Cmos что это

Cmos что это

Что такое BIOS и CMOS

Cmos что это

Если у Вас компьютер уже более 3-4 лет, то Вы точно хотя бы раз, но сталкивались с его специальной базовой системой — BIOS. Эти четыре буквы — сокращение от Basic Input Output System, что в переводе на великий и могучий означает — Базовая Система Ввода-Вывода. Она предназначена для настройки параметров работы как материнской платы компьютера или ноутбука, так и подключаемых к нему комплектующих и периферийных устройств. Последние годы у BIOS появился более продвинутый преемник — сначала EFI, потом — UEFI. По факту — то же самое, только с более приятным графическим интерфейсом.

Зачем нужен БИОС?!

Смысл работы Базовой Системы Ввода-Вывода заключается в проверке работоспособности компонентов вычислительной системы. При включении компьютера BIOS проверяет и опрашивает все комплектующие, затем считывает и активирует настройки материнской платы для работы устройств. После этого управление передаётся операционной системе — Windows, Linux или Mac OSX.

Виды и версия BIOS

На сегодняшний день есть 3 основных вида БИОС, различаемых по названию компании-разработчика :

Помимо вида, у каждой материнской платы есть ещё и версия, да и не одна, а несколько. Версия BIOS — это, фактически, версия прошивки материнской платы (её ещё называют «микропрограмма»), которая записана в специальный чип на материнской плате. В каждом образе БИОС есть специальный набор инструкций для работы с комплектующими устройствами — процессором, видеокартой, памятью, жестким диском и т.п. В каждой новой версии исправляются ошибки, найденный в предыдущей и могут быть добавлены новые функции, которых раньше не было.

Как зайти в БИОС на компьютере или ноутбуке?!

Чтобы попасть в BIOS или UEFI материнской платы компьютера, достаточно всего лишь при включении его несколько раз нажать кнопку Del (Delete).

Cmos что это

А вот с ноутбуками всё обстоит значительно сложнее. Дело в том, что каждый производитель пытается лепить что-то своё и единого стандарта тут нет. У разных фирм, изготавливающих ноуты, клавиша для входа в БИОС разная — чаще всего F2 или F12. Для верности посмотрите в инструкцию.

А что такое CMOS?

CMOS расшифровывается, как Complementary Metal-Oxide-Semiconductor и переводится, как комплементарный метало-оксидный полупроводник. В компьютере или ноутбуке — это специальная микросхемка памяти, в которой хранятся параметры конфигурации BIOS. Поэтому фразы «Сбросить BIOS» и «Сбросить CMOS» по сути — однозначные.

Размер памяти CMOS — всего лишь 256 байт, но и этого хватает с лихвой. Чтобы параметры CMOS не сбросились, в материнской плате установлена круглая батарейка CR2032 210 мАч, которая питает микросхему даже когда питание компьютера полностью отключено.

Cmos что это

Как сбросить настройки BIOS (CMOS) на заводские?

Для того, чтобы сбросить параметры настроек БИОС, достаточно просто отключить батарейку от матплаты на 10 минут. После этого верните её на место и включите компьютер.

Второй способ — специальная перемычка Clear CMOS на материнской платы в районе батарейки:

Cmos что это

Источник

Что такое матрица CMOS на материнской плате?

Cmos что это

Если извлечь батарею, то произойдет сброс настроек BIOS до их уровней по умолчанию. Это действительно простая задача, которая считается отличным шагом для устранения многих типов компьютерных проблем.

Как еще называют чип CMOS?

КМОП иногда называют часами реального времени (RTC), ОЗУ КМОП, энергонезависимой ОЗУ (NVRAM), энергонезависимой памятью BIOS или комплементарной симметрией металл-оксид-полупроводник (COS-MOS).

Как BIOS и CMOS работают вместе?

BIOS представляет собой компьютерный чип на материнской плате, такой как CMOS, за исключением того, что он предназначен для связи между процессором и другими аппаратными компонентами, такими как жесткий диск, порты USB, звуковая карта, видеокарта и многое другое. Компьютер без BIOS не поймет, как эти части компьютера работают вместе.

Смотрите наш Что такое BIOS? часть для получения дополнительной информации о BIOS.

CMOS также считается компьютерным чипом на материнской плате, или, более конкретно, чипом ОЗУ, это означает, что он теряет настройки, которые хранит при выключении компьютера. Тем не менее, батарея CMOS используется для обеспечения постоянного питания чипа.

Когда компьютер загружается в первый раз, BIOS извлекает информацию из чипа CMOS, чтобы понять настройки оборудования, время и все, что в нем хранится.

Что такое батарея CMOS?

CMOS обычно питается от батарейки типа CR2032, называемой батареей CMOS. Большинство батарей CMOS работают в течение срока службы материнской платы, в большинстве случаев до 10 лет, но иногда их необходимо заменить.

Неправильная или медленная системная дата и время, а также потеря настроек BIOS считаются основными признаками разряженной или выходящей из строя батареи CMOS. Заменить их так же просто, как заменить неисправный на новый.

Подробнее о матрицах CMOS и CMOS аккумуляторах

В то время как большинство материнских плат имеют место для батареи CMOS, некоторые небольшие компьютеры, такие как планшеты и ноутбуки, имеют небольшой внешний отсек для батареи CMOS, которая подключается к материнской плате через два маленьких провода.

Некоторые устройства, которые используют CMOS, включают в себя микропроцессоры, микроконтроллеры и статическое ОЗУ (SRAM).

Важно понимать, что CMOS и BIOS не являются взаимозаменяемыми терминами для одного и того же. Хотя они работают вместе для выполнения определенной функции в компьютере, они представляют собой два совершенно разных компонента.

Чипы CMOS желательны для устройств с батарейным питанием, таких как ноутбуки, потому что они потребляют меньше энергии, чем чипы других типов. Хотя они используют как цепи с отрицательной полярностью, так и цепи с положительной полярностью (NMOS и PMOS), одновременно включается только один тип цепи.

Эквивалентом CMOS для Mac является PRAM, что означает RAM параметр.

Источник

CMOS-технология

CMOS-технология — одна из нескольких технологий разработки и построения схем электроники. Само название технологии является аббревиатурой английского выражения — complementary metal-oxide-semiconductor. В русской транскрипции — КМОП, или комплементарная логика с транзисторами на металл-оксид-полупроводнике.

Работа транзисторов МОП-структуры основана на полевом эффекте, открытом ещё в 20-х годах девятнадцатого века. В микросхемах, построенных по CMOS-технологии, применяются пары полевых транзисторов с одинаковыми параметрами, но с разными проводимостями изолированных затворов. Если у одного транзистора затвор p-типа, то у другого он n-типа; следствием такой структуры является более высокое быстродействие.

Схемы CMOS изобрёл американский инженер Фрэнк Вонлас в 1963-м году, а первые микросхемы по этой технологии появились уже в 1968-м. Эти схемы отличаются от схем, выполненным по другим технологиям — ЭСЛ, ТТЛ и др. ничтожно малым энергопотреблением в режиме «покоя», что обусловливается отсутствием каких-либо нагрузочных резисторов. Основной расход энергии происходит в моменты переключений состояния схемы, в остальное время транзисторы закрыты, и через них протекает только ток утечки, которым, в большинстве случаев, можно пренебречь. Такие микросхемы нашли широкое применение в электронных устройствах с питанием от батарей — часы, микрокалькуляторы, сотовые телефоны и др. — где энергосбережение является одним из определяющих факторов.

По мере совершенствования технологии изготовления микросхем и интеграции в одном пикселе приёмника информации, средств её обработки и вывода, появилась возможность производства CMOS-матриц больших размеров. Такие матрицы применяются в различных видеокамерах, на их базе конструируются цифровые фотоаппараты, охранные датчики в системах безопасности и др.

Cmos что этоCMOS матрица

В неразрушающем контроле CMOS-матрицы используются в видеоэндоскопах при обследовании труднодоступных мест, а также они являются основной частью детекторов рентгеновского излучения. В качестве примера можно привести детектор, выполненный на основе матрицы светочувствительных элементов из аморфного кремния — а-Si, где сцинтиллятором служит оксисульфид гадолиния — Gd2O2S.

Cmos что этоФрэнк Вонлас, в 1963-м году создал первую схему CMOS

Источник

Микросхемы КМОП

Общие сведения о микросхемах КМОП (CMOS)

Cmos что это

Наглядный пример тому, как всё сложно запутанно в определении приоритетов научно-исследовательских работ, это микросхемы КМОП и их появление на рынке.

Дело в том, что полевой эффект, который лежит в основе МОП-структуры был открыт ещё в конце 20-х годов прошлого века, но радиотехника тогда переживала бум вакуумных приборов (радиоламп) и эффекты, обнаруженные в кристаллических структурах, были признаны бесперспективными.

Затем в 40-е годы практически заново был открыт биполярный транзистор, а уже потом, когда дальнейшие исследования и усовершенствования биполярных транзисторов показали, что это направление ведёт в тупик, учёные вспомнили про полевой эффект.

Так появился МОП-транзистор, а позднее КМОП-микросхемы. Буква К в начале аббревиатуры означает комплементарный, то есть дополняющий. На практике это означает, что в микросхемах применяются пары транзисторов с абсолютно одинаковыми параметрами, но один транзистор имеет затвор n-типа, а другой транзистор имеет затвор p-типа. На зарубежный манер микросхемы КМОП называют CMOS (Complementary Metal-Oxide Semiconductor). Также применяются сокращения КМДП, К-МОП.

Среди обычных транзисторов примером комплементарной пары являются транзисторы КТ315 и КТ361.

Сначала на рынке радиоэлектронных компонентов появилась серия К176 основанная на полевых транзисторах, и, как дальнейшее развитие этой серии, была разработана ставшая очень популярной серия К561. Эта серия включает в себя большое количество логических микросхем.

Cmos что это

Поскольку полевые транзисторы не так критичны к напряжению питания, как биполярные, эта серия питается напряжением от +3 до +15V. Это позволяет широко использовать эту серию в различных устройствах, в том числе и с батарейным питанием. Кроме того, устройства собранные на микросхемах серии К561, потребляют очень маленький ток. Да и не мудрено, ведь основу КМОП-микросхем составляет полевой МДП-транзистор.

Например, микросхема К561ТР2 содержит четыре RS-триггера и потребляет ток 0,14 mA, а аналогичная микросхема серии К155 потребляла минимум 10 – 12 mA. Микросхемы на КМОП структурах обладают очень большим входным сопротивлением, которое может достигать 100 МОм и более, поэтому их нагрузочная способность достаточно велика. К выходу одной микросхемы можно подключить входы 10 – 30 микросхем. У микросхем ТТЛ такая нагрузка вызвала бы перегрев и выход из строя.

Поэтому конструирование узлов на микросхемах с применением КМОП транзисторов позволяет применять более простые схемные решения, чем при использовании микросхем ТТЛ.

За рубежом наиболее распространённый аналог серии К561 маркируется как CD4000. Например, микросхеме К561ЛА7 соответствует зарубежная CD4011.

Используя микросхемы серии К561, не следует забывать о некоторых нюансах их эксплуатации. Следует помнить, что хотя микросхемы работоспособны в большом диапазоне напряжений, при снижении напряжения питания падает помехоустойчивость, а импульс слегка «расползается». То есть чем напряжение питания ближе к максимуму, тем круче фронты импульсов.

На рисунке показан классический базовый элемент (вентиль), который осуществляет инверсию входного сигнала (элемент НЕ). То есть если на вход приходит логическая единица, то с выхода снимается логический ноль и наоборот. Здесь наглядно показана комплементарная пара транзисторов с затворами «n» и «p» типов.

Cmos что это

На следующем рисунке показан базовый элемент 2И – НЕ. Хорошо видно, что резисторы, которые присутствуют в аналогичном элементе ТТЛ микросхемы, здесь отсутствуют. Из двух таких элементов легко получить триггер, а из последовательного ряда триггеров прямая дорога к счётчикам, регистрам и запоминающим устройствам.

Cmos что это

При всех положительных качествах интегральных микросхем серии К561 у них, конечно, есть и недостатки. Во-первых, по максимальной рабочей частоте КМОП микросхемы заметно уступают микросхемам с другой логикой и работающей на биполярных транзисторах.

Частота, на которой уверенно работает серия К561, не превышает 1 МГц. Для согласования микросхем основанных на МОП структурах с другими сериями, например, ТТЛ, применяются преобразователи уровня К561ПУ4, К561ЛН2 и другие. Эти микросхемы также синхронизируют быстродействие, которое у разных серий может отличаться.

Но самый большой недостаток микросхем на комплементарных МОП структурах, это сильнейшая чувствительность микросхемы к статическому электричеству. Поэтому на заводах и лабораториях оборудуются специальные рабочие места. На столе все работы производятся на металлическом листе, который подключён к общей шине заземления. К этой шине подключается и корпус паяльника, и металлический браслет, одеваемый на руку работнику.

Некоторые микросхемы поступают в продажу упакованные в фольгу, которая закорачивает все выводы между собой. При работе в домашних условиях также необходимо найти возможность для стекания статического заряда хотя бы на трубу отопления. При монтаже первыми распаиваются выводы питания, а уже затем все остальные.

Источник

Настройка BIOS. Программа BIOS (CMOS) Setup и ее основные возможности

Как установить системную дату и время? Как осуществить загрузку компьютера с компакт-диска или флэш-накопителя? На эти и другие распространение вопросы вы получите ответ, познакомившись с основными настройками BIOS и способами их редактирования.

Оглавление

Введение

Если вы еще не знаете, что такое BIOS (БАйОС) и для чего нужна эта микропрограмма, то мы советуем вам прочитать наш предыдущий материал, рассказывающий о том, как происходит начальная загрузка компьютера, и какую роль в этом процессе играет «базовая система ввода/вывода». В этой же статье мы будем знакомиться с программой настройки BIOS, которая чаще всего называется BIOS (CMOS) Setup Utility.

Кстати, в большинстве случаев пользователи употребляют сокращенные названия этой программы, называя ее BIOS Setup или просто BIOS. Например, часто можно услышать такие выражения, как «зайти в BIOS» или «открыть BIOS», что несколько не корректно, так как в обоих случаях речь идет о входе в программу настроек BIOS Setup, являющуюся лишь частью BIOS.

В большинстве случаев BIOS Setup используется рядовыми пользователями лишь для настройки системного времени и даты или выбора загрузочных устройства. Но на самом деле эта программа может иметь массу возможностей. С помощью нее можно управлять работой процессора, оперативной памяти, чипсета и других важных компонентов ПК, наблюдать за температурным режимом устройств и осуществлять много других полезных действий.

Вход в BIOS (CMOS) Setup Utility

Для того, что бы запустить программу настройки BIOS необходимо во время проведения процедуры первоначального тестирования ПК нажать определенную клавишу или их сочетание. В подавляющем большинстве случаев в настольных компьютерах для входа в BIOS Setup используется клавиша Del, реже F1 или F2. В ноутбуках наоборот, наиболее часто для этих целей задействуются именно функциональные клавиши (F1, F2, F11, F12).

Cmos что это

Узнать точно, какие из клавиш используются для запуска BIOS Setup можно из инструкции к компьютеру или системной плате. Так же в некоторых случаях во время прохождения процедуры POST на экран монитора выводится подсказка, о том какую клавишу необходимо нажать для входа в настройки.

Cmos что это

Правда в современных компьютерах и ноутбуках экранные подсказки встречаются все реже, но в любом случае найти нужную клавишу всегда поможет поисковый запрос в интернете.

