землю. Таким образом, цвет заземлителя должен быть естественным, которым обладает применяемый в заземляющих устройствах, металл. Но места соединения проводников (сварочные швы) должны быть окрашены битумной краской, для предотвращения разрушения.
Нельзя размещать искусственные или применять естественные заземлители вблизи источников тепла, которые сушат землю. Для засушливых территорий существует особая железобетонная конструкция. Заземлитель делают в форме емкости, и помещают ниже поверхности земли. Емкость заполняют водой через люк. Таким образом, в заземлении принимает участие водораспределительная система. Стальные электроды соединены с выводом из емкости. Так обеспечивается оптимальное сопротивление.
Для создания искусственных заземлителей используются следующие материалы с указанными параметрами:
Только для временных электроустановок можно применять электроды с минимальными значениями. Чтобы заземляющее устройство служило 40-50 лет в благоприятных грунтовых условиях, достаточно выбрать стержни для него на 2-3 мм больше. Во влажных грунтах толщина и диаметры ЗУ должны быть в 2 раза выше минимального.
Из всех названых материалов наиболее оптимальным признано использование круглой арматуры, поскольку расход металла в этом случае снижается в 1,5 раза, уменьшается соответственно и себестоимость заземляющих устройств.
Коррозионная стойкость у круглой стали выше, чем у линейной, потому что у круглого электрода площадь соприкосновения с землей самая малая в сравнении с другими формами ИЗ. Еще одно преимущество состоит в том, что стержневые круглые электроды легче монтируются, экономится время, затрачиваемое на устройство ЗУ.
При заземлении мощных высоковольтных установок применяются контуры, состоящие из горизонтальных лучей, раскинувшихся на сотни метров и нескольких десятков вертикально установленных стержней. Чтобы искусственные заземлители не экранировали друг на друга, лучи разводят горизонтально в противоположные стороны. Если лучей 3, или 4, их располагают под углом 90 и 120 градусов соответственно.
Как подбираются размеры искусственных электродов
Все параметры основной конфигурации проводников в обязательном порядке должны соответствовать нормативным требованиям профильной документации, в частности ГОСТ Р 50571.5.54-2013.
Правильно подобранные материалы и размеры электродов, применение оптимальной вариации производства такого электромонтажа — основные рабочие моменты заземления, которые влияют на качество работы заземлителя.
Искусственный электрод обладает важным эксплуатационным преимуществом, обусловленным принципом монтажа. Такой вид чаще монтируется глубоко в грунт. За счет грунтовых вод уменьшается показатель удельного сопротивления материала. Итог — реализация оптимальной характеристики и стабильности конечного сопротивления заземлителя.
Исполнительная документация
ЗАЗЕМЛИТЕЛЬ — проводящая часть (или совокупность соединенных между собой проводящих частей), находящаяся в контакте с землей непосредственно или через промежуточную проводящую среду.
1.7.109. В качестве естественных заземлителей могут быть использованы: 1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах; 2) металлические трубы водопровода, проложенные в земле; 3) обсадные трубы буровых скважин; 4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т.п.; 5) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами; 6) другие находящиеся в земле металлические конструкции и сооружения; 7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.
1.7.110. Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с 1.7.82. Не следует использовать в качестве заземлителей железобетонные конструкции зданий и сооружений с предварительно напряженной арматурой, однако это ограничение не распространяется на опоры ВЛ и опорные конструкции ОРУ. Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций, приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность использования фундаментов в сильноагрессивных средах должны быть определены расчетом.
1.7.111. Искусственные заземлители могут быть из черной или оцинкованной стали или медными. Искусственные заземлители не должны иметь окраски. 1.7.112. Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ следует выбирать по условию термической стойкости при допустимой температуре нагрева 400 °С (кратковременный нагрев, соответствующий времени действия защиты и отключения выключателя). В случае опасности коррозии заземляющих устройств следует выполнить одно из следующих мероприятий: увеличить сечения заземлителей и заземляющих проводников с учетом расчетного срока их службы; применить заземлители и заземляющие проводники с гальваническим покрытием или медные. При этом следует учитывать возможное увеличение сопротивления заземляющих устройств, обусловленное коррозией. Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора. Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п.
Источник: Правила устройства электроустановок (ПУЭ) издание седьмое.
Смотрите состав исполнительной в разделе: «Состав исполнительной»
Скачивайте акты, протокола и другое в разделе: «Акты и прочее»
Скачивайте полезные книги, ГОСТы, СнИПы в разделе: «ГОСТы и книги«
Искусственный заземлитель: виды, функции, требования и установка
Металлоконструкции, специально выполняемые для заземляющих цепей, характеризуются в качестве искусственного заземлителя. Используется этот вид электродов в таких случаях:
Такой структурный элемент заземления имеет определенную конфигурацию (материал, количество элементов, длина, месторасположение электродов).
Функции искусственного заземляющего элемента
Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.
Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.
Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.
Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:
Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.
Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.
Как определить сопротивление
Согласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов.
Факторы, которые оказывают первостепенное влияние на показатель:
Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.
Обратите внимание! Для электроустановки с напряжением в 380 В показатель сопротивления не должен превышать 30 Ом. Системы видеонаблюдения, серверные блоки и медаппаратура выполняется заземлением с сопротивлением заземляющих элементов в 0,5–1 Ом.
Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления.
Основные требования
Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:
Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:
Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.
Что Является Определением Понятия Искусственный Заземлитель Ответ Особенности установки
Основные части конструкции
Система представляет собой устройство с простой конструкцией, состоящей из следующих элементов:
Штыри являются каркасом, использующимся для соединения заземлительных клемм аппаратуры с соответствующей шиной и выполняющих роль проводников электрической энергии. Как правило, они вбиваются в землю на глубину от 2 до 3 метров. Совместно с шиной штыри образуют так называемую металлосвязь.
Металлосвязь — это обязательный элемент, расположенный в любом жилом доме, который представляет собой железную сварную конструкцию, соединяющую друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.