Помимо необходимости знать нужную клавишу, для попадания в BIOS Setup, не менее важно выбрать правильный момент ее нажатия. Чтобы не опоздать, лучше сразу после начала загрузки ПК многократно нажимать клавишу входа. В большинстве случаев такой способ гарантировано обеспечивает запуск настроек BIOS.

Интерфейс BIOS (CMOS) Setup Utility

Программа Bios Setup имеет текстовый интерфейс без каких-либо дизайнерских ухищрений и управляется исключительно с помощью клавиатуры. Объясняется это тем, что графическая оболочка этого приложения практически не менялась с 80-ых годов, поэтому все выглядит очень просто и аскетично.

В общем случае интерфейс BIOS Setup бывает двух типов: с расположением главного меню в два столбца или горизонтально. Понять какой тип перед вами можно сразу после входа в программу и открытия ее главного окна.

Cmos что это

В первом случае вы увидите на синем фоне список разделов, размещенных в два столбца. Такой вариант характерен для версий BIOS, разработанных компанией Phoenix Technologies (AwardBIOS, Award Modular BIOS, Award WorkstationBIOS). Их традиционно в своих системных платах используют такие производители, как MSI, Gigabyte, Foxconn, ECS и другие.

Cmos что это

Во втором случае перед вами появится окно с серым фоном, в котором меню с основными разделами будет размещаться сверху экрана, в виде синей горизонтальной полоски. Такой интерфейс, как правило, присущ для BIOS компании American Megatrends (AMIBIOS, Aptio AMIBIOS), использующихся в материнских платах ASUS, Intel, ASRock и некоторых других.

Несмотря на такие различия в интерфейсе этих двух вариантов, все разделы BIOS Setup имеют схожее представление. Что бы убедиться в этом, давайте посмотрим на структуру окон программы в обоих случаях.

В верхней части экрана вы всегда найдете название текущего раздела (в случае с горизонтальным меню название подсвечивается) или подраздела.

Cmos что это

Основную часть экрана занимает область, в которой размещается список подразделов (обозначаются треугольными стрелками) и параметров выбранного раздела. Справа от наименования параметров располагаются их значения. При этом стоит учесть, что если параметр выделен бледным цветом (голубым или светло-серым), то он либо имеет статус «только для чтения» и несет исключительно информационный характер, либо для его редактирования необходимо изменить другой, связанный с ним параметр.

Cmos что это

Правую часть экрана обычно занимает столбец, в котором выводится краткая справочная информация по выделенному параметру или подразделу, а так же подсказки по возможным действиям и использованию клавиш управления (American Megatrends). В программе настройки BIOS с синим фоном, подсказка по использованию функциональных клавиш располагается обычно в нижней части экрана.

Как видите, не смотря на разное цветовое оформление и небольшие различия в расположении на экране рабочих элементов, по своей сути оба интерфейса очень похожи, и преподносят информацию пользователям практически одинаковым образом. Именно поэтому приемы работы с параметрами BIOS в обоих случаях практически одинаковы.

Для навигации по меню и выбора нужных параметров, подразделов или разделов используются клавиши со стрелками, а для их открытия – клавиша «Ввод» («Enter»). За возврат к предыдущему экрану и выход из текущих настроек отвечает клавиша «ESC». Так же при помощи этой клавиши вы можете выйти из BIOS Setup без внесения изменений в настройки, нажав ее в главном меню. Помимо этого неизменными являются функции клавиш «F1», вызывающей справку и «F10», инициализирующей выход из BIOS Setup, из любого места программы с сохранением сделанных изменений. Клавиши «PageUP»/«PageDown» или «+»/«-» традиционно используются для последовательного перебора доступных значений изменяемых параметров.

Основные разделы BIOS Setup с колоночным главным меню (синий фон)

Каждая модель материнской платы во многих случаях имеет свой уникальный набор настраиваемых параметров, но при этом названия и тематическая направленность основных разделов BIOS Setup обычно остаются неизменными.

Standard CMOS Futures

В данном разделе сосредоточены основные (стандартные) настройки компьютера, к которым относятся: установка системных даты и времени (Date, Time), параметры дисковых накопителей (IDE Channel), а так же различная информация о системе (сведения об установленном процессоре, количестве оперативной памяти и другие).

Cmos что это

Кстати настройка даты и времени для большинства пользователей является одним из самых ключевых поводов посещения BIOS Setup.

Advanced BIOS Features

Этот раздел содержит расширенные настройки BIOS. К наиболее распространенным из них можно отнести:

Cmos что это

Стоит учесть, что в зависимости от модели платы и модификации BIOS набор настроек в данном разделе может варьироваться.

Advanced Chipset Features

В этом разделе описываются настройки чипсета, установленного в системную плату, вследствие чего набор параметров здесь напрямую зависит от его типа и модификации. В большинстве случаев здесь собраны опции, отвечающие за работу оперативной памяти (регулировка частоты и таймингов), шины обмена данными между процессором и ОЗУ, графической шины AGP/PCI-E и видеоадаптера.

Cmos что это

Следует отметить, что в некоторых ситуациях именно с помощью изменения параметров этого раздела можно повысить скорость работы компьютера или как говорят, совершить разгон. Правда, в последнее время опции, отвечающее за увеличение скорости работы ПК, чаще всего выносятся производителями в отдельный специализированный раздел BIOS.

Integrated Peripherals

Данный раздел содержит параметры, отвечающие за работу, интегрированных в материнскую плату, периферийных устройств, таки как: контроллеры жестких дисков, USB- портов, звуковых и сетевых адаптеров, и прочих.

Cmos что это

Например, здесь вы можете включить/отключить встроенную звуковую карту, поддержу USB-устройств ввода или выбрать режим RAID для создания массива жестких дисков.

Power Management Setup

Здесь собраны опции, отвечающие за электропитание и режимы энергосбережения компьютера. Практически все современные компьютеры позволяют осуществлять управление электропитанием непосредственно из операционной системы, но для этого требуется поддержка со стороны BIOS специализированного стандарты ACPI, режим, и функции которого, регулируются как раз в этом разделе.

Cmos что это

Так же здесь вы можете указать, какие действия должны происходить при нажатии на кнопку питания, настроить условия включения ПК и его перехода к пониженному потреблению энергии или выхода из «спячки».

PnP/PCI Configurations

В этом разделе находятся параметры управления технологии Plug and Play, отвечающей за распределение ресурсов между устройствами ПК и их быстрое конфигурирование, а так же настройки работы шины PCI. Как правило, данные функции с успехом выполняются системой и не требуют ручного вмешательства. Поэтому в современных компьютерах данный раздел может отсутствовать вовсе.

PC Health Status (H/W Monitor)

Современные материнские платы всегда оснащаются датчиками, контролирующими рабочие температуры и напряжения основных устройств, а так же скорости вращения вентиляторов системы охлаждения. Все их показатели как раз и отображаются в данном разделе.

Cmos что это

Помимо этого в PC Health Status можно управлять режимами работы вентиляторов и настраивать варианты оповещений на случаи возникновения перегрева, остановки кулера или открытия крышки корпуса.

Frequency/Voltage Control

В данном разделе собраны параметры, отвечающие за установку рабочих частот и значений напряжений для процессора, оперативной памяти, видеокарты и других устройств. По умолчанию все частоты и напряжения имеют рекомендованные значения и настраиваются автоматически, что гарантирует надежную работу системы.

Cmos что это

Тем не менее, значение некоторых параметров этого раздела можно изменять вручную. Это дает возможность разогнать процессор, память и прочие компоненты, заставив их работать на повышенных частотах. Только необходимо помнить, что с одной стороны, разгон позволяет увеличить общую производительность системы, а с другой – может вызвать сбои в работе ПК и стать причиной выхода из строя разогнанного железа (например, при установке завышенных значений напряжений). Так что здесь следует быть очень осторожными.

Cmos что это

Стоит отметить, что многие крупные производители материнских плат опции по настройке частот и напряжений выносят в специальный раздел с оригинальным названием, например MB Intelligent Tweaker (M.I.T.) или Cell Menu.

Load Fail-Safe Defaults

Это не раздел, а команда, сбрасывающая все настройки BIOS к значениям по умолчанию, при которых гарантируется стабильная работа всей системы. После выбора этого пункта перед вами откроется окно, в котором потребуется подтвердить сброс настроек нажатием клавиши «Y».

Cmos что это

Load Optimized Defaults

Команда, устанавливающая значения настроек BIOS таким образом, чтобы бы была обеспечена оптимальная производительность компьютера с сохранением стабильности работы всех его компонентов. При этом параметры, которые подвергаются автоматическому изменению, зависят от модели системной платы и могут разниться.

Cmos что это

Однако учтите, что такая оптимизация настроек в некоторых случаях может привести к нестабильной работе системы из-за несовместимости установленного оборудования. Тогда следует вернуться к настройкам по умолчанию при помощи команды Load Fail-Safe Defaults и попробовать настроить нужные параметры вручную.

Set Supervisor Password

Команда, которая позволяет установить, снять или изменить административный пароль, который используется для полного доступа ко всем настройкам BIOS, а так же при загрузке ПК.

Set User Password

Команда, устанавливающая пользовательский пароль, позволяющий получить доступ к просмотру значений параметров BIOS. То есть большинство настроек будет закрыто для редактирования. Так же данный пароль можно использовать при загрузке компьютера.

Основные разделы BIOS Setup с горизонтальным главным меню (серый фон)

Как мы уже отмечали, настроечный интерфейс BIOS существует в двух основных вариантах, которые отличаются не только внешним оформлением и расположением главного меню, но и компоновкой параметров по разделам. Так что теперь давайте познакомимся со вторым видом интерфейса, который используется такими лидерами рынка системных плат, как ASUS или AsRock.

Исходя из названия, по мнению разработчиков, в этом разделе собраны главные настройки BIOS, к которым относятся время и дата, параметры установленных дисковых накопителей и общая системная информация (версия BIOS, модель процессора, объем установленной памяти). Таким образом, Main является практически полным аналогом уже знакомого нам раздела Standard CMOS Futures.

Cmos что это

Как вы, наверное, уже догадались, наиболее востребованной опцией в данном разделе, является настройка системной даты и времени.

Advanced

Как правило, этот раздел имеет наибольшее количество опций для настройки компонентов и ПК и включает в себя сразу несколько значимых подразделов. Здесь находятся параметры, отвечающие за работу центрального процессора (CPU Configuration), оперативной памяти, видеоадаптера, чипсета (Chipset), шины передачи данных PCI и технологии Plug and Play (PnP/PCI Configuration, PCI PnP), встроенных периферийных устройств (Onboard Device Configuration), портов USB (USB Configuration) и другого оборудования.

Cmos что это

Так же в этом разделе можно найти опции разгона, позволяющие вручную задавать значения частот и напряжений процессора, памяти, а так же шины PCI-E. В некоторых случаях, дополнительно пользователям доступна регулировка задержек ОЗУ (тайминги/латентность). Во многих моделях материнских плат, параметры, отвечающие за разгон, выносятся в отдельный подраздел (например, JumperFree Configuration) или даже самостоятельный раздел главного меню (AITweaker, Overclocking или ExtremeTweaker).

Из-за достаточного большого набора компонентов и разнообразия параметров, раздел Advanced практически не имеет унифицированной структуры. В зависимости от модели платы и разработчика BIOS, количество подразделов/настроек и их названия могут сильно разниться. Ведь если сравнивать с версией BIOS Setup, которая имеет синий фон, то получается, что в разделе Advanced собрано содержимое сразу пяти разделов: Advanced BIOS Features, Advanced Chipset Features, Integrated Peripherals, Frequency/Voltage Control и PnP/PCI Configurations.

Power

Данный раздел по своему содержанию и сути идентичен разделам Power Management Setup и PC Health Status (H/W Monitor).

Cmos что это

Здесь находятся параметры, отвечающие за электропитание и энергосбережение ПК, мониторинг рабочих температур и напряжений его основных компонентов, а так же контроля скоростей ращения вентиляторов.

Уже из названия видно, что данный раздел отвечает за конфигурирование параметров загрузки компьютера. Именно здесь размещены, востребованные многими пользователями, настройки определения последовательности опроса загрузочных устройств и включение/отключение клавиши «Num Lock» (подраздел Boot Settings Configuration).

Cmos что это

Во многих случаях раздел Boot включает в себя подраздел Security, содержащий команды установки, снятия или изменения административного и пользовательского паролей. В некоторых же версиях BIOS Setup параметры управления паролями могут быть вынесены в отдельный одноименный раздел.

Tools

Большинство системных плат от популярного производителя ASUS, содержит дополнительный раздел, в который помещаются вспомогательные инструменты для обновления BIOS (EZ Flash 2), отключения/включения мини-ОС на ядре Linux (Express Gate), создания профилей индивидуальных настроек BIOS (O.C. Profile), а так же проверки подключения сетевого кабеля во время загрузки ПК (AI NET 2).

Этот раздел отвечает за выход из меню настроек BIOS и объединяет в себе такие команды как:

Cmos что это

После выбора любой из вышеуказанных команд перед вами появится окно, в котором необходимо подтвердить ее выполнение, нажав клавишу «Y», а затем «Ввод»

Установка времени и даты

При первом включении нового компьютера лучше сразу озаботиться установкой в BIOS правильных значений системного времени и даты, задав тем самым базовый ориентир, как для операционной системы, так и для программного обеспечения, способного функционировать без установленной ОС.

Для попадания в меню настроек BIOS, сразу после начала загрузки компьютера, нажимаем нужную клавишу (как правило «Del» или «F2»). После того, как перед вами появится главное меню BIOS Setup, для достижения поставленной задачи, совершаем несколько нехитрых манипуляций.

BIOS Setup с синим фоном

С помощью клавиш со стрелочками перемещаем курсор на раздел Standard CMOS Futures и нажимаем «Ввод» («Enter»). Часто этот раздел стоит первым и ничего никуда перемещать не надо, но бывают и исключения.

Cmos что это

В открывшемся окне с опциями, сверху находим два нужных нам параметра – Date (Дата) и Time (Время). Для перемещения между значениями параметров используйте стрелочки. Для установки значений можно применять как клавиши «+»/«PgUp» или «-»/«PgDn», так и непосредственный ввод цифр с клавиатуры. Для фиксации установленных значений предназначена клавиша «Ввод» («Enter»).

Общий алгоритм действий здесь достаточно прост: устанавливаем курсор на нужное поле (подсвечивается красным), вводите или выбираете его значение и нажимаете «Ввод». Далее переходим на следующее поле и все повторяем до тех пор, пока все параметры не будут установлены.

После того как все значения введены, для сохранения изменений нажимаем клавишу «F10». В открывшемся красном окне вводим букву «Y», нажав на клавиатуре одноименную клавишу. После перезагрузки новые значения времени и даты вступят в силу.

BIOS Setup с серым фоном

При помощи клавиш «←» и «→» выбираем раздел Main, хотя в большинстве случаев этого делать не придется, так как он практически всегда располагается первым и открывается по умолчанию сразу после входа в BIOS Setup.

Cmos что это

Находим в этом разделе параметры System Date (Системная дата) и System Time (Системное время) и перемещаем туда курсор, используя клавиши «↓» и «↑». Далее для ввода значений используем либо непосредственно клавиши с цифрами, либо клавиши «+» и «-». Для перемещения между полями внутри одного параметра здесь предназначена клавиша «Tab». После ввода требуемого значения нажимаем «Ввод».

Как и в предыдущем случае, чтобы сохранить внесенные изменения, нажимаем клавишу «F10», а затем «Y». Сразу после этого произойдет перезагрузка ПК, и новые параметры вступят в силу.