В соответствии с приложением 3 пт.26 ПТЭЭП правилами технической эксплуатации электроустановок потребителей, измерение сопротивления металлической связи осуществляется со следующей периодичностью:
Для проведения измерения используются клеммы заземления электроустановки и наиболее удалённый наземный контур. Проверка сопротивления производится на каждом участке линии и значение этого параметра на каждом участке не должно быть больше 0,1 Ом.
Искусственный заземлитель: виды, функции, требования и установка
Преимущества и недостатки устройств заземления
Использование фундамента как естественного заземлителя
Сегодня применение заземлителей на железобетонных фундаментах зданий возможно лишь при влажности грунта не более 3%. На сооружения могут воздействовать исключительно слабоагрессивные либо неагрессивные вещества.
Использование труб как естественного заземлителя
Если же за основу взят заземлитель трубопровода, то подключение производится на задвижке трубы через перемычку. Использование канализационной трубы как заземлителя крайне нежелательно, поскольку будет иметь место слабый электрический контакт в стыках металлоконструкции.
В качестве заземлительного проводника нельзя использовать водопроводные трубы или трубы, предназначенные для отопления. В трубопроводе могут присутствовать нетокопроводящие вставки, следовательно, это нарушит электроконтакт. Также на плохую электропроводность влияет коррозия.
Элементы искусственного контура
Несмотря на то что естественные и искусственные заземлители выполняют одинаковую функцию, заключающуюся в защите от поражения электрическим током, использование первых не всегда оказывается целесообразным. Установка искусственной конструкции необходима, когда:
Ещё один вариант изготовления электродов (из чёрных металлов) обладает существенным недостатком, выражающимся в низкой устойчивости к коррозии и ржавчине. Из-за высокой прочности сопротивление растеканию тока возрастает, в результате этого создаётся очень опасная для человека ситуация.
Заземление: что это простыми словами, определение понятия
Чем отличаются вертикальные и горизонтальные заземлители
Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.
Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.
Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.
Что Является Определением Понятия Искусственный Заземлитель Ответ
1.7.1. Настоящая глава Правил распространяется на все электроустановки переменного и постоянного тока напряжением до 1 кВ и выше и содержит общие требования к их заземлению и защите людей и животных от поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции.
Дополнительные требования приведены в соответствующих главах ПУЭ.
1.7.2. Электроустановки в отношении мер электробезопасности разделяются на:
электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью (см. 1.2.16);
электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;
электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;
электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.
1.7.3. Для электроустановок напряжением до 1 кВ приняты следующие обозначения:
система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;
система TN-C — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 1.7.1) ;
система TN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 1.7.2);
система TN-C-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис. 1.7.3);
система IT-система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 1.7.4);
система TT — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника (рис. 1.7.5).
Первая буква — состояние нейтрали источника питания относительно земли:
Вторая буква — состояние открытых проводящих частей относительно земли:
T — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.
Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:
S — нулевой рабочий (N) и нулевой защитный (PE) проводники разделены;
C — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник);
Заземление что такое | Режимщик
Что такое зануление
При грамотно налаженной защите появление фазного напряжения на заземленном корпусе любого прибора должно приводить к отключение автоматического выключателя или УЗО в электрощите. Таким образом, заземление позволяет отключить электроприбор от сети при возникновении неисправностей опасных для человека.
Из чего состоит система?
Как выглядит заземление на практике
Наружные части заземления (шины, провода, кабели) имеют отличную от основной электрической цепи окраску. На них нанесены чередующиеся между собой жёлто-зелёные полосы. Как у любого устройства, у заземления имеются свои критерии качества. Главным является сопротивление и чем оно будет меньше тем соответственно лучше. Его можно улучшить несколькими способами:
Так как ток всегда протекает по пути наименьшего сопротивления, а эти методы его снижают, то качество заземления повышается, обеспечивая более качественную защиту.
Заземление
Заземлением какой-либо части электроустановки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности, то есть защиты людей от поражения электрическим током при повреждении изоляции.
Заземляющим устройством называется совокупность заземлителя и заземляющих проводников.
Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
Искусственным заземлителем называется заземлитель, специально выполняемый для целей заземления.
Естесственным заземлителем называются находящиеся в соприкосновении с землей электропроводящие части коммуникаций, зданий и сооружений производственного или иного назначения, используемые для целей заземления.
Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.
Зоной растекания называется область земли, в пределах которой возникает градиент потенциала при стекании тока с заземлителя.
Зоной нулевого потенциала называется зона земли за пределами зоны растекания.
Напряжением на заземляющем устройстве называется напряжение, возникающее при стекании тока с заземлителя в земля между точкой ввода тока в заземляющее устройство и зоной нулевого потенциала.
Напряжением прикосновения называется напряжение между двумя точками цепи тока замыкания на землю (корпус) при одновременном прикосновении к ним человека.
Напряжением шага называется напряжение между двумя точками земли, обусловленное растеканием тока замыкания на землю, при одновременном касании их ногами человека.
Током замыкания на землю называется ток, стекающий в землю через место замыкания.
Сопротивлением заземляющего устройства называется отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.
Для выполнения заземления используют естественные и искусственные заземлители.
В качестве естественных заземлителей могут быть использованы заземлители опор воздушных ЛЭП, соединенные с ЗУ грозозащитным тросом, металлические оболочки кабелей, проложенные в земле водопроводные и другие металлические трубы (кроме трубопроводов горючих жидкостей и газов).
Что Является Определением Понятия Искусственный Заземлитель • Измерение сопротивления
Основные части конструкции
Система представляет собой устройство с простой конструкцией, состоящей из следующих элементов:
Штыри являются каркасом, использующимся для соединения заземлительных клемм аппаратуры с соответствующей шиной и выполняющих роль проводников электрической энергии. Как правило, они вбиваются в землю на глубину от 2 до 3 метров. Совместно с шиной штыри образуют так называемую металлосвязь.