Смена загрузочного устройства

При установке операционной системы или проведении профилактических работ с уже установленной ОС, часто необходимо обеспечить загрузку компьютера не с жесткого диска, а с оптического носителя, USB-флэшки или какого-либо другого устройства хранения данных. Поэтому одной из самых востребованных задач, ради которой рядовым пользователям приходится «лезть» в настройки BIOS, является необходимость смены загрузочного устройства.

BIOS Setup с синим фоном

После открытия программы BIOS Setup, перемещаем стрелочками курсор на раздел Advanced BIOS Features и нажимаем «Ввод».

Cmos что это

Клавишей «↓» переходим к параметру First Boot Device (Первое загрузочное устройство) и вновь жмем «Ввод».

Cmos что это

Далее перед вами откроется окно со списком устройств, которые можно выбрать в качестве загрузочных. Если планируется запуск ПК с оптического диска, то выбираем при помощи стрелок значение CDROM и далее как обычно «Ввод». Если необходимо загрузиться с флэшки или внешнего портативного диска, то выбираем опцию USB-HDD. Таким же образом можно выбрать второе и третье загрузочные устройства (Second Boot Device и Third Boot Device).

При этом стоит учесть, что если в компьютере установлено сразу несколько жестких дисков или твердотельных накопителей, содержащих систему и являющихся загрузочными, то для указания последовательности их опроса, предназначен специальный пункт Hard Disk Boot Priority.

Для того, чтобы все сделанные вами настройки вступили в силу, не забудьте нажать клавишу «F10», затем «Y» и наконец «Ввод».

BIOS Setup с серым фоном

После открытия окна настроек BIOS с помощью клавиши «→» выбираем пункт Boot и нажимаем «Ввод». Далее вас может ожидать два варианта, в зависимости от версии BIOS.

Cmos что это

В первом случае вы увидите сразу список назначения загрузочных устройств. Обозначаются они как 1st, 2nd и 3rd Boot Devices (соответственно первое, второе и третье загрузочные устройства). Перемещение по списку производится клавишами «↑↓», выбор значений (HDD, CDROM, USB, Removable) – клавишами «Ввод» или «+/-».

Cmos что это

Во втором случае раздел Boot будет содержать несколько подразделов, среди которых в данной ситуации нас интересует пункт Boot Device Priority. Перемещаем на него курсор, и нажимаем «Ввод». Сразу после этого перед вами откроется окно со списком загрузочных устройств, выбор которых осуществляется точно таким же образом, как было описано выше.

Владельцем нескольких накопителей стоит обратить внимание на подраздел Hard Disk Drives. Именно в нем осуществляется выбор приоритетного загрузочного диска среди установленных в компьютере винчестеров. Если же у вас установлено несколько оптических приводов, то в этом случае выбор среди них приоритетного устройства может быть организован в подразделе CDROM Drives.

После завершения настроек, остается нажать клавишу «F10», а затем «Ввод», чтобы сохранить внесенные изменения.

Заключение

Несмотря на то, что BIOS все еще остается самой распространенной системой, использующейся для начальной настройки оборудования и загрузки ПК, ее время неумолимо подходит к концу. На сегодняшний день, большинство системных плат оснащаются уже новым перспективным программным загрузочным интерфейсом – UEFI, который имеет современную графическую оболочку и обладает гораздо большими функциональными возможностями.

Тем не менее, списывать со счетов «старушку» BIOS еще рано. Ведь массовое внедрение UEFI началось всего несколько лет назад, в то время как BIOS является главной загрузочной системой уже несколько десятилетий. Поэтому еще долгое время, огромное количество компьютеров с BIOS будет использоваться многими пользователями.

Источник

Что такое CMOS и для чего он нужен?

Cmos что это

CMOS и батарея CMOS: все, что нужно знать

CMOS (сокр. комплементарная структура металл-оксид-полупроводник) — это термин, который обычно используется для описания небольшого объема памяти на материнской плате компьютера, в которой хранятся настройки BIOS. Некоторые из этих настроек BIOS включают системное время и дату, а также настройки оборудования.

Датчик CMOS — используется цифровыми камерами для преобразования изображений в цифровые данные.

Другие названия CMOS

CMOS (произносится цмос) иногда называют часами реального времени (RTC), CMOS RAM, энергонезависимой RAM (NVRAM), энергонезависимой памятью BIOS или комплементарной симметрией металл-оксид-полупроводник (COS-MOS).

CMOS также является аббревиатурой других терминов, которые не связаны с тем, о чем говорится на этой странице, таких как операционная система управления сотовой связью и сравнительный средний балл.

Очистка CMOS

Большинство разговоров о CMOS включает в себя «очистку CMOS», что означает сброс настроек BIOS до начальных значений. Это простая задача, которая является отличным шагом для устранения многих типов компьютерных проблем.

Например, возможно, ваш компьютер зависает во время процедуры POST, и в этом случае простейшим решением может быть очистка CMOS для сброса настроек BIOS до заводских значений по-умолчанию.

Может быть, вам нужно очистить CMOS, чтобы сбросить неправильно настроенные параметры BIOS, чтобы исправить некоторые сообщения об ошибках, связанных с оборудованием, например, ошибки Code 29.

Как BIOS и CMOS работают вместе

BIOS представляет собой компьютерный чип на материнской плате, такой как CMOS, за исключением того, что он предназначен для связи между процессором и другими аппаратными компонентами, такими как жесткий диск, порты USB, звуковая карта, видеокарта и многое другое. Компьютер без BIOS не поймет, как эти части компьютера работают вместе.

Микропрограмма BIOS также выполняет самотестирование при включении питания для проверки этих аппаратных компонентов и, в конечном счете, запускает загрузчик для запуска операционной системы.

CMOS также является компьютерным чипом на материнской плате, или, более конкретно, чипом ОЗУ, что означает, что он обычно теряет настройки, которые он хранит при выключении компьютера (например, содержание оперативной памяти не сохраняется при каждой перезагрузке компьютера). Тем не менее, батарея CMOS используется для обеспечения постоянного питания чипа.

Когда компьютер загружается в первый раз BIOS извлекает информацию из чипа CMOS, чтобы принять настройки оборудования, время и все, что в нем хранится. Чип обычно хранит всего 256 байтов информации.

Что такое батарея CMOS?

CMOS обычно питается от батарейки CR2032 размером с монету, называемой CMOS батареей.

Большинство батарей CMOS работают в течение всего срока службы материнской платы, в большинстве случаев до 10 лет, но иногда их необходимо заменить.

Неправильная или сбивающаяся системная дата и время, а также потеря настроек BIOS являются основными признаками разряженной или умирающей батареи CMOS. Заменить заменить ее очень просто.

Подробнее о CMOS и CMOS батарее

В то время как большинство материнских плат имеют место для батареи CMOS, некоторые небольшие компьютеры, такие как планшеты и ноутбуки, имеют небольшой внешний отсек для батареи CMOS, которая подключается к материнской плате через два маленьких провода.

Некоторые устройства, которые используют CMOS, включают в себя микропроцессоры, микроконтроллеры и статическое ОЗУ (SRAM).

Важно понимать, что CMOS и BIOS не являются взаимозаменяемыми терминами для одного и того же. Хотя они работают вместе для выполнения определенной функции в компьютере, они представляют собой два совершенно разных компонента.

Когда компьютер впервые запускается, есть возможность загрузиться в BIOS или CMOS. Открытие настройки CMOS — это то, как вы можете изменить сохраняемые настройки, такие как дата и время, и как запускаются различные компоненты компьютера. Вы также можете использовать настройку CMOS для отключения / включения некоторых аппаратных устройств.

Чипы CMOS желательны для устройств с батарейным питанием, таких как ноутбуки, потому что они потребляют меньше энергии, чем чипы других типов. Хотя они используют как цепи с отрицательной полярностью, так и цепи с положительной полярностью (NMOS и PMOS), одновременно включается только один тип цепи.

Эквивалентом CMOS для Mac является PRAM, что означает параметры RAM. Вы также можете сбросить PRAM вашего Mac.

Источник

CMOS – что это такое

Cmos что это

Что такое CMOS

Довольно часто одновременно с BIOS’ом упоминается CMOS, и это вполне закономерно. Мы уже выяснили, что BIOS – это аппаратно прошитый набор программ в специальной микросхеме расположенной на материнской плате, который нельзя изменить. Перезаписать этот набор программ можно только с помощью специальной «перепрошивки», да и то далеко не на всех материнских платах. При этом каждый может изменить настройки регулирующие работу BIOS по своему усмотрению, естественно с сохранением изменений. Вам может показаться, что такое утверждение весьма противоречиво, поскольку выше говорится о том, что BIOS изменить нельзя.

На самом же деле абсолютно никакого противоречия здесь нет. Сам BIOS останется без изменений. Изменениям подвергнуться только параметры (исходные данные), которые использует BIOS во время своей работы. Эти параметры хранятся отдельно, в специальной микросхеме динамической памяти. Вот именно эта микросхема и называется CMOS-памятью, или, в сокращенном варианте, просто CMOS.

В CMOS, помимо исходных данных BIOS’а, хранятся все основные параметры аппаратной конфигурации компьютера: параметры оперативной памяти и работы процессора, типы жестких дисков и т.п. Все эти сведения BIOS тоже использует в своей работе. Объем CMOS-памяти невелик, и в сумме составляет всего лишь 256 байт (по сравнению с общим объемом памяти – это песчинка в море).

При включении компьютера запускается процесс тестирования оборудования, в ходе которого текущая конфигурация сравнивается с той, которая хранится в CMOS-памяти. Если во время тестирования обнаруживаются отличия, то для проведения настроек вызывается BIOS Setup или происходит автоматическое обновление CMOS.

Питание CMOS

CMOS, как и любая другая память, нуждается в постоянном питании от электричества. Причем, говоря о CMOS-памяти, и используя такое словосочетание как «постоянное питание», мы имеем в виду именно круглосуточное электрическое питание, даже при выключенном компьютере. Достигается постоянное питание благодаря миниатюрному аккумулятору, который размещен на материнской плате (круглая небольшая батарейка в виде таблетки).

CMOS получила свое название от технологии, по которой она изготавливается. По английский эта технология называется Complementary Metal-Oxide-Semiconductor, что переводится как Комплементарный металлооксидный полупроводник (русская аббревиатура – КМОП). С помощью этой технологии удалось достичь малого потребления энергии для полноценного функционирования CMOS-памяти. Установленная на материнскую плату стандартная батарейка способна прослужить не меньше 5-6 лет.

Типичные неисправности CMOS

Источник

Система BIOS и CMOS-память

Система BIOS

Сразу после включения компьютера начинают «тикать» электронные «часы» основной шины. Их импульсы расталкивают заспавшийся процессор, и тот может начинать работу. Но для работы процессора нужны команды. Точнее говоря, нужны программы, потому что программы — это и есть упорядоченные наборы команд. Таким образом, где-то в компьютере должна быть заранее заготовлена пусковая программа, а процессор в момент пробуждения должен твердо знать, где она лежит.

Хранить эту программу на каких-либо носителях информации нельзя, потому что в момент включения процессор ничего не знает ни о каких устройствах. Чтобы он о них узнал, ему тоже нужна какая-то программа, и мы возвращаемся к тому, с чего начали. Хранить ее в оперативной памяти тоже нельзя, потому что в ней в обесточенном состоянии ничего не хранится.

Выход здесь существует один-единственный. Такую программу надо создать аппаратными средствами. Для этого на материнской плате имеется специальная микросхема, которая называется постоянным запоминающим устройством — ПЗУ. Еще при производстве в нее «зашили» стандартный комплекс программ, с которых процессор должен начинать работу. Этот комплекс программ называется базовой системой ввода-вывода (по-русски — Биос, а по-английски — BIOS).

По конструкции микросхема ПЗУ отличается от микросхем оперативной памяти, но логически это те же самые ячейки, в которых записаны какие-то числа, разве что не стираемые при выключении питания. Каждая ячейка имеет свой адрес.

После запуска процессор обращается по фиксированному адресу (всегда одному и тому же), который указывает именно на ПЗУ. Отсюда и поступают первые данные и команды. Так начинается работа процессора, а вместе с ним и компьютера. На экране в этот момент мы видим белые символы на черном фоне.

Одной из первых исполняется подпрограмма, выполняющая самотестирование компьютера. Она так и называется: Тест при включении (по-английски — POST — Power-On SelfTest). В ходе ее работы проверяется многое, но на экране мы видим только, как мелькают цифры, соответствующие проверенным ячейкам оперативной памяти.

CMOS-память

Программных средств BIOS достаточно, чтобы сделать первичные проверки и подключить стандартные устройства, такие как клавиатура и монитор. Слово стандартные мы выделили специально. Дело в том, что монитор и клавиатура у вас могут быть очень даже нестандартными. Но на данном этапе это не имеет значения — просто компьютер пока рассматривает их как стандартные. Ему еще не ведомы все их свойства, и он полагает, что клавиатура и монитор у нас такие, какие были в ходу двадцать лет назад, во времена первых компьютеров. Этим обеспечивается гарантия того, что вы хоть что-то увидите на экране, вне зависимости от той модели монитора, какая имеется в вашем распоряжении. BIOS предполагает, что монитор у нас черно-белый — именно поэтому первые сообщения на экране проходят в черно-белом режиме.

Однако долго работать лишь только со стандартными устройствами компьютер не может. Ему пора бы узнать о том, что у него есть на самом деле. Истинная информация об устройствах компьютера записана на жестком диске, но и его еще надо научиться читать. У каждого человека может быть свой уникальный жесткий диск, не похожий на другие. Спрашивается, откуда программы BIOS узнают, как работать именно с вашим жестким диском?

Для этого на материнской плате есть еще одна микросхема — CMOS-память. В ней сохраняются настройки, необходимые для работы программ BIOS. В частности, здесь хранятся текущая дата и время, параметры жестких дисков и некоторых других устройств. Эта память не может быть ни оперативной (иначе она стиралась бы), ни постоянной (иначе в нее нельзя было бы вводить данные с клавиатуры). Она сделана энергонезависимой и постоянно подпитывается от небольшой аккумуляторной батарейки, тоже размещенной на материнской плате. Заряда этой батарейки хватает, чтобы компьютер не потерял настройки, даже если его не включать несколько лет.

Настройки CMOS, в частности, необходимы для задания системной даты и системного времени, при установке или замене жестких дисков, а также при выходе из большинства аварийных ситуаций. Настройкой BIOS можно, например, задать пароль, благодаря которому посторонний человек не сможет запустить компьютер. Впрочем, эта защита эффективна только от очень маленьких детей.

Хранение информации в CMOS

Чтобы проще можно было понять, приведем аналогию с телевизором. В современных телевизорах есть много настроек разных параметров: яркость, контрастность, цветность…, которые изменить пользователь не может. Он может изменять только ЗНАЧЕНИЯ этих параметров, тем самым влиять на качество изображения и работу телевизора в целом.

При включении компьютера происходит тестирование оборудования, в процессе которого сравнивается его текущая конфигурация с данными в CMOS-памяти. Если обнаруживаются отличия, то происходит автоматическое обновление CMOS-памяти, либо вызывается BIOS Setup.

Если срок батарейки, питающей CMOS, подошел к концу, то при включении компьютера на экран будет выведено сообщение, например, «CMOS-checksum error». Для возобновления работы компьютера необходимо будет установить новую батарейку взамен вышедшей из строя.

После замены батарейки при первом включении компьютера заводские настройки, хранящиеся в BIOS, будут «сброшены» в CMOS-память. Это, кстати, один из способов устранить неисправность, если вы «перемудрили» с настройками BIOS. Для этого надо выключить компьютер, вынуть на 30 секунд батарейку из материнской платы, установить ее назад, и заводские настройки BIOS будут восстановлены, а компьютер снова заработает.

Cmos что это

Источник

Что такое CLR CMOS на материнской плате и для чего сделана?

Cmos что это

Всем привет! Сегодня обсудим CLR CMOS на материнской плате: что это такое, для чего нужен и как работает, нужен ли такой выход обычному юзеру. О том, что такое spdif out на материнской плате, можно почитать тут.

Что это такое

Это микросхема на материнской плате, на которой записан БИОС. Независимо от производителя материнской платы — ASUS, Gigabyte, Asrock, MSI или любого другого, а также производителя BIOS и его версии, разработчиками предусмотрена возможность сброса установок до дефолтных.

Зачем это надо? В результате неправильных действий пользователь может выставить такие настройки, при которых система стабильно работать не будет. Варианты тут разнообразные: как незначительные лаги при повышении нагрузки, так и постоянный уход в синий экран при попытке загрузить операционную систему.

К счастью, у нас есть «волшебная кнопка», с помощью которой можно сбросить установки до дефолтных. Вернее, это даже не кнопка: технически это коннектор 2 pin или на 3 пина, который обычно маркируется CLR CMOS (от английского Clear — очистить).

Также процедура помогает, если вы установили пароль на вход, но забыли его.

Как замкнуть контакты чтобы сбросить настройки

В нормальной позиции это «оголенные провода»: если замкнуть эту пару контактов, произойдет сброс настроек независимо от желания пользователя ПК.

В трехпиновом коннекторе нужно переставить перемычку с коннекторов 1-2 на 2-3. Все, сброс произошел, можно переставлять обратно и заново настраивать БИОС, если есть такая необходимость.

На старых моделях материнок еще можно увидеть 2-пиновый clr cmos. Чтобы замкнуть контакты, можно воспользоваться обычной скрепкой: проходящего тока будет достаточно. Этим же методом можно воспользоваться, если у 3-пинового коннектора утеряна перемычка: просто замкните 2-й с 3-м.Cmos что этоЕсли пользователь случайно нажал на пару коннекторов пальцем, то скорее всего ничего не произойдет: проводимости кожи недостаточно для короткого замыкания.

Альтернативный вариант

Настройки БИОС, включая системную дату, остаются неизменными, даже если компьютер или ноутбук полностью обесточен: например, вы без монитора и прочей периферии перевозите его в соседний город.

Кстати, сброс BIOS происходит, даже если замкнуть перемычку у выключенного компа, имейте в виду.

Так вот, за питание микросхемы CMOS отвечает батарейка формата CR 2032 — круглая плоская «таблетка», которая очень часто используется также в электронных весах.

Если вытащить батарейку, микросхема потеряет питание и обнулит настройки БИОСа до дефолтных. Такой вот нехитрый способ, которым можно воспользоваться, если вы не нашли перемычку СLR СMOS.

Также для вас будут полезны публикации «Как узнать sata 2 или sata 3 на системной плате» и «Как узнать ревизию материнки». Буду признателен всем, кто поделится этой публикацией в социальных сетях. До скорой встречи!

Источник

Матрицы фотоаппаратов: в чем разница между CMOS, BSI CMOS и Stacked CMOS?

Большинство современных цифровых камер для обработки света применяют матрицы, использующие технологию CMOS, но не все матрицы одинаково эффективны. Разобраться в ситуации предлагает Джим Фишер, корреспондент журнала PC Magazine, в котором размещен его обзор КМОП-датчиков, а также приведены их отличия от ПЗС-матриц и чипов Foveon.

Сердцем цифровой камеры является сенсор изображения. Сейчас мы наблюдаем развитие нескольких различных технологий, но в большинстве современных аппаратов используется та или иная версия Complementary Metal-Oxide-Semiconductor, сокращенно CMOS (или КМОП — комплементарная структура металл-оксид-полупроводник). КМОП-чипы имеют некоторые преимущества по сравнению с датчиками с зарядовой связью (ПЗС), распространенными на заре цифровой фотографии. К плюсам CMOS относятся улучшенная энергоэффективность и контроль нагрева, которые проложили путь для видео 4K (и выше) в камерах со сменными объективами.

Однако существует более одного типа CMOS-датчиков и если вы покупаете новую беззеркальную камеру, можете быть удивлены наличием различных архитектур и возможно не сразу поймете, почему камеры Stacked CMOS стоят намного дороже, чем базовые модели. Разберем, чем отличаются разные варианты CMOS.

По большей части цифровые датчики построены на похожей концепции, даже если есть и различия в конструкции чипа. В имидж-сканере используются светочувствительные фотоэлементы и фильтр с повторяющимися узорами из красных, зеленых и синих квадратов, образующих цвет. В большинстве датчиков используется массив цветных фильтров (CFA) четыре-на-четыре, называемый Bayer CFA (в честь его создателя), но в некоторых моделях Fujifilm используется более сложный X-Trans CFA шесть-на-шесть.

Вы также можете столкнуться с датчиками Quad Bayer, типичными для смартфонов (а также экшн-камер и дронов) с огромным количеством пикселей. Эти сенсоры содержат большое количество пикселей (обычно 48 МП), но выдают изображения с более низким разрешением при помощи метода, называемого объединением пикселей. Эта функция пусть немного по-другому, но также внедряется в датчики камер со сменными объективами (ILC). Например, Leica M11 опирается на объединение пикселей для создания фотографий с разрешением 60MP, 36MP или 18MP.

КМОП-чипы отличаются от ПЗС-матриц предыдущего поколения несколькими важными параметрами. Например, КМОП-чипы считывают данные попиксельно в так называемом вращающемся электронном затворе, а не все сразу, как в ПЗС-матрицах. Но есть технические преимущества, которые заставили фотоиндустрию отказаться от ПЗС: CMOS-чипы поместили свой аналого-цифровой преобразователь (АЦП) на плату вместо того, чтобы выполнять его отдельным блоком. Единые чипы потребляют меньше энергии и выделяют меньше тепла, чем ПЗС-матрицы, что хорошо как для улучшения качества изображения при слабом освещении, так и для времени автономной работы.

Существует три основных типа КМОП-сенсоров. Базовый CMOS сегодня используется в камерах начального и среднего уровня, т.е. в моделях, которые получают новейшие функции через пару поколений после того, как они появились в моделях высокого класса.

Усовершенствованная конструкция с задней подсветкой — BSI CMOS, аналогична концепции обычных CMOS, но эти микросхемы располагают компоненты иначе. Фотоэлементы находятся дальше на кристалле, и скорость построчного считывания выше. Это изменение дает практические преимущества — BSI CMOS примерно на диафрагму лучше, если речь идет о шуме изображения. Это означает, что BSI CMOS дает столько же шума при ISO 12800, сколько аналогичный CMOS-чип при ISO 6400. Это также означает, что камеры APS-C и Micro Four Thirds с чипами BSI работают на равных с полнокадровыми CMOS-камерами. Это не жесткие правила, но хорошие ориентиры, которым нужно следовать.

Более высокая скорость считывания делает возможным применить полностью электронный затвор для моделей BSI CMOS, а также обеспечивает быструю реакцию автофокуса для наибольшей скорости серийной съемки с автофокусом. Fujifilm X-T3 была первой потребительской камерой, которая действительно использовала эти функции. Аппарат дебютировал с фокусировкой 20 кадров в секунду с полностью электронным затвором в 2018 году. Хотя вам по-прежнему нужно использовать механический затвор, чтобы надежно “заморозить” движущиеся объекты с большинством CMOS-камер BSI, но бесшумный электронный затвор пригодится для портретной съемки и других неподвижных объектов.

Стекированные (stacked) микросхемы CMOS продвигают концепцию BSI CMOS на шаг вперед. Они размещают компоненты в аналогичном расположении, но конструкция также объединяет процессор сигналов изображения и его сверхбыструю память DRAM в один и тот же кремний. Это делает скорость считывания еще выше. Первая массовая многослойная CMOS-камера, Sony A9 2019 года, произвела фурор, дав возможность фотографировать без перерыва — вы можете использовать ее для съемки фотографий со скоростью 20 кадров в секунду, не теряя из виду свою сцену.

Поскольку технология делает этот тип фотографии возможным, чипы Stacked CMOS стали стандартом де-факто для высококлассных ILC, которые профессионалы используют для фотографирования со стороны или пресс-ложи. Мы видели, как некоторые камеры достигают 30 кадров в секунду (Sony A1), а Nikon Z9 справляется с 11-мегапиксельными фотографиями со скоростью 120 кадров в секунду из-за многоярусного чипа и двух процессоров. Сверхбыстрое считывание и вычислительная мощность также улучшают автофокус. Стекированные чипы теперь превосходят датчики BSI CMOS по скорости фокусировки, точности и распознаванию объектов. Все это работает для того, чтобы гарантировать, что стекированные камеры не просто делают кучу фотографий подряд, а делают кучу фотографий в фокусе подряд.

Подводя итоги, можно сказать, что чипы CMOS являются основными для современных цифровых камер. Переход на модель с датчиком BSI CMOS повышает скорость считывания и улучшает качество изображения при слабом освещении. А многослойные, т.е. стекированные CMOS-чипы еще больше расширяют диапазон скоростей и сохраняют идеальный обзор объекта, пока камера формирует изображение.

Ранее мы говорили о ПЗС-сенсорах. Эти чипы были стандартом для потребительских камер в нулевые, но в последующие годы уступили место CMOS. Правда у ПЗС всё еще есть сторонники, но, за исключением очень недорогих компактов, вы не видите этот сенсор в современных потребительских моделях.

Foveon — это еще один тип сенсора, который используется исключительно в камерах Sigma X3, Merrill и Quattro. Чипы Foveon по-разному записывают цвет с помощью трех светочувствительных слоев, а не массива цветовых фильтров. Положительным моментом является то, что этим камерам не нужно выполнять интерполяцию для заполнения отсутствующих цветов, что означает, что они могут захватывать гораздо больше деталей, чем датчик Байера с аналогичным количеством пикселей. Но есть и недостатки: приложения для обработки Raw не поддерживают файлы от многих камер Foveon, а фотографии показывают очень сильный шум при средних значениях ISO. Сегодня на рынке представлена только одна модель Foveon — Sigma dp Quattro.

В специальных камерах, таких как Leica M10 Monochrom, отсутствует массив цветных фильтров с тем, чтобы запечатлеть мир только в черно-белом цвете.

Монохромные камеры — еще один вариант. Leica предлагает несколько специальных опций, которые отказываются от массива цветных фильтров и снимают исключительно черно-белые изображения. M10 Monochrom и Q2 Monochrom мучительно дороги, но специалисты по монохромной печати могут счесть, что они того стоят. Эти камеры демонстрируют преимущество в деталях, как и чипы Foveon, но превосходят параметры цветных снимков при высоких значениях ISO — отключение фильтра Байера почти удваивает количество света, попадающего на матрицу.

Инфракрасные камеры полного спектра вы не найдете на полке местного магазина, но они существуют. Бытовые камеры имеют фильтр над сенсором, который отсекает невидимый свет. Но такие компании, как KolariVision и MaxMax может удалить этот фильтр или продать вам предварительно переделанную камеру, которая может видеть инфракрасные и ультрафиолетовые волны. Пейзажисты любят использовать эти датчики, чтобы снимать сюрреалистичные, инопланетные сцены прямо на Земле.

Камеры, преобразованные для работы в инфракрасном, ультрафиолетовом или полном спектре изображений, захватывают световые волны с длинами волн, в т.ч. невидимыми для глаз.

Заглядывая вперед, Sony Semiconductor Solutions Group разрабатывает многослойную CMOS чип следующего поколения, который изменяет расположение встроенных транзисторов и обещает лучший динамический диапазон и более низкий уровень шума ISO, чем в моделях текущего поколения. Объявление о разработке было сделано в конце 2021 года, но мы рассчитываем подождать несколько лет, прежде чем эта технология появится в камере, которую смогут купить простые смертные.

Panasonic также разрабатывает датчик нового типа. Объявленный еще в 2018 году, компания работает над тем, что она называет органическим датчиком, который использует органическую фотопроводящую пленку (Organic Photoconductive Film — OPF) вместо отдельных пикселей для сбора света.

Теперь вы знаете о сенсорах больше и сможете подобрать для себя лучшую из беззеркальных и полнокадровых камер со сменным объективом.

Материал подготовлен дата-центром и веб-студией ITSOFT

Источник

Что такое CMOS?

Никогда не задавались вопросом, что такое CMOS? Думаем наверняка, раз зашли в эту статью. Приступим…

Cmos что это

Скорее всего, вы уже знаете, что такое BIOS, и для чего она служит в компьютере или ноутбуке. Однако BIOS сама по себе – это всего лишь набор микропрограмм, хранящихся в постоянной памяти компьютера (ROM), расположенной на материнской плате. Однако если бы BIOS располагала только постоянной памятью, то ее возможности были бы ограничены параметрами, зашитыми при производстве чипа BIOS, а сами пользователи не могли бы вносить изменения в параметры BIOS.

Согласитесь, что такая ситуация порождала бы массу неудобств. Для того, чтобы решить эту проблему и существует связанная с BIOS память CMOS, в которой хранятся настройки системы, в частности, вводимые пользователем через интерфейс BIOS Setup. При этом общий объем CMOS-памяти BIOS чрезвычайно мал – всего-навсего 256 байт!

Технология и ее история

Чем же отличается CMOS память от прочих видов памяти? Аббревиатура CMOS расшифровывается как Complementary metal oxide semiconductor. На русском эта технология пишется как КМОП (комплементарные пары металл-оксид-полупроводник). Эта память отличается низким энергопотреблением и поэтому может хранить данные в течение долгого времени.

Технология CMOS имеет давнюю историю. Память типа CMOS RAM впервые была изготовлена еще в 1963 г. Она была относительной дорогой, но имела немало преимуществ. Хотя память подобного типа обладает меньшим быстродействием, чем обычная оперативная память, но при этом она меньше потребляет электрической энергии и меньше выделяет тепловой энергии при работе.

Для хранения данных BIOS и не требуется большое быстродействие, однако количество энергии, потребляемой при реализации этой задачи, должно быть в идеале как можно меньшим, поэтому память, изготовленная по технологии CMOS, в данном случае подходит больше всего.

За полвека со времени своего открытия технология СМОS была значительно усовершенствована. Теперь микросхемы CMOS RAM применяются в большинстве элементов компьютера, даже в самом процессоре. Более того, технология КМОП используется не только в компьютерах. Микросхемы типа CMOS, например, широко применяются также в фоточувствительных элементах (матрицах) таких устройств, как сканеры и цифровые фотоаппараты.

Обслуживание КМОП

Но вернемся к CMOS-памяти BIOS. Хотя эта память потребляет мало энергии, тем не менее, она все же ей нужна. В частности, для питания памяти BIOS в те промежутки времени, когда компьютер выключен из сети, служит специальная литиевая батарейка. Однако рано или поздно ресурсы батарейки подходят к концу, и для того, чтобы не потерять содержимое памяти, батарейку следует заменить.