Металлосвязь — это обязательный элемент, расположенный в любом жилом доме, который представляет собой железную сварную конструкцию, соединяющую друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.
В соответствии с приложением 3 пт.26 ПТЭЭП правилами технической эксплуатации электроустановок потребителей, измерение сопротивления металлической связи осуществляется со следующей периодичностью:
Для проведения измерения используются клеммы заземления электроустановки и наиболее удалённый наземный контур. Проверка сопротивления производится на каждом участке линии и значение этого параметра на каждом участке не должно быть больше 0,1 Ом.
Когда устройство искусственных заземлителей оказывается на пахотной земле, все электроды должны размещаться на глубине не менее 1 метра. Это позволяет увеличить контакт с грунтом.
Из какого материала должны изготавливаться искусственные заземлители?
Преимущества и недостатки устройств заземления
Использование фундамента как естественного заземлителя
Сегодня применение заземлителей на железобетонных фундаментах зданий возможно лишь при влажности грунта не более 3%. На сооружения могут воздействовать исключительно слабоагрессивные либо неагрессивные вещества.
Использование труб как естественного заземлителя
Если же за основу взят заземлитель трубопровода, то подключение производится на задвижке трубы через перемычку. Использование канализационной трубы как заземлителя крайне нежелательно, поскольку будет иметь место слабый электрический контакт в стыках металлоконструкции.
В качестве заземлительного проводника нельзя использовать водопроводные трубы или трубы, предназначенные для отопления. В трубопроводе могут присутствовать нетокопроводящие вставки, следовательно, это нарушит электроконтакт. Также на плохую электропроводность влияет коррозия.
Нормативная часть
Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством. [1] п.1.7.28.
Защитное заземление – заземление, выполняемое в целях электробезопасности. [1].п. 1.7.29.
Работа электрических сетей напряжением 2-35кВ может предусматриваться как с изолированной нейтралью, так и с нейтралью, заземленной через дугогасящий реактор или резистор.
Работа электрических сетей напряжением 110кВ может предусматриваться как с глухозаземленной, так и с эффективно заземленной нейтралью.
Электрические сети напряжением 220кВ и выше должны работать только с глухозаземленной нейтралью.[1] п. 1.2.16.
Искусственный заземлитель – заземлитель, специально выполняемый для целей заземления.[12] п.1.7.16.
Естественный заземлитель – сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемую для целей заземления.[1] п.1.7.17.
Заземляющие устройства электроустановок напряжением выше 1кВ в сетях с эффективно заземленной нейтралью следует выполнять с соблюдением требований либо к их сопротивлению либо к напряжению прикосновения, а также с соблюдением требований к конструктивному выполнению.[1] п.1.7.88.
Для исключения электрической связи внешней ограды с заземляющим устройством расстояние от ограды до элементов заземляющего устройства, расположенных вдоль нее с внутренней, внешней или с обеих сторон, должно быть не менее 2м.[1] п.1.7.93.
Заземляющее устройство, которое выполняется с соблюдением требований к его сопротивлению, должно иметь в любое время года сопротивление не более 0,5 Ом с учетом сопротивления естественных и искусственных заземлителей. [1] п.1.7.90.
Горизонтальные заземлители следует прокладывать по краю территории, занимаемой заземляющим устройством так, чтобы они в совокупности образовывали замкнутый контур на глубине 0,5 – 0,7 м. Вертикальные заземлители должны быть длиной 3 – 5м. [1] п.1.7.90.
Считается, что сопротивления естественных и искусственных заземлителей взаимодействуют параллельно.
Если заземляющее устройство используется одновременно для электроустановок до 1кВ и выше 1кВ то при выборе его сопротивления должны учитываться тебования для обоих диапазонов напряжения с учетом режима электрической нейтрали.
Искусственные заземлители могут быть из черной или оцинкованной стали или медными.
Материал и наименьшие размеры заземлителей должны соответствовать приведенным в табл. 1.7.4. [1] п.1.7.111.
a) Определим необходимое сопротивление искусственного заземлителя с учетом использования естественных заземлителей.
Где — сопротивление искусственного заземлителя, Ом;
— сопротивление естественного заземлителя, Ом;
Что является заземлителем: определение, типы и принцип работы заземляющего устройства
Заземление посредством железобетонного фундамента
Выбор такой конструкции в качестве заземлителя можно осуществить лишь при соответствии физических основ фундамента (гидрофильность бетона) с количественными показателями влажности грунта.
Допускается реализация такого технологического варианта заземления только при условии наличия влажности грунта, на котором находится объект, свыше 3 %. Меньший показатель такой характеристики почвы отразится на гидрофильности бетона: произойдет мощное электрическое сопротивление, железобетонная конструкция потеряет свойства заземлителя.
Естественный заземлитель посредством железобетонного фундамента практичнее применять при таких условиях:
Нормативная стандартизация применения такого типа заземлителя предусматривает варианты, когда его запрещено использовать в системе заземления объекта.
Из какого материала должны изготавливаться искусственные заземлители: отличия искусственных и естественных
Описание защиты
Сборный железобетонный фундамент обладает хорошими структурными характеристиками как по прочности конструкции, так и по долговечности. Подводить заземляющий проводник к такому фундаменту не запрещено.
Главное — произвести правильное соединение элементов конструкции. Скрепив между собой арматуру соседних блоков, можно удостовериться в надежности конструкции, а потом приступить к производству заземляющего устройства.
Если выполнить такое соединение нет возможности, лучше прибегнуть к применению искусственного заземлителя. Производить соединения такого типа конструкций нужно с учетом профильной стандартизации производства таких работ.
Виды заземления и их назначение
Рассмотрим виды заземления в электроустановках с их основными чертами в таблице.
Не пользуйтесь трубами водопровода, отопления, газа в качестве защитного заземления! Так же как и части оградительных конструкций из металла, они провоцируют при аварийной ситуации появление полного напряжения 220V на своих элементах, что несет угрозу здоровью и жизни человека и животных.
Что такое электролитическое заземление?
Функции искусственного заземляющего элемента
Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.
Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.
Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.
Глухое погружение нейтрали
Системы заземления разделяют на две большие группы: с глухо заземленной нейтралью и с изолированной. В схеме первого типа нейтральный проводник (обозначается N) всегда заземлен и может быть независимым от защитного PE-проводника, а может соединяться с ним, образуя PEN-проводник.
Применение системы TN-C
Применение системы TN-S
Система TN-S более совершенна, обладает высокой степенью электробезопасности, так как имеет отдельный заземленный проводник, но стоимость ее неоправданно высока. При трехфазном питании приходится прокладывать от источника пять проводов – три фазы, нейтраль и защитный проводник PE.
Тип заземления ТТ
Разновидности конструкций
Как устанавливать искусственный электрод в грунт
Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:
Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.
Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.
Принцип работы
Нормативы электробезопасности требуют, чтобы в любом доме было установлено защитное заземление и молниезащита. Монтаж заземления в частных домах на порядок проще, чем в многоквартирных. Как грамотно его сделать и провести измерения сопротивления, читайте в статье.
Если в корпусе возникает пробой, благодаря заземлению большая часть тока уйдет по заземляющей части. Вместе с проводниками заземлитель образует заземляющее устройство. Есть несколько типов заземления:
Также заземлители можно разделить на естественные и искусственные. Естественные – это металлоконструкции здания, трубопроводы. Искусственные – специально монтируемые конструкции (стальные полосы, уголковая сталь и другие).
Есть единая классификация систем заземления электроустановок до 1 кВ, принятая почти во всем мире. Согласно ей, в оборудованиях с напряжением до 1 кВ используются три системы заземления: TN, TT, IT.
По правилам эксплуатации электроустановок, заземление и зануление должно присутствовать в двух случаях:
Установка заземления в частных домах регламентируется такими нормативными документами и перед сдачей здания в эксплуатацию понадобиться сделать измерения сопротивления заземляющих устройств:
Видео «Защитное заземление в частном доме»
Внутреннее защитное заземление – это отдельные проводники, идущие от мощных энергоустановок. Они соединяются в шину внутри щита. Медный кабель соединяют шину и пластину болтовым соединением.
Сначала надо определиться со схемами заземления. В настоящее время используют два вида схем:
Приведем пошаговую инструкцию, как сделать монтаж защитного заземления. Перед монтажом понадобится набор следующих инструментов и оборудования: штыковая лопата, сварочный аппарат, болгарка, перфоратор, гаечные ключи и кувалда. Из материалов надо подготовить:
Видео «Защитное заземление в частном доме»
Виды заземления
В классификации видов заземления присутствует два основных его вида:
Есть и несколько подгрупп: радиозаземление, измерительное, инструментальное, контрольное.
Существует определенная категория электрических установок, которые не будут работать, если их не заземлить. То есть, основанная цель сооружения заземляющей системы – это необеспечение безопасности эксплуатации, это обеспечение самой эксплуатации. Поэтому в этой статье данный вид нас интересовать не будет.
А вот этот вид специально устраивается с целью обеспечить безопасность работы электроустановок. Он делится на три категории в зависимости от назначения:
Вот почему, чтобы устранить такие ситуации и устанавливается заземление корпуса на контур, расположенный в земле. При этом срабатывание заземляющей схемы – это толчок для системы автоматов, которые тут же отключают подачу электроэнергии к оборудованию. Все это располагается в специальных силовых и распределительных щитах.
Сопротивление заземлению
Есть такой термин, как сопротивление растеканию тока. Для простых обывателей легче будет воспринимать, как сопротивление заземлению. Вся суть этого термина заключается в том, что схема заземления должна работать корректно с определенными параметрами. Так вот сопротивление является основным из них.
Оптимальный вариант этого значения – ноль. То есть, лучше всего использовать материалы для сборки контура, у которых электропроводность самая высокая. Конечно, добиться идеала никак не получится, поэтому старайтесь выбирать именно те, у которых сопротивление самое низкое. К ним относятся все металлы.
Есть специальные коэффициенты, с помощью которых производится определение показателя сопротивления заземляющего контура, эксплуатируемого в разных условиях. К примеру:
Внимание! Если используется заземляющий контур через нейтраль трансформатора, то сопротивление заземляющей цепи должно быть не больше 4 Ом.
То есть, получается так, что чем больше мощность силы тока внутри оборудования или приборов, тем ниже должно быть сопротивление.
Главное — произвести правильное соединение элементов конструкции. Скрепив между собой арматуру соседних блоков, можно удостовериться в надежности конструкции, а потом приступить к производству заземляющего устройства.
Естественные и искусственные заземлители
Металлоконструкции, специально выполняемые для заземляющих цепей, характеризуются в качестве искусственного заземлителя. Используется этот вид электродов в таких случаях:
Такой структурный элемент заземления имеет определенную конфигурацию (материал, количество элементов, длина, месторасположение электродов).
Что выступает в роли искусственного заземлителя
Заземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей.
Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.
Важно! Совокупность соединенных искусственных стержней, вмонтированных в землю и объединенных с электрооборудованием при помощи проводника, образует заземляющий контур.
Искусственный заземлитель изготавливается из таких материалов:
Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип).
Назначение и характеристики искусственного заземлителя
Если коротко ответить на вопрос, что является определением понятия искусственного заземлителя, можно сказать, что это проводящий элемент, напрямую контактирующий с землей.
Элементов может быть несколько, и контакт может осуществляться посредством промежуточной среды, проводящей электрический ток.
От естественного заземления искусственное приспособление отличается тем, что сделано специально с применением расчетов и должной подготовки.
Основные функции
В электротехнике используются такие понятия, как заземление рабочее и защитное. Рабочее заземление применяется с целью обеспечения эффективной и бесперебойной работы установки.