Предположим, что у нас появилась необходимость очистить CMOS память, не прибегая к интерфейсу программы BIOS Setup. Подобная задача может потребоваться, например, в том случае, если утерян пароль для входа в компьютер или в саму программу BIOS Setup. Для обнуления КМОП в большинстве компьютеров используется специальная перемычка, расположенная, как правило, в непосредственной близости от элемента питания – круглой литиевой батарейки. Однако в каждом конкретном случае лучше всего посмотреть документацию к системной плате. Следует учесть, к тому же, что многие лицензионные программы, установленные на компьютере, привязывают свою лицензию к ключу, хранящемся в CMOS-памяти, поэтому после ее сброса они могут потерять работоспособность.

Заключение

CMOS-память — это небольшой, но очень важный элемент системы BIOS, от правильного функционирования которого зависит бесперебойная работа всего компьютера. Как следствие, рекомендуем работать с ней аккуратно.

Источник

Энергонезависимая память CMOS

Вы будете перенаправлены на Автор24

В общем смысле энергонезависимой памятью является любое устройство памяти ПК или его часть, которое может хранить данные не зависимо от подачи электропитания.

Cmos что это

Рисунок 1. Образец CMOS-памяти

Назначение энергонезависимой памяти CMOS

Готовые работы на аналогичную тему

Cmos что это

Рисунок 2. Расположение батарейки CMOS-памяти

Обслуживание CMOS

На старых материнских платах батарейка в виде синего бочонка припаивалась к плате.

Существуют внешние батарейки для ПК, которые помещены в пластмассовые корпуса с проводами подключения. Этот корпус с помощью «липучки» закрепляют в удобном месте.

Литиевые батарейки нельзя заряжать, т.к. при зарядке они взрываются и могут повредить внутренности ПК.

На современных системных платах чаще применяется батарейка в форме таблетки в специальном держателе (рис. 3), которая легко заменяется.

Cmos что это

Рисунок 3. Батарейка CMOS-памяти

Обычно для этого достаточно при выключенном ПК на несколько минут переставить перемычку в другое положение (рис. 4в).

Cmos что это

Рисунок 4. Варианты подключения и обнуление CMOS: а – работа от внутренней батарейки, б – подключение внешней батарейки, в – обнуление CMOS

Иногда для сброса пароля предназначен отдельный переключатель (джампер). В этом случае, поменяв положение переключателя, ПК необходимо включить – только тогда пароль будет сброшен, после чего переключатель необходимо вернуть в исходное состояние.

Нужны еще материалы по теме статьи?

Воспользуйся новым поиском!

Найди больше статей и в один клик создай свой список литературы по ГОСТу

Автор этой статьи Дата написания статьи: 25.04.2016

Источник

BIOS против CMOS, подключения и различия

Сегодня трудно не слышать такие термины, как BIOS или CMOS, но на самом деле только те, кто понимает, могут правильно их определить и, прежде всего, знать и понимать их различия. И дело в том, что, хотя многие этому не верят, они не совпадают, у них очень своеобразный союз и особенно их разногласия. Поэтому сегодня мы собираемся закончить дебаты и полемику, объяснив все различия и сходства между BIOS против CMOS.

Первое, что нужно понять, это то, что BIOS и CMOS, очевидно, не одно и то же, но они идут рука об руку, и вы не можете понять одно без другого. Итак, чтобы узнать их различия, мы сначала должны понять их значение и функцию, которую они выполняют.

BIOS против CMOS, соединения и различия

При этом BIOS является логической частью ПК, то есть это программа, которая отвечает за правильный запуск ПК. Его аббревиатура происходит от Базовая система ввода-вывода или базовая система ввода-вывода и представляет собой не что иное, как микропрограммное обеспечение, очень компактное и базовое программное обеспечение, которое устанавливается в память ROM.

Эта память представляет собой микросхему, которая питается от внешнего источника питания к самому источнику питания ПК, например к батарее, которая, с другой стороны, является наиболее распространенной системой в отрасли.

Требуется, чтобы этот чип не терял конфигурацию включенного в него программного обеспечения, такую ​​как параметры запуска жестких дисков, конфигурацию Оперативная память память, параметры, выбранные при запуске системы, или все, что можно включить или отключить в самом BIOS. Еще один ключевой момент, который часто упускается из виду, заключается в том, что благодаря этому стеку сохраняются системное время и дата, поэтому, если у нас нет параметров автоматической синхронизации для этих двух параметров в Windows, появятся те, которые принадлежат самому BIOS.

Следовательно, эта батарея является основной частью работы, которую мы будем выполнять в BIOS, где в зависимости от модели и емкости, которую они приобретают, они, как правило, служат в среднем до 10 лет без необходимости замены.

Cmos что это

Этот чип, о котором мы говорили, является не чем иным, как CMOS системы, где он сформирован и создан как полупроводниковый чип с оксидом металла, единственной целью которого является размещение BIOS, его конфигурации, обновлений и возможных сбоев, которые имеют их.

CMOS против EEPROM, почему так много путаницы?

Cmos что это

Его тоже нельзя произносить как настройку BIOS, в основном потому, что на материнских платах уже 10 лет нет BIOS, а есть UEFI как таковой. Любопытно, что хотя микросхемы EEPROM с CMOS имеют увеличивающийся размер, реальность такова, что UEFI или BIOS, если возникнет такая ситуация, останутся только в первом МБ, поскольку проверено, что он весит как можно меньше, но добавить максимальное количество инструкций.

Среди прочего, EEPROM хранит совместимое оборудование, которое должно быть распознано, обычно в нем есть микрокоды производителя процессоров для этой платформы, в дополнение к распознаванию, например, твердотельных накопителей, видеокарт и других устройств, с помощью которых он может обмен или SKU или ID напрямую.

Это часто случается с несколькими сериями процессоров для одного и того же сокета. Обновление UEFI имеет решающее значение, если мы хотим, чтобы процессор распознавал его. В видеокартах это гораздо более необычно, но также бывают случаи проблем из-за невозможности прочитать SKU или идентификаторы моделей, и вам даже нужно включить CSM, чтобы иметь возможность перейти в Windows.

Источник

Что такое CMOS память – зачем используется и как ее очистить

Бесперебойная работа компьютера зависит от небольшой детали — CMOS. В ее памяти сохраняются изменяемые настройки системы BIOS. Благодаря CMOS, пользователь может вручную изменить параметры процессора, памяти или других составляющих компьютера.

Что такое CMOS

CMOS расшифровывается, как комплементарный металл оксидный полупроводник (КМОП). Это энергозависимая память, в распоряжении которой всего 256 байт. Этого вполне достаточно, чтобы обеспечить бесперебойную сохранность данных. При каждом включении компьютера (ПК) происходит тестирование, и все данные сверяются с теми, которые размещены в динамической памяти. Если возникают какие-либо отличия, то она обновляется или открывается BIOS Setup.

На материнской плате находится аппаратный элемент — БИОС. В нем хранятся все настройки компьютера. Разработчиками предусмотрено, что изменить эти параметры невозможно. При этом, у каждого пользователя есть доступ к BIOS Setup, в котором регулируются параметры системы. Это возможно, благодаря КМОП.Cmos что это

Все параметры размещаются в памяти, поэтому при изменениях, они сохраняются именно в CMOS. Микросхема находится на материнской плате. Она работает постоянно. При выключении компьютера, питание поступает от батарейки. Если батарейка разряжается, ее заменяют на новую, поскольку в этом случае настройки сбрасываются при каждом отключении ПК.

Какие данные хранятся в микросхеме КМОП

В памяти КМОП хранятся не только параметры BIOS. В нем также расположены и данные о работе системы. К ним относятся параметры:

Эти данные использует и БИОС. Если отключить КМОП от питания, то все данные будут возвращены к изначальным заводским настройкам. Это относится и к дате, времени на компьютере.

Принцип работы

Во время включения ПК запускается стандартное тестирование на наличие неисправностей. Если они существуют, то ПК уведомит об этом используя специальные команды. Попасть в параметры можно тоже во время запуска. На мониторе высвечивается комбинация клавиш, для входа в систему. Найти комбинацию можно и в интернете, главное знать модель материнской платы.

Экран настройки параметров называется BIOS Setup. В нем можно просмотреть всю конфигурацию системы и, при необходимости, изменить некоторые настройки. При этом данные не меняются в BIOS. Все изменения остаются в памяти КМОП. При необходимости их можно сбросить.

Не все параметры подаются изменениям. Пользователь может изменить настройки даты и времени, включать или отключать аппаратные устройства, изменять загрузку с жесткого диска, USB-порта или дисковода.

Как сбросить CMOS

КМОП можно полностью сбросить несколькими способами. Это делается непосредственно на микросхеме. Есть несколько вариантов сброса динамической памяти:

Подробнее о том, как сбросить все изменения CMOS памяти, можно прочитать в нашей статье.

Частые неисправности

Часто пользователи сталкиваются с неисправностями системы. Их могут вызвать неправильное сохранение или работа батареи.

Не сохраняются изменения. Довольно распространенная проблема связана с неправильным сохранением. Рекомендуется заново внести изменения, сохранить их и перезагрузить компьютер. Также можно вытянуть и вставить батарейку.

Не получается войти в систему. Это связано с неправильной комбинацией клавиш или с тем, что пользователь не успевает ее ввести. Кроме этого, иногда при загрузке может не распознаваться USB-клавиатура. В этом случае рекомендуется воспользоваться клавиатурой PS/2.

На экране появляются следующие надписи «Battery Low Level», «CMOS-chercksum error». Они говорят о том, что уровень заряда батареи низкий. В таком случае, батарею меняют на новую. Такое же решение подходит для проблемы с постоянным сбросом времени после перезагрузки.Cmos что это

Для сохранения измененных настроек, в компьютере предусмотрена динамическая память CMOS. С ее помощью, пользователь может улучшить производительность, изменить системное время и много другое. Для этого, следует перейти в настройки BIOS и внести необходимые изменения.

Источник

Программирование CMOS

Так сказать DISCLAIMER

Вся информация, представленная в данной статье несет только информативные цели. Автор не несет ответственности за некорректное использование приведённых ниже фактов.

ВВЕДЕНИЕ

ДАННЫЕ CMOS

CMOS является нечто вроде базы данных, которая предназначена для хранения информации о конфигурации ПК. Однако, в отличие от реальной БД, которая имеет реальный образ на магнитном носителе, CMOS хранит свои данные на микросхеме многократной записи (write many-read many). Программа установки BIOS SETUP при записи сохраняет в ней свою системную информацию, которую впоследствии сама же и считывает (при загрузке ПК). Каждая ячейка имеет размер в 1 байт.

Таблица данных имеет следующий вид

ЧТЕНИЕ И ЗАПИСЬ CMOS

Нумерация веков идёт с 00Н (если так можно выразиться), поэтому значение 20Н вполне адекватно.

Запись: для записи значения в CMOS запишите значение адреса в порт 70Н, а затем новое значение в порт 71Н. Установим для примера новое значение века (так сказать J):

ПОДРОБНЕЕ ОБ АДРЕСАХ CMOS

Итак, остановимся на подробном рассмотрении значений, хранящихся в CMOS.

Все значения RTC храняться в BCD формате как 2 полубайта но в десятичном формате. Например 31 (dec) хранится как 31 (hex).

Источник

Разница между BIOS и CMOS

Видео:

Содержание:

Ключевые области покрыты

1. Что такое BIOS
— определение, функциональность
2. Что такое CMOS
— определение, функциональность
3. Разница между BIOS и CMOS
— Сравнение основных различий

Основные условия

BIOS, CMOS, прошивка, материнская плата

Cmos что это

Что такое BIOS

Cmos что это

Рисунок 1: Настройка BIOS

Когда вы включаете компьютер, BIOS выполняет самотестирование при включении. Он проверяет, все ли требования соблюдены и оборудование работает правильно перед запуском операционной системы. Если проверка прошла успешно, внутренний динамик издаст короткий одиночный звуковой сигнал. Это указывает на то, что процесс загрузки нормальный. Если нет звуковых сигналов или несколько звуковых сигналов, это означает, что в системе что-то не так.

Звуковой код помогает пользователю определить проблему. Например, если это непрерывный короткий звуковой сигнал, это может быть неисправностью в ОЗУ. Если есть три звуковых сигнала, это указывает на неисправность клавиатуры. Пользователь может узнать больше о звуковых кодах из документа производителя. Возможно дальнейшее устранение неисправностей в соответствии с звуковым кодом.

Что такое CMOS

Существуют настройки BIOS, такие как последовательность загрузки, дата и время, а также настройки оборудования. Эти параметры конфигурации хранятся на материнской плате в специальном чипе CMOS. Он нестабилен и требует постоянного потока энергии для поддержания настроек.

Cmos что это

Рисунок 2: Материнская плата компьютера

CMOS использует батарею под названием CMOS для поддержания настроек при выключении компьютера. Это маленькая батарейка, которая видна на поверхности материнской платы. Если батарея извлечена, а затем снова подключена, BIOS удалит предыдущие параметры конфигурации и вернет их к настройкам производителя по умолчанию.

Разница между BIOS и CMOS

Определение

Длинная форма

Тип памяти

В то время как BIOS является энергонезависимым, CMOS является энергозависимым. Это одно из основных различий между BIOS и CMOS.

Основная функциональность

Основной функциональностью каждого из них является еще одно важное отличие между BIOS и CMOS. BIOS инициализирует оборудование при загрузке компьютера и предоставляет службы времени выполнения для ОС и программ. CMOS хранит все настройки BIOS.

Заключение

Ссылка:

1. «BIOS» ВикипедияФонд Викимедиа, 9 сентября 2018 г.

Источник

Как сбросить CMOS память

Аббревиатура CMOS расшифровывается как Complementary Metal-Oxide-Semiconductor. Это крохотное запоминающее устройство, которые используется для хранения настроек BIOS или UEFI. Эти настройки отвечают за то, как ваш компьютер будет загружаться, различные низкоуровневые настройки работы процессора, памяти, шин, а также разгон.

Вам может понадобится сбросить память CMOS после неудачной попытки разгона компьютера или когда компьютер просто не загружается в результате того, что вы сделали что-то не так в настройках BIOS. Сброс CMOS просто вернет все настройки ко значениям по умолчанию и все будет работать. Если вы сами собирали свой компьютер, то вы точно знаете как это делается, но для людей, которые покупали свое устройство такая задача может быть сложной. В этой статье мы рассмотрим как сбросить CMOS память компьютера.

КАК РАБОТАЕТ CMOS ПАМЯТЬ?

Память CMOS, в которой хранятся настройки BIOS энергозависимая. Она питается от специальной батарейки, встроенной в материнскую плату компьютера. Это было сделано не зря. Настройки BIOS по умолчанию записаны в энергонезависимую память и никогда не изменяются. Все изменения, которые вносит пользователь сохраняются в энергозависимой памяти.

Корректность этих настроек очень важна, потому что от них зависит загрузится компьютер или нет, и в результате сможете вы их изменить или нет. И если пользователь допустил какую-либо ошибку в настройках, достаточно просто обесточить память и настройки вернутся к значению по умолчанию. Все просто. А теперь рассмотрим как это сделать.

КАК СБРОСИТЬ СMOS ПАМЯТЬ ЧЕРЕЗ RESET?

Если на корпусе вашего компьютера есть кнопка Reset, то вы можете сбросить настройки CMOS с помощью нее. Она может использовать не только для перезагрузки компьютера, но и для этого. Просто выполните такие действия:

В принципе, это все. Такого набора действий вполне достаточно чтобы сбросить настройки в большинстве случаев. Вы можете еще запустить BIOS, для этого нужно нажать Del или F2 перед началом загрузки и выбрать опцию «Load Optimized Defaults» это будет идеальным вариантом.

СБРОС CMOS КНОПКОЙ НА МАТЕРИНСКОЙ ПЛАТЕ

Большинство современных материнских плат имеют специальную кнопку для сброса CMOS. К ней можно получить доступ после того, как вы откроете крышку корпуса компьютера. Она может называться CLR, CLEAR или RESET. Порядок действий почти такой же:

СБРОС CMOS ИЗВЛЕЧЕНИЕМ БАТАРЕЙКИ

Cmos что это

Если на вашей плате не предусмотрено кнопок Reset, а такая ситуация очень часто случается с ноутбуками, то вам остается только извлечь батарейку питания CMOS. От этой батарейки память питается когда компьютер не подключен к сети. Извлечение батарейки равноценно принудительной очистке памяти. Как сбросить cmos на ноутбуке:

СБРОС CMOS С ПОМОЩЬЮ ДЖАМПЕРА

Кроме всего прочего, на материнской плате есть специальный джампер, с помощью которого можно сбросить настройки:

Cmos что это

ВЫВОДЫ

В этой статье мы рассмотрели как сбросить cmos на материнской плате, а также с помощью кнопки Reset на корпусе. Если вы забудете пароль или испортите конфигурацию BIOS, то достаточно просто все восстановить. Надеюсь, эта информация была полезной для вас. Если у вас остались вопросы, спрашивайте в комментариях!

Источник

Что такое CMOS и для чего это нужно?

Сброс настроек, «обнуление», БИОС (Август 2022)

Lang L: none (table-of-contents):

Другие имена для CMOS

CMOS иногда называют часами реального времени (RTC), оперативной памятью CMOS, энергонезависимой памятью (NVRAM), энергонезависимой памятью BIOS или металлом-оксидом-полупроводником с комплементарной симметрией (COS-MOS).

Как работают BIOS и CMOS вместе

Смотрите, что такое BIOS? для получения дополнительной информации о BIOS.

CMOS также является компьютерным чипом на материнской плате или, более конкретно, чипом RAM, что означает, что он обычно теряет настройки, которые он хранит, когда компьютер выключен. Однако, батарея CMOS используется для обеспечения постоянной мощности чипа.

Когда компьютер сначала загружается, BIOS извлекает информацию из микросхемы CMOS, чтобы понять аппаратные настройки, время и все остальное, что хранится в нем.

Что такое батарея CMOS?

CMOS обычно питается от батареи ячейки CR2032, называемой батареей CMOS.

Большинство батарей CMOS продлевают срок службы материнской платы, в большинстве случаев до 10 лет, но иногда их необходимо заменить.

Неправильная или медленная системная дата и время и потеря настроек BIOS являются основными признаками мертвой или умирающей батареи CMOS. Замена их так же просто, как замена мертвого на новый.

Подробнее о батареях CMOS и CMOS

В то время как на большинстве материнских плат есть место для батареи CMOS, некоторые более мелкие компьютеры, такие как многие планшеты и ноутбуки, имеют небольшой внешний отсек для батареи CMOS, которая соединяется с материнской платой через два небольших провода.

Некоторые устройства, использующие CMOS, включают в себя микропроцессоры, микроконтроллеры и статическое ОЗУ (SRAM).

Важно понимать, что CMOS и BIOS не являются взаимозаменяемыми условиями для одного и того же. Хотя они работают вместе для определенной функции внутри компьютера, они представляют собой два совершенно разных компонента.

Чипы CMOS желательны для устройств с батарейным питанием, таких как ноутбуки, потому что они потребляют меньше энергии, чем другие типы чипов. Хотя они используют как схемы с отрицательной полярностью, так и схемы с положительной полярностью (NMOS и PMOS), за один раз включается только один тип схемы.

Mac, эквивалентный CMOS, является PRAM, что означает RAM Parameter.

Что такое Facebook и для чего это нужно?

Cmos что это

Что такое Skype и для чего это нужно?

Cmos что это

Cmos что это

Источник

Почему кремний и почему КМОП?

Самый первый транзистор был биполярным и германиевым, но подавляющее большинство современных интегральных микросхем сделаны из кремния по технологии КМОП (комплементарный металл-оксид-полупроводник). Как вышло, что кремний стал главным из многих известных полупроводников? Почему именно КМОП-технология стала почти монопольной? Были ли процессоры на других технологиях? Что ждет нас в ближайшем будущем, ведь физический предел миниатюризации МОП-транзисторов фактически достигнут?

Cmos что это

Начало

На дворе рубеж 1947 и 1948 годов, Джон Бардин и Уолтер Браттейн под руководством Уильяма Шокли в The Bell Labs исследуют распределение поля в германиевых диодах и случайно обнаруживают транзисторный эффект. И хотя потенциальная полезность открытия выглядела очевидной (впрочем, городские легенды гласят, что открытие было рассекречено после того, как военные эксперты не увидели в нем практической пользы), выглядел первый транзистор вот так:

Cmos что это

Рисунок 2. Реплика первого транзистора

Не очень похоже на прибор, пригодный для промышленного производства, правда? На то, чтобы сделать из капризного точечного биполярного транзистора более удобный в производстве биполярный транзистор из pn-переходов, ушло два года, после чего дни (хорошо, не дни, но годы) электронных ламп в массовой электронной аппаратуре были сочтены.

Из троих первооткрывателей транзистора, правда, продолжил работать над ними только Шокли, который почти не имел отношения к исходной работе (потому что был теоретиком и начальником, а не исследователем), зато присвоил себе всю славу и так из-за этого разругался с Бардином и Браттейном, что они больше никогда не имели дела с микроэлектроникой. Браттейн занялся электрохимией, а Бардин — сверхпроводимостью, за которую он получил вторую Нобелевскую премию, став единственным человеком в истории, у которого две премии по физике.

Шокли же, успешно развалив своими амбициями исследовательскую команду, ушел из Bell Labs и создал собственную Shockley Semiconductor Laboratory. Рабочий климат в ней, впрочем, тоже оставлял желать лучшего, что привело к появлению знаменитой «предательской восьмерки», сбежавшей от Шокли и основавшей Fairchild Semiconductor, которая, в свою очередь, стала родителем того, что мы сейчас знаем как «Кремниевую долину» — включая такие компании, как Intel, AMD и Intersil.

Cmos что это

Рисунок 3. «Fairchildren» — компании, основанные выходцами из Fairchild

Сам Шокли так и не оправился от предательства «восьмерки» и покатился по наклонной: был уволен из собственной компании, увлекся расизмом и евгеникой, стал изгоем в научном сообществе и умер, всеми забытый. Даже его дети узнали о смерти из газет.

До начала

История открытия транзистора широко известна и много где описана. Гораздо менее известно то, что первая патентная заявка на транзистор была подана вовсе не в 1947, а на двадцать с лишним лет раньше, в 1925, американцем австро-венгерского происхождения Юлиусом Лилиенфельдом. При этом, в отличие от биполярного транзистора 1947 года, приборы, описанные в патентах Лилиенфельда, были полевыми: в патенте, полученном в 1930 году, MESFET с металлическим затвором, а в патенте 1933 года — MOSFET, практически такой же, каким мы знаем его сейчас. Лилиенфельд предполагал использовать алюминий для затвора и оксид алюминия в качестве подзатворного диэлектрика.

К сожалению, тогдашний уровень развития технологии не позволил Лилиенфельду реализовать свои идеи в прототипах, но проведенные в 1948 году все тем же Шокли (уже в одиночку) эксперименты показали, что патенты Лилиенфельда описывали принципиально работоспособные приборы. Собственно, вся работа группы Шокли над свойствами диодов, приведшая к случайному изобретению биполярного транзистора, была частью исследований по созданию полевого транзистора, гораздо более похожего по свойствам на вакуумные лампы и потому более понятного физикам тех лет. Тем не менее, несмотря на успешное подтверждение работоспособности идей Лилиенфельда, в 1948 году технологий стабильного получения тонких бездефектных пленок диэлектриков все еще не было, тогда как биполярный транзистор оказался вполне более технологичным и коммерчески перспективным. МОП-транзисторы были отложены на полку, а биполярные приборы начали триумфальное шествие по планете.

Биполярный транзистор или Bipolar Transistor — транзистор, в котором для работы нужны оба типа носителей заряда, и электроны, и дырки, и который управляется током базы (умножая его на коэффициент усиления транзистора). Обычно делаются при помощи pn-переходов или гетеропереходов, хотя самый первый транзистор хоть и был биполярным, не был транзистором на переходах. Популярный англоязычный акроним — BJT, bipolar junction transistor.
Для транзисторов на гетеропереходах (переходах между разными материалами, например, арсенидом галлия и алюмонитридом галлия) используется акроним HBT (Heterojunction Bipolar Transistor).

Униполярный или полевой транзистор, он же Field-Effect Transistor или FET — транзистор, действие которого основано на полевом эффекте и требует только одного типа носителей заряда. У полевого транзистора есть канал, управляемый приложенным к затвору напряжением. Полевых транзисторов существует довольно много разновидностей.

Привычный нам MOSFET или МОПТ — транзистор с затвором, изолированным от канала при помощи диэлектрика, обычно оксида и представляющий собой структуру Металл-Оксид-Полупроводник (Metal-Oxide-Semiconductor). В случае, если используется не оксид, их можно назвать MISFET (I — Insulator) или МДПТ (Д — Диэлектрик).

JFET (J — Junction) или транзистор с управляющим pn-переходом. В таком транзисторе поле, запирающее канал, создается при помощи прикладывания напряжения к управляющему pn-переходу.

Полевой транзистор Шоттки (ПТШ) или MESFET (ME — Metal) — разновидность JFET, использующая в качестве управляющего не pn-переход, а барьер Шоттки (между полупроводником и металлом), у которого ниже падение напряжения и выше скорость работы.

HEMT (High Electron Mobility Transistor) или транзистор с высокой подвижностью электронов — аналог JFET и MESFET, использующий гетеропереход для создания тонкого проводящего канала с высокой концентрацией и высокой подвижностью носителей заряда. Такие транзисторы — самые популярные в сложных полупроводниках.

Cmos что это

Рисунок 4. BJT, MOSFET, JFET

Германий

Первый транзистор был германиевым, однако технологи разных компаний довольно быстро перешли на кремний. Это было связано с тем, что чистый германий на самом деле довольно плохо подходит для электронных применений (хотя германиевые транзисторы до сих пор используются в аудиоаппаратуре, косящей под старину). Из преимуществ германия можно назвать высокую подвижность электронов и, что особенно важно, дырок, а также напряжение отпирания pn-переходов в 0.3 В против 0.7 В у кремния, хотя второе можно нивелировать при помощи использования переходов Шоттки (как и делалось в ТТЛШ-логике). Зато из-за меньшей ширины запрещенной зоны (0.67 против 1.14 эВ) у германиевых диодов большие обратные токи, сильно растущие с температурой, что ограничивает и температурный диапазон применимости германиевых схем, и допустимые мощности (на маленьких слишком велико влияние обратных токов, на больших начинает мешать саморазогрев). В довершение температурных проблем германия, его теплопроводность гораздо ниже, чем у кремния, то есть отводить тепло от мощных транзисторов сложнее.

Еще в ранний период истории полупроводниковой электроники у германиевых приборов были большие проблемы с выходом годных из-за сложности получения чистого кристаллического германия без винтовых дислокаций решетки и плохого качества поверхности, в отличие от кремния, не защищенной от внешних воздействий оксидом. Точнее, оксид у германия есть, но его кристаллическая решетка совпадает с решеткой чистого германия гораздо хуже, чем у кремния, что приводит к образованию недопустимо большого количества приповерхностных дефектов. Эти дефекты серьезно снижают подвижность носителей заряда, сводя на нет главное преимущество германия перед кремнием. И, в довершение, оксид германия реагирует с водой — как в процессе производства чипа, так и при эксплуатации. Впрочем, остальным полупроводникам повезло еще меньше, и у них никакого оксида нет вообще.

Пытаясь решить проблему плохой поверхности германия, мешавшей сделать полевой транзистор, Шокли придумал убрать канал в глубину полупроводника. Так появился полевой транзистор с управляющим pn-переходом, он же JFET. Эти транзисторы быстро нашли свое место в аналоговых схемах — в первую очередь, благодаря очень маленькому (по сравнению с биполярными транзисторами) входному току и хорошим шумовым характеристикам. Такое сочетание делает JFET отличным выбором для входного каскада операционного усилителя — что можно наблюдать, например, вот в этой статье Кена Ширрифа. Более того, когда вместо отдельных компонентов стали делать интегральные схемы, оказалось, что JFET довольно хорошо совместимы с биполярной технологией (я даже на рисунке выше сделал JFET из биполярного транзистора), и они стали общим местом в аналоговых биполярных техпроцессах. Но все это было уже на кремнии, а германий так и остался забыт на много лет, пока не пришло его время усилить позиции кремния вместо того, чтобы воевать с ним. Но об этом чуть позже.

Полевые транзисторы

А что МОП-транзисторы? Казалось бы забытые почти на десятилетие в связи со стремительным прогрессом биполярных собратьев, они, тем не менее, развивались. Во все тех же Bell Labs в 1959 году Дэвоном Кангом и Мартином Аттала был создан первый работающий МОП-транзистор. Он, с одной стороны, почти прямо реализовал идею Лилиенфельда, а с другой, сразу оказался практически идентичным многим следующим поколениям транзисторов, использующим в качестве подзатворного диэлектрика оксид кремния. К сожалению, в Bell Labs тогда не распознали коммерческий потенциал изобретения: прототип был существенно медленнее, чем биполярные транзисторы того времени. Зато потенциал новинки распознали в Radio Corporation of America (RCA) и в Fairchild, и уже в 1964 году МОП-транзисторы попали на рынок. Они были медленнее биполярных собратьев, хуже усиливали, шумели и очень страдали от электростатического разряда, зато у них были нулевой входной ток, низкое выходное сопротивление и отличные переключательные способности. Это не так много, но это было только начало очень длинного пути.

Биполярная логика и RISC

На ранних этапах развития полупроводниковой электроники доминировали аналоговые и радиочастотные применения: словом «транзистор» довольно долго обозначали не только собственно транзистор, но и радиоприемник на его основе. Цифровые ЭВМ на основе содержащих один-два вентиля микросхем были огромными (хоть и не шли ни в какое сравнение с ламповыми), так что были даже попытки делать вычисления аналоговым образом — благо для реализации интегрирования или дифференцирования достаточно одного операционного усилителя вместо целой россыпи цифровых чипов. Но цифровые вычисления оказались удобнее и практичнее, в результате чего началась эра цифровых электронных вычислительных машин, которая продолжается и сегодня (хотя квантовые вычисления и нейросети уже достигли значительных успехов).

Основным преимуществом МОП-технологии того времени была простота (напомню, что вплоть до восьмидесятых каждая микроэлектронная компания должна была сама организовать себе производство): для реализации простейшей работающей n-МОП или p-МОП схемы нужны всего четыре фотолитографии, для КМОП — шесть, а для биполярной схемы литографий нужно семь для одного типа транзисторов, и еще необходим более точный контроль диффузий и, в идеале, эпитаксия. Жирным минусом была скорость: МОП-транзисторы проигрывали в сравнении с биполярными и JFET больше, чем на порядок. В момент, когда КМОП позволял достичь частоты в 5 МГц, на ЭСЛ можно было сделать 100-200. Про аналоговые применения и говорить не приходится — МОП-транзисторы очень плохо для них подходят из-за низких скоростей и маленького коэффициента усиления, в то время как биполярная схема с JFET на входах способна обеспечить практически все запросы дизайнера.