Молниеотводы, защищающие электроустановки от небесного электричества и воспламенений, также принадлежат к категории рабочих, поскольку в этом случае заземление никак не ограждает от поражений электрическим током.
Для защиты человека от электротока или удара молнией применяется защитное заземление. Другими словами, защитное заземление выполняется с целью снизить напряжение прикосновения до безопасного уровня.
Это особенно важно на электрооборудовании с высоким, опасным для жизни напряжением. Заземлитель является частью заземляющего устройства (заземления, ЗУ). Он плотно контактирует с грунтом.
Один его конец подключен к электроприбору, благодаря чему происходит выравнивание потенциалов прибора и земли, и это защищает от удара током.
Согласно пункту 1.7.28 ПУЭ, заземлением является преднамеренно выполненное электрическое соединение точки электросети, электроустановки или оборудования с заземляющим устройством. Заземление подключают на всех электроустановках.
Расположение в грунте
Искусственное заземление применяется там, где нет возможности воспользоваться естественным заземлением, либо когда токовые нагрузки на естественные заземлители превышают допустимые нормы.
Искусственные заземляющие устройства изготавливаются из стальных конструкций, но если в почвах превышена кислотность, или напротив, она подвержена ощелачиванию, применяются ЗУ из меди или оцинкованного металла.
По форме и структуре искусственный заземлитель похож на классический электрод. Чаще, это стержень, выполненный из стальной полосы или круглого прута. По типу расположения существуют 2 основных вида ЗУ. В горизонтальном типе заземлители укладывают по периметру фундамента на дне траншеи.
Вертикальные заземлители делают из стержней диаметром 12-15 мм и длиной до 4-5 метров. Их забивают в грунт на глубину 0,5-0,7 м.
Допускается расположение искусственных заземлителей под некоторым углом, и тогда понятия вертикальный или горизонтальный становится условным.
Наклонное расположение применяют в том случае, если стена строения расположена под углом к вертикали. Наклон не сказывается существенным образом на выполняемых функциях устройства.
В заземлении электроустановок с высоким напряжением используются так называемые сложные заземлители, в которых вертикальные элементы соединены с горизонтальными.
Когда устройство искусственных заземлителей оказывается на пахотной земле, все электроды должны размещаться на глубине не менее 1 метра. Это позволяет увеличить контакт с грунтом.
Какие требования предъявляются к искусственным заземлителям
Искусственные заземлители не подлежат окрашиванию, так как окраска играет роль изолятора и препятствует отведению электротока в землю. Таким образом, цвет заземлителя должен быть естественным, которым обладает применяемый в заземляющих устройствах, металл. Но места соединения проводников (сварочные швы) должны быть окрашены битумной краской, для предотвращения разрушения.
Нельзя размещать искусственные или применять естественные заземлители вблизи источников тепла, которые сушат землю. Для засушливых территорий существует особая железобетонная конструкция.
Заземлитель делают в форме емкости, и помещают ниже поверхности земли. Емкость заполняют водой через люк. Таким образом, в заземлении принимает участие водораспределительная система. Стальные электроды соединены с выводом из емкости.
Так обеспечивается оптимальное сопротивление.
Для создания искусственных заземлителей используются следующие материалы с указанными параметрами:
Только для временных электроустановок можно применять электроды с минимальными значениями. Чтобы заземляющее устройство служило 40-50 лет в благоприятных грунтовых условиях, достаточно выбрать стержни для него на 2-3 мм больше. Во влажных грунтах толщина и диаметры ЗУ должны быть в 2 раза выше минимального.
Из всех названых материалов наиболее оптимальным признано использование круглой арматуры, поскольку расход металла в этом случае снижается в 1,5 раза, уменьшается соответственно и себестоимость заземляющих устройств.
Коррозионная стойкость у круглой стали выше, чем у линейной, потому что у круглого электрода площадь соприкосновения с землей самая малая в сравнении с другими формами ИЗ. Еще одно преимущество состоит в том, что стержневые круглые электроды легче монтируются, экономится время, затрачиваемое на устройство ЗУ.
При заземлении мощных высоковольтных установок применяются контуры, состоящие из горизонтальных лучей, раскинувшихся на сотни метров и нескольких десятков вертикально установленных стержней. Чтобы искусственные заземлители не экранировали друг на друга, лучи разводят горизонтально в противоположные стороны. Если лучей 3, или 4, их располагают под углом 90 и 120 градусов соответственно.
Сопротивление искусственного заземлителя
Чтобы ЗУ эффективно выполняло свою задачу, оно должно иметь сопротивление растекания, не превышающее определенных значений. Данный параметр показывает, насколько хорошо устройство проводит электрический ток.
Для заземляемой электроустановки с напряжением 380В сопротивление искусственного заземлителя не должно превышать 30 Ом. Работающие под высоким напряжением, медицинская аппаратура, серверные блоки, системы видеонаблюдения заземляются с сопротивлением 0,5-1 Ом.
Расчет для искусственных заземлителей производится с целью определить, какое количество вертикальных и горизонтальных токопроводящих стержней должно быть смонтировано для получения оптимального сопротивления.
Чем отличаются вертикальные и горизонтальные заземлители
Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.
Стандартные показатели заглубления:
Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.
Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.
Разновидности систем искусственного заземления
По этой характеристике, виды заземляющих устройств подразделяют:
Разберем каждое из них подробнее.
Выносное устройство
При этом типе, расположение заземлителя производится за пределами помещения. Выносное (сосредоточенное) защитное устройство монтируют при невозможности оснащения контура на участке со скальным, каменистым грунтом, либо при наличии за участком наиболее подходящего для заземления качества земли.
Разброс производственного оборудования на значительном расстоянии друг от друга – это еще одна причина установки выносной системы.
К преимуществу этого типа, относят возможность выбора места установки с лучшими свойствами грунтов, с малым уровнем сопротивления. К таким грунтам относят – глинистый или песчаный влажный грунт. Но есть у способа существенный минус. Значение коэффициента касания проводника равно 1, из-за удаленности от производственных объектов.
Такой вид защиты монтируют для обслуживания объектов с малыми токами короткого замыкания (не более кВ). Потенциальное напряжение при касании поврежденного участка цепи не меньше потенциала заземлителей.
Контурное устройство
Заземляющие электроды располагаются равномерно, по границам контура обслуживаемого участка и на нем самом. Поэтому, второе название этого типа – распределенное.
При таком способе установки заземлителей, безопасность использования приборами обеспечивается понижением потенциалов на каждом заземлителе и потенциалы их выравниваются. Такой метод позволяет понижать пиковый ток КЗ. Одиночнорасположенные на территории контура заземлители позволяют решать эту проблему.
Каждый метод заземления, при долгой эксплуатации, может повысить сопротивление контура. Для раннего обнаружения неисправности, необходимо периодически осматривать контур и подтягивать гайки на креплении проводов.
Обустройство повторного заземления
Данный метод позволяет понижать опасное для человека значение тока замыкания и других повреждений проводки и электрических приборов. При этом, повторное заземление – это отдельно расположенная и независимая от основного контура система заземлителей.
Установка предусматривает срабатывание в аварийной ситуации ближайшего автомата защиты. Наиболее часто, повторным способом, обустраивается старое здание с устаревшей двухжильной алюминиевой проводкой. Проводку ведут к каждому потребителю от места сварки концевого контакта на основании контура. На корпус щита провода закреплены с помощью болтов и гаек с гроверами.
Особенности рабочего заземления
Является специальным соединением нескольких точек электроцепи с грунтом. Таковыми могут быть нейтральные точки измерительных подстанций и обмоток генераторов. Решение не направлено на достижение безопасности людей, а обеспечивает стабильное функционирование электроприборов. Причем независимо от условий работы (стандартные или аварийные).
Для реализации такового части установки соединяются с почвой посредством проводника. Иногда выполняется с помощью специализированных приспособлений. Ими могут быть резисторы или пробивные предохранители.
← Предыдущая статья Следующая статья →
Виды заземления в зависимости от подведения проводки
До проведения работ по электропроводке здания, необходимо сделать выбор способа подключения к внутридомовой сети провода земли и вида контура защиты. Приведем расшифровку аббревиатур, применяемых в названии видов подводки кабеля:
Принята мировая система заземления, в которую входят три основных вида.
IT- система
Практически неприменяемая система в жилищном строительстве. При ней используют сопротивление с большим номиналом или через воздушную прослойку. Применяется этот вид заземления в лабораторных и лечебных помещениях. Служит для обеспечения большого уровня защиты для оборудования и приборов, требующих при обслуживании значительного уровня безопасности и стабильности.
По правилам ПУЭ, для частного хозяйственного строительства, можно использовать систему с независимыми заземлителями.
Система ТТ
Провода подводят к щитовой, на вводе в здание с двумя заземлителями. Наиболее часто применяют для обслуживания систем источников напряжения в сети и на металлическом покрытии системы без изоляции. Значительные показатели работы нулевой проводки на расстоянии от трансформаторов тока до потребителя электроэнергии.
При монтаже может возникнуть сложность, связанная с подбором диаметра проводки для обеспечения безопасности самого заземления. Для этих целей в данный вид подведения провода, устанавливается система отключения.
TN-система
Это, наиболее распространенный вид проведения заземляющего проводника с заземлением нейтрального провода, позволяет подключать к нейтрали всех потребителей тока данного здания.
Подключается все оборудование к заземлению через провода ноля. Все токопроводящие корпуса оборудование и приборы в электрощитовых и других потребителей, при коротком замыкании на корпуса, выключаются от сети с помощью автоматов и предохраняют человека, находящегося в помещении от поражения электротоком.
Она подразделяется на следующие виды:
При использовании медных многожильных проводников в проводке старого здания, не оснащенного защитным контуром, появляется оснастить электросеть надежной защитой.
Электроустановки системы TN
Существуют три системы TN-C, TN-C-S и TN-S. Про каждую из этих систем можно сказать – это система TN. Безусловно, не существует четвертой отдельной системы TN.
Система TN своим буквенным обозначением T поясняет что нейтраль источника электроэнергии глухо заземлена. А корпуса электроприемников соединяются с нейтралью этого источника N. То есть зануляются. Различия в системах показаны с помощью последующих букв. Буквы означают, как именно занулены корпуса электроприемников. А также и другие их электропроводящие части.
Функции искусственного заземляющего элемента
Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.
Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.
Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.
Проверка цепи между заземлителями и заземленными элементами
Контроль заземления включает следующие этапы:
Существует несколько их разновидностей:
Приборы отличаются диапазоном показателей, уровнем помехоустойчивости, областью применения, частотой измерительного тока и прочими параметрами.
Проверка электроцепи заземленный объект – заземлитель осуществляется после:
Для некоторых электроустановок предписывается проверять наличие цепи с определенной периодичностью (точные сроки указаны в нормативных документах).
От правильности выбора и эксплуатации заземлителя зависит безопасность персонала, работающего с электроустановкой. К настоящему моменту разработаны конструкции для любых условий, эффективно работающие даже в грунтах с самой низкой проводимостью.
Как устанавливать искусственный электрод в грунт
Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:
Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.
Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.
Разновидности конструкций
Применение неправильно подключённых электроприборов может быть небезопасным. Опасность состоит в том, что в процессе использования может случиться пробой, в результате которого напряжение перейдёт на корпус устройства. Это напряжение может как вывести из строя сам прибор, так и нанести человеку электротравму разной степени тяжести (вплоть до летального исхода). Для предотвращения подобных проблем могут быть использованы два вида заземления:
Во всех современных устройствах, работающих за счёт электроэнергии, предусмотрено заземление. Всё, что требуется сделать — просто обеспечить соединение с основной заземлительной системой.
Как определить сопротивление
Согласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов.
Факторы, которые оказывают первостепенное влияние на показатель:
Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.
Обратите внимание! Для электроустановки с напряжением в 380 В показатель сопротивления не должен превышать 30 Ом. Системы видеонаблюдения, серверные блоки и медаппаратура выполняется заземлением с сопротивлением заземляющих элементов в 0,5–1 Ом.
Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления.
Измерение сопротивления
Завершающим этапом монтажа конструкции является измерение сопротивления, которым обладают электроды. Этот параметр является главной качественной характеристикой работы заземлительного контура искусственного типа. Он зависит от таких факторов, как площадь электродов и удельное электрическое сопротивление грунта.
Вам это будет интересно Расчёт и таблицы подбора сечения кабеля по мощности и току
Удельное сопротивление показывает уровень электропроводности грунта, выступающего в роли проводника. В разных почвах оно разное, на его величину оказывает влияние влажность, температура, состав и плотность грунта, а также наличие в нём солей, кислотных и щелочных остатков.
Проверка сопротивления установленного контура происходит с применением специальной техники. Если система содержит разветвления, то сначала делают замеры на отдельных участках магистрали и сравнивают их с показателями на участке, связанном с заземлителем. После этого снимают показания между заземляемыми электроустановками и соотносят их с показателями на ранее проверенных участках.
Основные требования
Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:
Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:
Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.
Как подбираются размеры искусственных электродов
Все параметры основной конфигурации проводников в обязательном порядке должны соответствовать нормативным требованиям профильной документации, в частности ГОСТ Р 50571.5.54-2013.
Правильно подобранные материалы и размеры электродов, применение оптимальной вариации производства такого электромонтажа — основные рабочие моменты заземления, которые влияют на качество работы заземлителя.
Искусственный электрод обладает важным эксплуатационным преимуществом, обусловленным принципом монтажа. Такой вид чаще монтируется глубоко в грунт. За счет грунтовых вод уменьшается показатель удельного сопротивления материала. Итог — реализация оптимальной характеристики и стабильности конечного сопротивления заземлителя.
Требования к заземляющим проводникам: стационарным и временным
Требование к проводам заземления
Заземляющий провод является одним из неотъемлемых элементов любой электроустановки. Его основное назначение — защита от косвенного прикосновения к частям электроустановки, находящимся под напряжением. Косвенным называется прикосновение к частям оборудования, которые в нормальных условиях не находятся под напряжением, например, корпуса двигателей, трансформаторов или даже ручка фена.
Но вследствие нарушения изоляции токоведущих частей (проводов), они могут оказаться под напряжением. Именно для защиты от таких случайностей и предназначено защитное заземление.
Что выступает в роли искусственного заземлителя
Заземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей.
Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.
Важно! Совокупность соединенных искусственных стержней, вмонтированных в землю и объединенных с электрооборудованием при помощи проводника, образует заземляющий контур.
Искусственный заземлитель изготавливается из таких материалов:
Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип).
Разновидности конструкций
Применение неправильно подключённых электроприборов может быть небезопасным. Опасность состоит в том, что в процессе использования может случиться пробой, в результате которого напряжение перейдёт на корпус устройства. Это напряжение может как вывести из строя сам прибор, так и нанести человеку электротравму разной степени тяжести (вплоть до летального исхода). Для предотвращения подобных проблем могут быть использованы два вида заземления:
Во всех современных устройствах, работающих за счёт электроэнергии, предусмотрено заземление. Всё, что требуется сделать — просто обеспечить соединение с основной заземлительной системой.
Чем отличаются вертикальные и горизонтальные заземлители
Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.
Стандартные показатели заглубления:
Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.
Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.
Инструкция по устройству сетей заземления и молниезащите
2.1.1. В качестве естественных заземлителей рекомендуется использовать сооружения, указанные в табл. 2.
Таблица 2.
Естественные заземлители | Пояснения, требования к использованию |
Железобетонные фундаменты зданий, в том числе имеющие защитные гидроизоляционные покрытия в неагрессивных и слабоагрессивных средах | Для соединения арматуры железобетонных колонн с арматурой фундамента необходимо использовать перемычку диаметром не менее 12 мм (рис. 1). |
Соединение металлических колонн с арматурой фундамента следует выполнять по рис. 2. | |
Необходимость приварки анкерных болтов стальных колонн (арматурных стержней железобетонных колонн) к арматурным стержням железобетонных фундаментов определяется допустимой плотностью тока в приарматурном слое бетона в соответствии с ПЭУ | |
Железобетонные фундаменты технологических, кабельных, совмещенных эстакад в неагрессивных и слабоагрессивных грунтах во всех климатических зонах СССР | Металлическое соединение арматуры железобетонных опор и фундаментов не является обязательным |
Кабельные тоннели из сборного железобетона при условии установки в них закладных деталей, приваренных к арматуре тоннеля, и последующего соединения закладных деталей стальными перемычками | Допускается использовать в качестве дополнительных естественных заземлителей, если сопротивление растеканию железобетонных фундаментов производственного здания или напряжение прикосновения превышает нормы, установленные ПЭУ |
Рельсы электрифицированных железных дорог на станциях и перегонах, а также рельсы подъездных путей тяговых подстанций переменного тока | Заземляющие проводники должны присоединяться к рельсам только механическим способом без применения сварки (рис. 3). |
Рельсы кранового пути при установке крана на открытом воздухе. Стыки рельсов должны быть надежно соединены сваркой, приваркой перемычек | Рельсы должны быть присоединены к дополнительному заземлителю, располагаемому вблизи крана |
Обсадные трубы скважин | – |
Заземлители опор воздушных линий электропередачи, соединенные с заземляющим устройством электроустановки при помощи грозозащитного троса линии, если трос не изолирован от опор линии | – |
Металлические шпунты гидротехнических сооружений, водоводы, затворы и т.п. | – |
Заземлители повторных заземлений нулевых проводников воздушных линий напряжением до 1 кВ в случае использования не менее двух воздушных линий | – |
Проложенные в земле металлические трубопроводы, кроме трубопроводов канализации и центрального отопления. Запрещается применять в качестве естественных заземлителей чугунные трубопроводы и временные трубопроводы строительных площадок | Если на трубопроводах, используемых в качестве протяженных заземлителей, установлены задвижки, водомеры или болтовые фланцевые соединения, то в этих местах следует смонтировать обходные перемычки из полосовой стали сечением не менее 100 мм2. Перемычки приваривают непосредственно к трубам или хомутам, установленным на трубопроводе. |
Свинцовые оболочки кабелей, проложенных в земле. | Алюминиевые оболочки кабелей не допускается использовать в качестве заземлителей |
Оболочки кабелей могут служить единственными заземлителями при числе кабелей не менее двух |
Рис. 1. Соединение арматуры железобетонных конструкций: 1 – молниеприемная сетка; 2 – токоотвод; 3 – арматура колонны; 4 – заземляющая перемычка; 5 – арматура фундамента
Рис. 2. Соединение металлической колонны с арматурой железобетонного фундамента: 1 – арматура подошвы; 2 – арматура фундамента; 3 – фундамент; 4 – фундаментные болты (не менее двух), соединенные с арматурой фундамента; 5 – пластины для приварки проводников заземления; 6 – стальная колонна
* При соединении металлической колонны с арматурой железобетонного фундамента необходимо учитывать следующее:
а) фундаментные болты (не менее двух) должны быть соединены с арматурой подколонника сваркой;
б) соединение арматуры подколонника с арматурой подошвы должно быть выполнено сваркой;
в) если пространственный каркас подколонника не пересекается с арматурными сетками подошвы фундамента, то его следует нарастить в двух местах с помощью отдельных арматурных стержней и соединить их сваркой с арматурными сетками;
г) если подошва фундамента не армируется, то достаточно соединить сваркой арматуру подколонника и фундаментные болты;
д) все стержни каркаса арматуры фундамента должны быть соединены между собой сваркой;
е) пластины размером 50х100 должны иметь толщину более 5 мм для приварки проводников заземления. Расстояние от пластины до уровня чистого пола должно быть не более 500 мм. Сварной шов выполняют по ширине пластины с двух сторон.
Рис. 3. Присоединение к тяговому рельсу проводников защитного заземления: 1 – провод заземления; 2 – зажим заземления; 3 – крюковой болт
2.1.2. Естественные заземлители должны быть связаны с магистралями заземлений не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Это требование не распространяется на опоры воздушных линий электропередачи (ВЛ), повторное заземление нулевого проводника и металлические оболочки кабелей.
2.1.3. В случае использования естественных заземлителей (особенно протяженных) при выборе мест присоединения к ним защитных проводников необходимо учитывать возможность разъединения заземлителя, например, при ремонтных работах.
Функции искусственного заземляющего элемента
Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.
Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.
Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.
Как устанавливать искусственный электрод в грунт
Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:
Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.
Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.
Как определить сопротивление
Согласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов.
Факторы, которые оказывают первостепенное влияние на показатель:
Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.
Обратите внимание! Для электроустановки с напряжением в 380 В показатель сопротивления не должен превышать 30 Ом. Системы видеонаблюдения, серверные блоки и медаппаратура выполняется заземлением с сопротивлением заземляющих элементов в 0,5–1 Ом.
Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления.
Как происходит соединение
Вне зависимости от того, какой естественный заземляющий контур используется (железобетонная конструкция, рельсы, металлические трубы, арматура), важно при соединении элементов заземления создать непрерывную электрическую цепь. Она должна проходить по металлическим поверхностям. При использовании железобетонных изделий происходит более сложная подготовка, так как требуется предусмотреть металлические закладки. Если используется здание, такие закладки нужно делать на каждом этаже.
Закладки являются элементами, благодаря которым происходит соединение электрического оборудования с цепью. Сюда же можно подключить любое технологическое оборудование, находящееся внутри или снаружи здания, и таким образом заземлить его. Многие бетонные конструкции оснащены ушками из арматуры, имеют в качестве соединительных деталей сварочные швы или болты.
Такие выступы можно использовать для создания цепи без использования дополнительных металлических деталей. При отсутствии подобных соединений монтажники пользуются гибкими перемычками, которые можно приварить к металлическим конструкциям.
Внимание! Перемычки не должны быть в сечении меньше 100 мм2.
Основные требования
Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:
Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:
Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.
Когда не применяются железобетонные конструкции
Сборный железобетонный фундамент обладает хорошими структурными характеристиками как по прочности конструкции, так и по долговечности. Подводить заземляющий проводник к такому фундаменту не запрещено.
Главное — произвести правильное соединение элементов конструкции. Скрепив между собой арматуру соседних блоков, можно удостовериться в надежности конструкции, а потом приступить к производству заземляющего устройства.
Если выполнить такое соединение нет возможности, лучше прибегнуть к применению искусственного заземлителя. Производить соединения такого типа конструкций нужно с учетом профильной стандартизации производства таких работ.
Как подбираются размеры искусственных электродов
Все параметры основной конфигурации проводников в обязательном порядке должны соответствовать нормативным требованиям профильной документации, в частности ГОСТ Р 50571.5.54-2013.
Правильно подобранные материалы и размеры электродов, применение оптимальной вариации производства такого электромонтажа — основные рабочие моменты заземления, которые влияют на качество работы заземлителя.
Искусственный электрод обладает важным эксплуатационным преимуществом, обусловленным принципом монтажа. Такой вид чаще монтируется глубоко в грунт. За счет грунтовых вод уменьшается показатель удельного сопротивления материала. Итог — реализация оптимальной характеристики и стабильности конечного сопротивления заземлителя.