Пока степень интеграции микросхем была маленькой, а потребляемую мощность никто особенно не считал, преимущество эмиттерно-связанной логики (ЭСЛ) для высокопроизводительных применений было очевидным, но в рукаве у МОП-технологии были козыри, сыгравшие несколько позже. В шестидесятых, семидесятых и восьмидесятых МОП и биполярные техпроцессы развивались параллельно, причем МОП использовали исключительно для цифровых схем, а биполярную технологию — как для аналоговых схем, так и для логики на основе семейств ТТЛ (транзисторно-транзисторная логика, TTL) и ЭСЛ.

Cmos что это

Cmos что это

Рисунок 6. Логический элемент 2ИНЕ на ТТЛ и 2ИЛИ/ИЛИНЕ на ЭСЛ

Обратите внимание на то, что логический элемент ЭСЛ — это просто усилитель без обратной связи, построенный таким образом, что переключающиеся транзисторы всегда находятся в “быстром” линейном режиме и никогда не попадают в “медленный” режим насыщения. Плата за скорость — постоянно текущий через схему ток, вне зависимости от рабочей частоты и состояния входов и выходов. Забавно, но этот недостаток некоторое время назад стали пытаться использовать как преимущество: из-за постоянства потребляемого тока криптографические схемы на ЭСЛ гораздо более устойчивы к взлому через “прослушивание” тока потребления, чем КМОП, где потребляемый ток пропорционален количеству переключающихся в данный момент времени вентилей. Если заменить биполярные транзисторы на полевые (JFET или MESFET), то получится ИСЛ — истоково-связанная логика, тоже нашедшая в свое время применения в сложных полупроводниках.

Очевидный плюс nМОП или pМОП логики — простота изготовления и малое число транзисторов, а значит малая площадь и возможность разместить на кристалле больше элементов. Для сравнения: элемент 2ИНЕ или 2ИЛИНЕ на nМОП/pМОП состоит из трех элементов, на КМОП — из четырех. На ТТЛ эти элементы содержат по 4-6 транзисторов, 1-3 диода и 4-5 резисторов. На ЭСЛ — 4 транзистора и 4 резистора (при этом на ЭСЛ удобно делать OR и NOR, и неудобно AND и NAND). Обратите, кстати, внимание, что все транзисторы на схеме элементов ТТЛ и ЭСЛ — это npn. Это потому, что сделать в p-подложке pnp-транзистор сложнее, чем npn, и структура у них получается разная — в отличие от КМОП-технологии, где транзисторы обоих типов почти одинаковые. К тому же, и pMOS, и биполярные pnp, работающие за счет дырок, медленнее своих «электронных» собратьев, а значит в биполярной логике, главной целью которой была скорость, они были не ко двору.

Второе важное преимущество МОП-технологии, проявившееся в полной мере при переходе на КМОП и во многом определившее доминирование этой технологии — маленькое энергопотребление. КМОП вентиль потребляет энергию только в процессе переключения, а статического энергопотребления у него нет (для современных технологий это не так, но опустим частности). Типовой рабочий ток вентиля ЭСЛ — от 100 мкА до 1 мА (0.5-5 мВт на питании 5.2 В). Умножив это число на, скажем, миллиард вентилей, составляющих современные процессоры Intel, мы получим МегаВатт… Собственно, потребление Cray-1 вы видели выше. Впрочем, в восьмидесятых речь обычно шла о тысячах или десятках тысяч вентилей, что, в теории, позволяло уложиться в разумный бюджет мощности даже на биполярной логике. На практике, впрочем, на одну и ту же площадь кристалла помещалось в несколько раз больше КМОП-вентилей, потреблявших меньше мощности, и становившихся намного быстрее с уменьшением проектных норм (закон Мура работал вовсю).

Intel 8008 (1972) на десятимикронной pМОП-технологии работал на частоте 500 кГц (против 80 МГц у гораздо более сложной системы Cray-1), Intel 8086 (1979) на трехмикронной nМОП и позже КМОП разгонялся уже до 10 МГц, а оригинальный 80486 (1989) — аж до 50 МГц.

Что же заставляло дизайнеров продолжать пробовать биполярные дизайны, несмотря на стремительное сокращение разницы между ними и КМОП, и несмотря на энергопотребление? Ответ прост — скорость. На заре времен дополнительным огромным преимуществом ЭСЛ была минимальная потеря быстродействия при работе на большие емкостные нагрузки или длинные линии — то есть сборка из многих корпусов с ЭСЛ-логикой была намного быстрее, чем сборка на КМОП или ТТЛ. Увеличение степени интеграции позволило КМОП частично преодолеть этот недостаток, вычислительные системы все еще были многочиповыми, и каждый выход сигнала за пределы кристалла (например, во внешний кэш) все сильно замедлял. Биполярные же вентили даже в конце восьмидесятых все еще были существенно быстрее, например за счёт в несколько раз меньшей разницы напряжений между логическим нулем и логической единицей — 600-800 мВ у ЭСЛ против 5 В у КМОП, и это в условиях, когда размеры транзисторов в биполярных технологиях уже стали отставать от КМОП. Но если скейлинг КМОП шел таким образом, что удельная мощность на единицу площади чипа оставалась постоянной (это явление является “следствием” закона Мура и называется “Деннардовское масштабирование”), то мощность ЭСЛ почти не упала, ведь для быстрой работы нужны статические рабочие токи. В результате разработчики цифровых схем стали предпочитать КМОП для реализации все усложнявшихся архитектур вычислительных систем даже там, где была нужна большая производительность.

Помощь цифровым биполярным технологиям пришла откуда не ждали. В начале восьмидесятых была придумана концепция RISC, предполагающая значительное упрощение микропроцессора и уменьшение числа элементов в нем. Биполярные технологии несколько отставали от КМОП в степени интеграции, потому что биполярные БИС были в основном аналоговыми, а там спешить за законом Мура больших причин не было. Тем не менее, начало развития RISC совпало с моментом, когда стало реалистично упаковать целый процессор на одном кристалле или хотя бы на двух-трех (кэш был обычно внешний). В 1989 году вышел Intel 80486, в котором FPU был выполнен на том же кристалле, что и основной процессор — это был первый чип, использовавший больше миллиона транзисторов.

Ко времени, о котором идет речь, многие производители микросхем начали переходить на Fabless модель, предоставляя организацию производства другим компаниям. Результатом деятельности одной из таких компаний и стали разработки интегральных микропроцессоров на ЭСЛ. Компания называлась Bipolar Integrated Technology и никогда не была особенно успешной, от самого основания в 1983 году до продажи в PMC-Sierra в 1996. Есть подозрение, что причиной неуспешности была именно ставка на биполярные цифровые продукты, но в конце восьмидесятых это не было так очевидно, а компания обладала передовыми по размерам и степени интеграции биполярными процессами. Их первым собственным продуктом был чип сопроцессора FPU, и BIT активно сотрудничала с двумя пионерами RISC — MIPS Computer Systems и Sun Microsystems — для того, чтобы создать на основе RISC архитектур чипы, для которых этот сопроцессор был бы полезен. Первая реализация архитектуры MIPS II — набор чипов R6000, R6010 и R6020 — была реализована на ЭСЛ и производилась на мощностях BIT. На них же производился процессор SPARC B5000.

Несколько позже в DEC реализовали MIPS II на одном кристалле на биполярной технологии Motorola. Итак, представьте себе: на дворе 1993 год, лидирующий продукт Intel — тот самый Pentium (техпроцесс КМОП 800 нм, тактовая частота 66 МГц, TPD 15 Вт, три миллиона транзисторов на кристалле). В IEEE Journal of Solid-State Circuits выходит статья, озаглавленная “A 300-MHz 115-W 32-b Bipolar ECL Microprocessor”. Триста (!) Мегагерц и сто пятнадцать (. ) Ватт. Отдельная статья, разумеется, была посвящена корпусу и теплоотводу этого монстра. Обе статьи я очень рекомендую почитать, если у вас есть доступ к библиотеке IEEE — это прекрасный документ эпохи, в котором есть фразы масштаба «the chip was designed largely with CAD tools developed by members of the design team» и «circuit performance has been increased significantly by using different signal swings in different applications, and by using circuit topologies (such as low-swing cascode and wired-OR circuits)». Ладно САПР, его в 1993 году только ленивый самостоятельно не писал (спросите YuriPanchul, он подтвердит), но wired OR!

Cmos что это

У нас было 2 уровня логических нулей и единиц, 75 элементов в библиотеке, 5 собственных САПР, полсхемы на Си и целое множество методов трассировки всех сортов и расцветок, топологические примитивы, а также клоковое дерево, три слоя металлизации, радиационная стойкость, килобайт кэша и две дюжины тестбенчей. Не то чтобы это был необходимый запас для проектирования, но если начал собирать микропроцессор, становится трудно остановиться. Единственное, что вызывало у меня опасение — это Wired OR. Ничто в мире не бывает более беспомощным, безответственным и порочным, чем Wired OR. Я знал, что рано или поздно мы перейдем и на эту дрянь.

К слову о радиационной стойкости и прочих специальных прибамбасах. История с открытием транзистора в 1948 году, а также много других менее известных событий (например, создание Кремниевой долины на деньги американских военных) показывает нам, что миф о военных как людях, готовых клепать истребители пятого поколения на рассыпухе 74 серии и TL431, а про проектные нормы 28 или 16 нм слышавших только по телевизору, по меньшей мере несправедлив. Настоящие военные не только постоянно применяют новые технологии (после соответствующей сертификации, которая иногда занимает существенное время), но и финансируют их создание. Так, всем отлично известная “семьдесят четвертая” серия ТТЛ-микросхем — это упрощенная “пятьдесят четвертая”, изначально созданная для военных применений. То же самое можно сказать о технологии “кремний на изоляторе”, которую много лет успешно использовала AMD, и о многих других технологиях, давно и прочно вошедших в наш быт. Так вот, радиационная стойкость ЭСЛ была в среднем выше, чем у аналогов на КМОП (она и сейчас наверное выше) — потому что когда у вас в вентиле большой постоянный рабочий ток, вас не очень волнуют ни утечки, ни падение коэффициента усиления транзистора. Этот факт дополнительно продлил жизнь и разработкам на ЭСЛ, и герою следующей части моего рассказа.

Арсенид галлия — материал будущего

Арсенид галлия — один из первых сложных полупроводников, привлекших внимание микроэлектронной индустрии. Главное преимущество арсенида галлия и над германием, и над кремнием — огромная подвижность электронов. При этом у него еще и довольно широкая запрещенная зона, что позволяет работать при больших температурах. Возможность работать на частотах в сотни МГц или даже несколько ГГц, в то самое время, когда из кремния еле-еле выжимаются десятки МГц — это ли не мечта? Арсенид галлия довольно долго считался «материалом будущего», который вот-вот придет на смену кремнию. Первый MESFET на нем был создан в 1966 году, а последние активные попытки делать БИС на нем были сделаны уже в середине девяностых в Cray Corporation (они же ее и похоронили окончательно) и на «Микроне» (серия микросхем К6500).

Важная проблема, которую надо было решить — отсутствие у арсенида галлия нативного оксида. Но проблема ли это? Ведь если нет оксида, то нет и проблем с радиационной стойкостью! Именно из этих соображений программы по разработке арсенидгаллиевой технологии обильно финансировались военными ведомствами. Результаты по стойкости действительно были отличные, а вот с собственно технологией вышло несколько сложнее. Необходимость применять JFET означает или применение ИСЛ — быстрой, но очень много потребляющей, или JFET вместо MOSFET в имитации nМОП-логики — более простой, но не такой быстрой и все еще изрядно потребляющей. Другая неприятная мелочь — если ничего не делать, то JFET на арсениде галлия получаются нормально открытые, то есть их пороговое напряжение ниже нуля, а это означает большее энергопотребление, чем оно было бы на MOSFET. Для того, чтобы сделать нормально закрытые транзисторы, технологам надо изрядно постараться. Впрочем, эту проблему относительно быстро решили, и в GaAs логике начали активно применяться E-D JFET технологии с нормально закрытыми (E — enhancement) активными транзисторами и нормально открытыми (D — depleted) в нагрузках. Еще один сильно недооцененный изначально недостаток — у арсенида галлия очень высокая подвижность электронов, но не дырок. На nJFET можно сделать очень много интересного (например, высокочастотные усилители), но с потреблением 1 мВт на вентиль говорить о СБИС довольно сложно, а если сделать малопотребляющие комплементарные схемы, то они из-за низкой подвижности дырок окажутся даже медленнее кремниевых.

И опять, как и с биполярными схемами, на помощь очень хотевшим получить радиационную стойкость военным пришла концепция RISC в лице все той же архитектуры MIPS. В 1984 году DARPA подписала три контракта на разработку GaAs MIPS микропроцессоров — с RCA, McDonnell Douglas и коллаборацией CDC-TI. Одним из важных требований технического задания было ограничение в 30 тысяч транзисторов, с формулировкой “чтобы процессоры можно было начать серийно производить с приемлемым выходом годных”. Кроме этого, существовали варианты конверсии на арсенид галлия семейства Am2900 от AMD, радстойкие арсенидгаллиевые версии легендарных 1802 микроконтроллеров от тех же RCA, базовые матричные кристаллы на несколько тысяч вентилей и чипы статической памяти на несколько килобит.

Несколько позже, в 1990 году, архитектуру MIPS для космических применений рассматривали и в Европе, но там выбрали SPARC — а иначе LEON тоже могли бы быть MIPS. Кстати, в выборе архитектуры для будущих LEON участвовал и ARM, но был отвергнут из-за плохой поддержки софтом. В итоге первый европейский космический ARM-процессор появится только в следующем году. Если вам интересна тема космических процессоров и архитектур для них, то вот ссылка на статью Максима Горбунова из НИИСИ РАН о космических процессорах вообще и о КОМДИВах в частности. Ссылка, как и положено ученому, в рецензируемом журнале Elsevier за пейволлом.

Самое интересное на мой взгляд решение было у группы из McDonnell Douglas. Я проследил по публикациям в IEEE Transactions on Nuclear Science историю их проекта (искать по фамилии Zuleeg), от первых транзисторов в 1971 году до собственной комплементарной JFET технологии и чипов на ее основе в 1989. Почему комплементарной? Потому что большую часть (и в плане бюджета транзисторов, и в плане бюджета мощности) микропроцессора составляет кэш-память, причем задержка собственно ячейки памяти далеко не всегда является фактором, ограничивающим быстродействие, а вот выигрыш по энергопотреблению при использовании комплементарной ячейки очевиден. Сделав комплементарный кэш и nJFET-логику, в McDonnell Douglas получили отличное соотношение скорости и потребления — и радиационную стойкость буквально на сдачу, без каких-либо дополнительных усилий.

И все было бы хорошо, но в то самое время, когда счет транзисторам в арсенидгаллиевых микропроцессорах шел на десятки тысяч, на коммерческом рынке уже были доступны относительно недорогие кремниевые КМОП чипы с миллионами транзисторов, и отставание не только не сокращалось, но и продолжало расти. Еще разработчики “материала будущего” среди многочисленных рассказов о достижениях кое-где писали в своих статьях фразы «достигнут процент выхода годных 3%, то есть один годный чип с пластины диаметром 75 мм», или «если мы снизим плотность дефектов до такого-то уровня, то сможем повысить процент выхода годных с 1% до 10%», причем подобные цифры фигурируют у несвязанных научных групп из разных стран. Капризность арсенида галлия и хрупкость его кристаллической решетки, мешающая выращивать кристаллы большого диаметра и ограничивающая уровни легирующих примесей, хорошо известна, и это, в сочетании с желанием минимизировать количество транзисторов на кристалле микропроцессора, наводит меня на мысли о том, что такой низкий выход годных для арсенида галлия действительно был нормой, и не только в лаборатории, но и в серийном производстве. Причем, согласно уже советским данным, итоговая стоимость практически не зависела от сложнсти технологии, потому что сами пластины арсенида галлия были дороже любой обработки. Неудивительно, что никому, кроме военных, такие СБИС не были интересны.

Кстати, а что у нас?

До сих пор статья рассказывала об успехах и неудачах американских компаний, но ведь не только в Америке была микроэлектроника, верно? К сожалению, о сложном пути советской микроэлектроники в выборе технологий рассказать можно немного. Первая причина — история американских (а также, например, японских) разработок хорошо документирована публикациями в профильных журналах IEEE, архив которых сейчас оцифрован, и изучать их — настоящее удовольствие для ценителя. Советская же микроэлектроника всю свою историю была крайне замкнутой. Публикаций было немного даже на русском языке, не говоря уже о том, чтобы сообщать о своих успехах всему миру (что делалось, например, в фундаментальной физике). И даже то немногое, что публиковалось, сейчас очень сложно найти и, разумеется, только в бумажном виде, а никак не в электронном. Поэтому мне, кстати, отдельно отрадно сейчас видеть российских коллег на международных научных конференциях и промышленных выставках, причем не только как гостей, но и как докладчиков. Вторая причина состоит в том, что большую часть времени советская микроэлектроника, пусть и ненамного, но отставала от американцев и активно занималась копированием успешных западных разработок. Более того, с начала восьмидесятых, когда в мире началось все самое интересное, министерство электронной промышленности СССР официально взяло курс на отказ от оригинальных разработок и поголовное копирование американских микросхем — уже серийных, а не экспериментальных разработок и методов. Возможно, в условиях ограниченных ресурсов это было правильным решением, но его итогом стало нарастание отставания (причем не технологического, а идейного), которое после развала СССР стало фактически необратимым — до тех пор, пока уже в двадцать первом веке российская микроэлектроника была “перезапущена” фактически с нуля.

В итоге, хотя GaAs чипы средней степени интеграции применялись в начале девяностых как в суперкомпьютерах Cray, так и в ЭВС ЕС-4, в СССР никогда не было RISC-процессоров, сыгравших важную роль в завершающих этапах борьбы КМОП, ЭСЛ и арсенида галлия. С технологической точки зрения, в то же самое время, когда американцы разрабатывали однокристалльные микропроцессоры, на зеленоградском “Микроне” ставилась в серийное производство арсенидгаллиевая серия микросхем К6500, включавшая в себя память до 16 кбит, базовые матричные кристаллы объемом до десяти тысяч вентилей и микропроцессорный комплект из пяти чипов — то есть такие же сложные кристаллы, как и американские процессоры. Но если McDonnell Douglas при помощи нормально закрытых JFET обоих типов проводимости имитировали на GaAs nМОП и КМОП схемы, имея целью минимизировать энергопотребление и подготовить почву для роста степени интеграции, то в К6500 были очень быстрые (до 1 ГГц), но гораздо более сложные и капризные схемы на ИСЛ с нормально открытыми MESFET (что делает достигнутые результаты по степени интеграции еще более удивительными).

Cmos что это

Рисунок 8. Два варианта инверторов из техпроцесса McDonnell Douglas и инвертор микросхем серии К6500

Работы по арсениду галлия продолжались на «Микроне» с 1984 до по меньшей мере до 1996 года, но никакую информацию о том, что случилось после этого, мне найти не удалось. Сейчас все разработки “Микрона”, в том числе радиационностойкие и радиочастотные, делаются на кремнии.

Арсенид и другие

Разработчики кремниевых КМОП микросхем специального назначения тем временем не стояли на месте; к началу девяностых стало понятно, что обеспечить радиационную стойкость на слегка модифицированной коммерческой кремниевой КМОП технологии ненамного сложнее, чем на дорогом и капризном арсениде галлия, что лишило его последнего важного преимущества и ограничило весьма узкими и специфическими нишами — в основном, дискретными СВЧ и силовыми приборами. Более того, даже в этих применениях сейчас все чаще используется не арсенид, а нитрид галлия или разнообразные гетероструктуры, обладающие лучшими температурными характеристиками, более высокой подвижностью и большим полем пробоя.

Cmos что это

Рисунок 9. Сравнение основных свойств кремния, арсенида галлия и нитрида галлия для силовых и СВЧ-применений

А что же, спросите вы, может на нитриде галлия можно сделать СБИС? К сожалению, у нитрида галлия тоже низкая подвижность дырок, да и не только у него. Радикально большей, чем у кремния, подвижностью дырок обладает только антимонид индия, но у него такая узкая запрещенная зона, что приборы на его основе могут работать только при криогенных температурах.

Не поймите меня неправильно, другие полупроводники тоже нужны, и у них множество полезных применений. Когда в 2000 году Нобелевский комитет решил наконец выдать премию за электронику, одну половину премии получил Джек Килби за создание первой интегральной схемы, а вторую — Жорес Алферов и Герберт Кремер за «разработку полупроводниковых гетероструктур, используемых в высокочастотных схемах и оптоэлектронике». Нашу жизнь уже сложно представить без лазеров на гетероструктурах, рынки силовых приборов на нитриде галлия и карбиде кремния растут как на дрожжах (и на электрификации транспорта), скорое развертывание сетей 5G, работающих на частотах до 39 ГГц, невозможно представить без полупроводников A3B5, но только кремниевая КМОП-технология оказалась обладающей всеми нужными свойствами для создания вычислительных СБИС, составляющих львиную долю рынка микроэлектроники и управляющих всем упомянутым выше разнообразием.

Впрочем, даже кремниевая микроэлектроника намного шире, чем только высокопроизводительные микропроцессоры. Прямо сейчас TSMC одновременно с вводом в строй техпроцесса 5 нм запускает новую фабрику с проектными нормами 180 нм на 200 мм пластинах — потому что спрос на них есть и он стабильно растет. Да, этот рынок намного меньше рынка чипов для мобильных телефонов, но и вложения для входа существенно скромнее. То же самое можно сказать про рынки карбида кремния и нитрида галлия. И именно сложные полупроводники, СВЧ и силовая электроника, на мой скромный взгляд, могут стать настоящим драйвером возрождения российской микроэлектроники и ее выхода на мировой рынок. В этих сферах компетенции и оснащенность российских компаний очень сильны и достаточно близки к мировым лидерам. Все в курсе про 180, 90 и 65 нм на “Микроне”, но мало кто слышал про 200 нм на “Истоке” или 150 нм на “Микране”. Еще мало кто слышал, что фабрика STM в Катании, с которой был скопирован 180 нм процесс на «Микроне», сейчас полностью перешла на производство карбида кремния, рынок которого через пять лет должен достигнуть трех миллиардов долларов. STM недавно купили производителя подложек SiC, чтобы владеть всей производственной цепочкой, и в принципе делают все, чтобы оказаться на растущем рынке лидерами.

Поглощай и властвуй

Статьи конца восьмидесятых и начала девяностых, посвященные перспективным технологиям — ЭСЛ на кремнии, комплементарным JFET на GaAs, попыткам сделать германий great again — практически неизменно заканчиваются словами «мы продемонстрировали великолепные перспективы нашей идеи, и буквально через пару лет, когда технологии ещё немного разовьются и позволят больше транзисторов на чипе / меньше потребление / выше процент выхода годных, вот тогда-то мы и завоюем мир». Вот только обещанный прогресс на деньги DARPA так никогда и не наступил. Почему? Потому что технология производства микросхем дорожает с каждым новым уменьшением размеров, и никакие исследовательские гранты не могли перебить объемы вложений Intel, работавших на огромный потребительский рынок и хорошо понимавших, что технологическое лидерство — один из ключей к лидерству коммерческому. Именно поэтому Intel подняли флаг закона Мура и назначили себя ответственными за его выполнение, после чего все остальные производители оказались втянуты в сумасшедшую гонку вооружений, которую маленькие компании и другие технологии предсказуемо не смогли себе позволить. В итоге в нише персональных компьютеров у Intel остался ровно один конкурент, и вообще технологии ниже 14 нм есть всего у трёх компаний в мире — TSMC, Intel и Samsung. Можно сказать, что Intel очень повезло давным-давно начать работать с МОП-транзисторами, а не с ЭСЛ, но если бы не повезло им, повезло бы кому-то еще, и результат остался бы примерно таким же.

Cmos что это

Рисунок 10. Схематичный разрез BCD технологии

Мой любимый пример такого рода — BCD-технология. BCD — это Bipolar (для аналоговой части), CMOS (для цифровой), DMOS (высоковольтные ключи на том же кристалле, что и управляющая логика). Такие технологии умеют работать с напряжениями до 200 Вольт (а бывает и больше) и позволяют реализовать на одном чипе все, что нужно для управления электромоторами или DC/DC преобразованием.

Cmos что это

Рисунок 11. Разрез SOI BCD с высокольтным LDMOS транзистором в изолированном кармане

Технология BCD SOI дополняет все вышеперечисленное полной диэлектрической изоляцией элементов, улучшающей стойкость к тиристорному эффекту, шумоизоляцию, повышающей рабочие напряжения, позволяющей без проблем разместить на кристалле high-side ключи или, например, работать с отрицательными напряжениями (нужными для мощных GaN ключей с порогом ниже нуля Вольт). На том же кристалле производители предлагают разместить энергонезависимую память, IGBT, диоды Зенера… список длинный, можно играть в буллшит-бинго на презентациях) Обратите внимание на глубину слоя кремния: в отличие от «обычных» КНИ технологий, где ее стараются минимизировать, чтобы избавиться от донной части стокового и истокового pn-переходов и увеличить скорость работы, в BCD слой кремния очень глубокий, что помогает обеспечить приемлемые стойкость к электростатическому разряду и тепловые характеристики. Транзисторы при этом ведут себя в точности как объемные, только с полноценной диэлектрической изоляцией. Этим, помимо целевой аудитории из производителей автоэлектроники еще пользуются для создания своих не высоковольтных, но радстойких КМОП-чипов, например «Миландр» или Atmel, получая главное преимущество КНИ без его обычных недостатков.

Будущее КМОП и альтернативы

Даже когда закон Мура начал ломаться из-за того, что уменьшение размеров кремниевых транзисторов подошло к физическим пределам, оказалось, что продолжать доводить до ума КМОП выгоднее, чем искать что-то принципиально новое. В исследования альтернатив и путей отхода, разумеется, вкладывали деньги, но основные усилия оказались брошены на то, чтобы улучшить кремниевый КМОП и обеспечить преемственность наработок. За открытие графена Новоселову и Гейму дали Нобелевскую премию уже почти десять лет назад; и где тот графен? Правильно, там же, где углеродные нанотрубки и все остальные материалы будущего, а на кремнии уже начато производство по процессу 5 нм, и все идет к тому, что 3 или даже 2 нм тоже будут. Разумеется, это не совсем настоящие нанометры (о чем я уже писал на Хабре вот здесь), но плотность упаковки продолжает расти; хоть и очень медленно, зато это все ещё кремниевый КМОП.

Cmos что это

Рисунок 12. Gate All Around транзисторы Samsung для технологий 5 нм и ниже. Следующий шаг по сравнению с FinFET и ответ на вопрос «почему бы не упаковывать транзисторы в несколько слоев?» Все, остальные методы исчерпаны, теперь пришла очередь нескольких слоев. Поставим семь таких транзисторов вертикально, мы получим один нанометр вместо семи!

Жертвой прогресса в КМОП пал даже оксид кремния, ради которого изначально все и затевалось! Его заменили сложные многослойные структуры на основе оксида гафния. В канал стали добавлять германий для увеличения подвижности (уже апробированный в разработках для БиКМОП СВЧ); доходят даже до того, чтобы тестировать (пока только тестировать) в “кремниевых” транзисторах канал n-типа из материалов A3B5 (у которых высокая подвижность электронов), а p-типа — из германия (у которого высокая подивжность дырок). Про мелочи вроде изменения формы канала с плоской на объемную (FinFET) и маркетинговые уловки с цифрами проектных норм писать никакого объема не хватит.

Что ждет нас в будущем? С одной стороны, прогресс кремниевой технологии с внедрением EUV литографии и Gate All Around транзисторов уже точно себя исчерпал; отставание от планов ITRS двадцатилетней давности составляет уже около десяти лет, Intel давно забросил свой знаменитый “тик-так”, Globalfoundries и вовсе отказались опускаться ниже 14 нм. Стоимость одного транзистора на кристалле прошла минимум на нормах 28 нм и с тех пор начала расти. А самое главное — целевые рынки изменились. Много лет драйвером уменьшения проектных норм был рынок персональных компьютеров, потом персоналки сменились на мобильные телефоны (примерно в это время TSMC и Samsung догнали Intel). Но сейчас и на рынке мобильников спад и стагнация. Была кратковременная надежда на чипы для майнинга, но она, кажется, не оправдалась.

Новый фаворит производителей микросхем — интернет вещей. Действительно, рынок большой, быстрорастущий и с хорошими долгосрочными перспективами. А главное — для интернета вещей производительность и количество элементов на кристалле не являются критическими конкурентными преимуществами, зато малое энергопотребление и дешевизна — являются. Это значит, что основная причина уменьшать проектные нормы исчезла, зато появились резоны оптимизировать технологию под специфические задачи. Звучит интересно, не правда ли? Примерно как… пресс-релиз Globalfoundries о прекращении работ на 7 нм и концентрации на 14/12 и 28/22 нм FDSOI. Более того, удорожание новых технологий в сочетании с жесткой ценовой конкуренцией привело к тому, что производители микросхем не спешат переходить на новые проектные нормы просто потому, что могут, а остаются на старых так долго, как это разумно делать, а также объединяют в системе разнородные чипы — но теперь не на плате, а в внутри корпуса. «Систему на кристалле» сменила «система в корпусе» (об этом я тоже уже писал подробнее). Появление систем в корпусе и интернет вещей, помимо прочего, дают новый шанс сложным полупроводникам, ведь поместить арсенидгаллиевый чип в один корпус с кремниевым больше ничего не мешает, а необходимость радиотракта в системе для интернета вещей достаточно очевидна. То же касается разнообразных оптических приборов, МЭМС, сенсоров — и вообще всего, что существует в микроэлектронике помимо КМОП на кремнии

Так что моим прогнозом относительно дальнейшего развития КМОП кремниевой технологии и ее заменителей будет то, что мы увидим радикальное замедление прогресса, вплоть до полной остановки — просто за ненадобностью — и не увидим в ближайшем будущем в массовом производстве что-то принципиально новое (углеродные нанотрубки, графен, логика на мемристорах) — опять же за ненадобностью. Зато несомненно будет более широким использование уже имеющегося технологического багажа. Микроэлектроника продолжает проникновение во все сферы нашей жизни, количество доступных ниш огромно, новые рынки появляются, растут и будут продолжать расти. Ведущие мировые производители наращивают производство не только самых новых проектных норм, но и более старых тоже: TSMC впервые за 15 лет строит фабрику с пластинами 200 мм, Globalfoundries в прошлом году представили новый 180 нм BCD техпроцесс. Ведущие мировые производители с оптимизмом смотрят в новые ниши, которые при скромных сложениях сейчас обещают огромную выгоду в обозримом будущем. В общем, несмотря на отсутствие прогресса с нанометрами, скучно не будет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *