Дроссель что это
Дроссель что это
Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.
Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.
Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением. Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.
Итак, дроссель — катушка самоиндукции, применяемая в качестве большого индуктивного сопротивления для тех или иных переменных токов.
В том случае, если дроссель должен представлять большое индуктивное сопротивление токам низкой частоты, он должен обладать большой индуктивностью, и в этом случае он делается со стальным сердечником. Дроссель высокой частоты (представляющий большое сопротивление токам высокой частоты) делается обычно без сердечника.
Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.
Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.
Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.
Безвитковые дроссели предназначены для подавления высокочастотных помех в электрических цепях. Обычно они представляют собой ферритовый сердечник, выполненный в виде полого цилиндра (или кольца круглого сечения), через который проходит проводник.
Реактивное сопротивление такого дросселя на низких частотах (в том числе на промышленной частоте) мало, а на высоких частотах (0,1 МГц…2,5 ГГц) велико. Таким образом, если в кабеле возникает высокочастотная помеха, то такой дроссель ее подавляет с вносимым затуханием 10…15 дБ. Для создания магнитопроводов безвитковых дросселей применяют марганец-цинковые и никель-цинковые ферриты.
Дроссели переменного тока широко используются в качестве реактивных (индуктивных) сопротивлений, элементов LR- и LC-контуров, а также в выходных фильтрах преобразователей переменного тока. Такие дроссели изготавливают с индуктивностью от десятых долей микрогенри до сотен генри на токи от
1 мА до 10 А. Они имеют одну обмотку, расположенную на магнитопроводе из ферро- или ферримагнитного материала.
При проектировании дросселя переменного тока необходимо учитывать его следующие основные номинальные параметры: требуемую мощность (наиболее допустимое значение тока), частоту тока, добротность и массу.
Повысить добротность можно различными методами. С точками зрения изготовления магнитопроводов необходимо учитывать, что повысить добротность можно за счет:
выбора магнитного материала с высокой магнитной проницаемостью и малыми потерями;
увеличения площади поперечного сечения магнитопровода;
введения немагнитного зазора.
Сглаживающие дроссели – элементы преобразователей, предназначенные для уменьшения переменной составляющей напряжения или тока на входе или выходе преобразователя. Такие дроссели имеют одну обмотку, в токе которой (в отличие от дросселей переменного тока) присутствуют как переменная, так и постоянная составляющие. Обмотка дросселя включается последовательно с нагрузкой.
Дроссель должен иметь большую индуктивность (индуктивное сопротивление). На его обмотке происходит падение переменной составляющей напряжения, в то время как постоянная составляющая (за счет малого активного сопротивления обмотки) выделятся на нагрузке.
Составляющие тока создают в магнитопроводе дросселя постоянный магнитный поток (который играет роль подмагничивающего) и переменный поток, изменяющийся по синусоидальному закону. За счет постоянной составляющей тока магнитный поток (индукция) в магнитопроводе изменяется в соответствии с начальной кривой намагничивания, в то время как за счет переменной составляющей перемагничивание осуществляется по частным циклам при соответствующих значениях тока.
При увеличении тока переменная составляющая магнитного потока уменьшается (при постоянстве переменной составляющей тока), что приводит к уменьшению дифференциальной магнитной проницаемости и, следовательно, к уменьшению индуктивности дросселя. Физически уменьшение индуктивности с увеличением подмагничивающего тока связано с тем, что по мере увеличения этого тока магнитопровод дросселя все более и более насыщается.
Дроссели насыщения используются в качестве регулируемых индуктивных сопротивлений в цепях переменного тока. Такие дроссели имеют не менее двух обмоток, одна из которых (рабочая) включается в цепь переменного тока, а другая (управляющая) – в цепь постоянного тока. В принципе работы дросселей насыщения лежит использование нелинейности кривой В(Н) магнитопроводов при их намагничивании управляющим и рабочим токами.
Магнитопроводы таких дросселей не имеют немагнитного зазора. Основными особенностями дросселей насыщения (по сравнению со сглаживающими дросселями) являются значительно большее значение переменной составляющей магнитного потока в магнитопроводе и синусоидальный характер ее изменения.
Развитие радиоэлектронной аппаратуры предъявляет к дросселям различные требования, в частности требует уменьшения габаритов и снижения уровня электромагнитных помех в условиях высокой плотности монтажа компонентов. Для решения этой задачи были разработаны многослойные ферритовые чип-фильтры на основе поверхностного монтажа на печатной плате.
Такие устройства получают по тонкопленочной технологии. На подложку наносятся тонкие слои феррита (например, тайваньская компания «Chilisin Electronics» использует Ni–Zn-феррит), между которыми формируется структура полувитка катушки.
После нанесения слоев, количество которых может достигать нескольких сотен, производится спекание, при котором формируется объемная катушка с ферритовым магнитопроводом. Благодаря такой конструкции минимизируются поля рассеяния и соответственно практически исключается взаимное влияние элементов друг на друга, так как силовые линии в основном замыкаются внутри магнитопровода.
Многослойные ферритовые чип-фильтры: а – технология изготовления; б – внешний вид, соотнесенный со шкалой с шагом 1 мм
Многослойные ферритовые чип-фильтры используются для фильтрации высокочастотных помех в силовых и сигнальных цепях бытовой электроники, источников питания и др. Основными производителями чип-фильтров являются компании «Chilisin Electronics», «TDK Corporation» (Япония), «Murata Manufacturing Co., Ltd» (Япония), «Vishay Intertechnology» (США) и др.
Дроссели с магнитопроводом, изготовленным из магнитодиэлектрика на основе карбонильного железа применяются в радиоаппаратуре, работающей в диапазоне 0,5…100,0 МГц.
В дросселях могут использоваться магнитопроводы, изготовленные из всех известных магнитомягких материалов: электротехнических сталей, ферритов, магнитодиэлектриков, а также прецизионных, аморфных и нанокристаллических сплавов.
В отличие от дросселей в трансформаторах, магнитных усилителях и других подобных устройствах магнитопровод служит для концентрации магнитного потока при минимизации магнитных потерь. В этом случае основная функция, которую выполняет магнитопровод, практически исключает его изготовление из магнитодиэлектрика, который обладает малой относительной магнитной проницаемостью.
Широкая номенклатура ферритов различных марок, предназначенных для работы в аналогичных с магнитодиэлектриками диапазонах частот, сужает область применения магнитодиэлектриков для изготовления магнитопроводов электромагнитных устройств.
Итак, по назначению электрические дроссели подразделяются на:
Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.
Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.
Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.
Выделяющееся на дросселе Др усиленное переменное напряжение подавалось на сетку следующей лампы через разделительный конденсатор С. Вследствие того, что индуктивное сопротивление дросселя растет с частотой, дроссельный усилитель не мог давать сколько-нибудь равномерного усиления в широкой полосе частот и применялся только в тех случаях, когда нужно усиливать сравнительно узкую полосу частот и большой равномерности усиления в этой полосе не требовалось.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое дроссель: устройство и виды
Дросселем называют пассивный радиоэлемент, состоящий из катушки индуктивности с сердечником или без него. Этот термин произошел от немецкого «drosseln» — ограничивать или гасить. Такое слово хорошо выражает основную его функцию — сглаживание пульсации напряжения.
«ЗУМ-СМД» расскажет о принципе работы, классификации дросселей и о том, где они используются.
Дроссель может накапливать энергию и преобразовывать ее в магнитное поле. Этот процесс обратимый, поэтому после окончания воздействия электродвижущей силы, энергия из магнитной индукции опять преобразуется в электрический ток. Элемент эффективно восполняет временные энергетические провалы, возникающие на выходе импульсного или синусоидального выпрямителя.
На дросселе легко построить повышающий, понижающий, инверсивный или двухполярный преобразователь напряжения. Так как катушка дросселя состоит из целостного проводника, то изготовленные на их базе преобразователи имеют гальваническую связь входа с выходом.
Основными источниками питающего напряжения являются генераторы постоянного или переменного низкочастотного напряжения. В таких цепях могут возникать помехи, вызванные:
наличием резистивного и индуктивного сопротивления линий питания каскадов, имеющих импульсное потребление;
дребезгом контактов разъемов питания и др.
С помехами, вызванными перечисленными выше причинами, эффективно справляются дроссели. Для низкочастотных переменных, а тем более постоянных напряжений в цепях питания, они практически не создают сопротивления. А вот помехи представляют собой высокочастотную составляющую, которая эффективно подавляется дросселем. Выполненные из медной проволоки проводники этих устройств практически не создают падения напряжения на них. Это очень важно при малых разностях потенциала на нагрузке и больших токах в их цепях.
Иногда нужно развязать переменные составляющие разных частот или максимально изолировать их. При этом частотных полос может быть несколько. С такими задачами справляются дроссели, которые не требуют дополнительного питания для их работы. Также они могут использоваться в цепях обратных связей каскадов активных усилительных компонентов, в том числе интегральных.
Дроссели можно разделить:
У низкочастотные дросселей большое количество витков намотаны на сердечники из мягкой стали. Высокочастотные индуктивности наматывают на ферримагнитных сердечниках различной конфигурации или вообще без них. Катушка таких устройств может быть выполнена на пластиковом каркасе или даже без него.
Чип-фильтры имеют многослойную структуру, такие дроссели используются, в основном, для SMD-монтажа. Безвитковые дроссели представляют собой ферритовые трубки, внутри их отверстий находится проводник, на котором гасятся помехи частотой от 0,1 МГц до нескольких ГГц.
Применение дросселей позволяет решать задачи построения эффективных устройств электроники и компьютерной техники. Качество современных пассивных приборов достигается с помощью инновационного оборудования, технологий и качественных материалов.
Что такое дроссель и какой принцип его работы
Для стабильной работы некоторых электрических схем требуется наличия в электроцепи сглаженного тока. Данная статья рассмотрит тему — что такое дроссель. Будет дано определение этого элемента, описаны разновидности, принцип работы, устройство, а так же будут приведены различные схемы подключения.
Устройство
Дроссель устаревшее название, в настоящее время более известен как катушка индуктивности, по своей сути — это компонент электрической цепи, винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока наблюдается её значительная инерционность. Состоит из следующих элементов:
Устройство дросселя очень схоже с трансформатором. Основное отличие заключается в наличие всего одного ряда обмотки. Так же дроссели могут быть бескорпусными. Такие устройства используются в высокочастотных схемах.
Катушка также может быть выполнена без установленного внутри магнитного сердечника. Устройства без сердечника более громоздкие, так как такая конструкция требует наличия гораздо большего количества витков на катушке.
Дроссель обычный электронный имеет обозначение на схеме в виде волнистой линии. Если дроссели оснащены магнитным сердечником, то волнистая линия дополняется прямой чертой.
Основные параметры электрического дросселя зависят от его индуктивности, которая измеряется в Генри («Гн»). Так же элементу присущи следующие характеристики: сопротивление при работе от постоянного тока, добротность, ток подмагничивания и величина изменяемого напряжения.
Принцип работы
Принцип работы дросселя можно описать следующим образом:
Назначение дросселя для цепей переменного тока можно охарактеризовать следующим образом:
Все эти возможности и характеристики дроссельных устройств применяются в электротехнике и электронике при проектировании различных устройств, оборудования.
Разновидности
В настоящее время используются следующие виды электрических дросселей:
Современная электротехника требует значительного уменьшения габаритных параметров элементов электросхем. На схемах с поверхностным монтажем, при условии большой ее загруженности деталями, используются так называемые чип-фильтры. У таких элементов отсутствует провод. Катушка формируется из нескольких слоев феррита. Основным назначением чип-фильтров является снижение высокочастотных помех на сложных электронных схемах.
Кроме того существуют пусковые устройства. Они используются в качестве ограничителей тормозного и пускового тока для электродвигателей. В электрике, чтобы запустить мощный электрический двигатель, применяются трехфазные разновидности. Они отличаются большой величиной индуктивности.
Расчет характеристик
Устройство электрическое дроссельное имеет на корпусе маркировку с основными своими характеристиками. Но если маркировки нет или предполагается самостоятельное изготовление устройства, то необходимо провести предварительный расчет основных параметров устройства. Как сделать подобный расчет, будет описано далее.
Когда делаются расчеты, применяется простая формула для вычисления индуктивности:
Чтобы подтвердить правильность рассчитанного количества витков, можно использовать тестер в режиме измерения индуктивности. Это поможет подтвердить правильность определения необходимого количества витков.
Схема подключения
Дроссели часто встречаются в блоках питания и светильниках с люминесцентными лампами. Подключение в схему дросселя для таких вариантов будет представлено ниже в статье.
Люминесцентный светильник
В такой схеме дроссель выступает в качестве пускового и сглаживающего устройства. Подключается он последовательно с лампой. При этом совместно с ним так же используется стартер. При таком подключении дроссель использует такой принцип работы:
За момент нагрева катодов и стартера, происходит накопление тока в контуре дросселя. При замыкании стартера происходит вымещение тока дросселем и разрядка самого стартера. При разрядке приходят в движение электроны на катодах лампы. Они вступают в контакт с газом, и при этом лампа загорается. Схема люминесцентной лампы, состоящую из дросселя, двух стартеров и двух люминесцентных ламп представлена ниже.
Блок питания
У начинающих радиолюбителей часто возникает такой вопрос — зачем нужен дроссель в блоке питания. Он необходим по двум причинам:
Как правило, дроссели в этих блоках устанавливают после диодного моста непосредственно на выходе, а значит работают уже с постоянным током. При увеличении напряжения или коротком замыкании, дроссель сглаживает значительную часть пульсации. При стабильной работе блока питания, устройство сглаживает высокочастотные помехи, пропуская в цепь только прямой ток без каких-либо колебаний. Такая заслонка также выполняет роль дополнительного сопротивления, которое значительно снижает напряжение на выходе моста. Дроссель и такая схема подключения представлены на рисунке ниже.
Проверка
До этого мы выяснили — для чего нужен дроссель, из чего состоит это устройство, где оно применяется и по какому принципу работает. Теперь попытаемся узнать, как можно протестировать данный элемент на работоспособность. При помощи мультиметра всегда можно проверить целостность элемента и величину его индуктивности.
Индуктивность
Для замера индуктивности понадобится тестер с режимом измерения этого параметра. Обозначаются такие возможности мультиметра с помощью букв «Н» или «Гн». Замер этого параметра проводится следующим образом:
Прибор должен показать значение индуктивности, близкие к указанным на корпусе устройства.
Сопротивление
Замер сопротивления поможет узнать состояние катушки. Проверка в этом случае выглядит следующим образом:
Бесконечно большое сопротивление укажет на обрыв внутренней обмотки. Если сопротивления нет совсем – это указывает на короткое замыкание. Значение сопротивления должно быть близко к характеристикам, которые указаны на корпусе устройства.
Убедиться в отсутствии короткого замыкания можно при переключении тестера в режим «прозвонка». Звуковой сигнал тестера укажет на наличие короткого замыкания.
Заключение
В статье было дано определение — что это такое электрический дроссель и для чего он используется, а так же как работает и какими способами можно проверить его работоспособность. Так же было рассмотрено, как рассчитать параметры устройства при его самостоятельной сборке. Такие знания помогут начинающим радиолюбителям понять принцип работы электронных схем, включающих в себя дроссели различных типов и разновидностей.
Видео по теме
Значение слова «дроссель»
1. Электр. Катушка из медной проволоки, обладающая большим индуктивным сопротивлением, включаемая в электрическую цепь для регулирования силы тока.
2. Тех. Приспособление в виде клапана или заслонки для регулирования давления и расхода жидкости, пара или газа.
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
в широком смысле слова, дроссель — это ограничитель;
в электротехнике — катушка индуктивности, обладающая высоким сопротивлением переменному току и малым сопротивлением постоянному;
Гидравлический дроссель или пневматический дроссель — устройство на пути движения жидкости или газа, может быть нерегулируемое или регулируемое;
дроссельная заслонка в системах подачи топлива (например, в двигателе внутреннего сгорания), а также ручка, регулирующая эту заслонку;
дроссельная (редукционная) арматура — элемент трубопроводной арматуры, предназначенный для снижения (редуцирования) рабочего давления в системе за счёт увеличения гидравлического сопротивления в проточной части;
дро́ссель
1. техн. устройство в виде клапана или заслонки для уменьшения давления проходящих через него по трубам пара, газа или жидкости
2. эл.-техн. катушка, включаемая в электрическую цепь для регулирования силы тока
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова страгиваться (глагол), страгивается:
Дроссель
Дро́ссель (нем. Drossel ) — ограничитель, регулятор.
Примечания
дроссельная (редукционная) арматура — элемент трубопроводной арматуры, предназначенный для снижения (редуцирования) рабочего давления в системе за счёт увеличения гидравлического сопротивления в проточной части[1]; Дроссельная арматура предназначена не для снижения рабочего давления, а для регулирования протока жидкости или газа. Для редуцирования давления предназначена редукционная аппаратура. Это разные вещи по устройству и принципу действия
См. также
Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюда из другой статьи Википедии, пожалуйста, вернитесь и уточните ссылку так, чтобы она указывала на статью. |
Полезное
Смотреть что такое «Дроссель» в других словарях:
ДРОССЕЛЬ — • ДРОССЕЛЬ, в технике другое название акселератора на любом средстве передвижения, оснащенном ДВИГАТЕЛЕМ ВНУТРЕННЕГО СГОРАНИЯ. Так называется потому, что такие двигатели имеют дроссельную заслонку в карбюраторе, управляемую акселератором (педалью … Научно-технический энциклопедический словарь
дроссель — катушка, клапан Словарь русских синонимов. дроссель сущ., кол во синонимов: 4 • гидродроссель (1) • … Словарь синонимов
ДРОССЕЛЬ — (Throttle) 1. Прибор, осуществляющий понижение давления пара путем пропуска его через суженное отверстие при сохранении теплосодержания пара постоянным. 2. Катушка на железном сердечнике, обладающая большим индуктивным сопротивлением. Применяется … Морской словарь
дроссель — дроссель, мн. дроссели, род. дросселей и в профессиональной речи дросселя, дросселей … Словарь трудностей произношения и ударения в современном русском языке
дроссель — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия EN chokeinductor … Справочник технического переводчика
ДРОССЕЛЬ — (1) электрический ка тушка индуктивности, которую включают в электрическую цепь последовательно с нагрузкой RH для устранения (подавления) переменной составляющей тока в цепи, а также для разделения или ограничения сигналов различной частоты; (2) … Большая политехническая энциклопедия
дроссель — 3.11 дроссель: Клапан, в котором вход и выход соединены посредством канала установленного сечения. Источник: ГОСТ Р 53780 2010: Лифты. Общие требования безопасности к устройству и установке оригинал документа … Словарь-справочник терминов нормативно-технической документации
дроссель — (нем. drossel) 1) ал. катушка индуктивности, которую включают в электрическую цепь для устранения (подавления) переменной составляющей тока в цепи, разделения или ограничения электрических сигналов различной частоты; примен., напр., в… … Словарь иностранных слов русского языка
ДРОССЕЛЬ — (от немецкого drosseln душить, сокращать) 1) местное гидродинамическое сопротивление (сужение трубопровода, вентиль, кран). Дроссель широко применяют для измерения и регулирования расходов жидкостей и газов. 2) смотри Литниковый дроссель … Металлургический словарь
дроссель — droselis statusas T sritis automatika atitikmenys: angl. choke vok. Choke, m; Drossel, f rus. дроссель, m pranc. bobine de choc, f … Automatikos terminų žodynas
Принцип работы дросселя
Катушка индуктивности – устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник. При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электротехнике.
К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания. В последнее время применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.
Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.
Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.
Как работает дроссель
Устройство дросселя
Это явление легче всего понять, поставив несложный опыт.
Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).
У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.
Как работает трансформатор
Для чего нужен дроссель
Дроссель используется вместо последовательного резистора, потому что обеспечивает лучшую фильтрацию (меньше остаточной пульсации переменного тока на источнике питания, что означает меньшее гудение на выходе усилителя) и меньшее падение напряжения. «Идеальный» индуктор будет иметь нулевое сопротивление постоянному току.
При использовании резистора большего размера, вы быстро достигаете точки, где падение напряжения возрастает до пиковых величин, и, кроме того, «провал» питания становится значительным, потому что разность токов между полной выходной мощностью и холостым ходом может быть немалой, особенно в усилителе класса AB.
Существует две распространенные конфигурации источника питания: конденсаторный вход и дроссельный вход.
Входной фильтр конденсатора не обязательно должен иметь дроссель, но для дополнительной фильтрации тот необходим. Источник питания дросселя по определению обязан оснащаться дросселем.
Источник питания с дросселем
На входе конденсатора будет конденсатор фильтра, следующий непосредственно за выпрямителем. Тогда он может иметь или не иметь второго фильтра, состоящего из последовательного резистора или дросселя, за которым следует другой конденсатор. Сеть «колпачок – индуктор – колпачок» обычно называется сетью «пи-фильтр». Преимущество входного фильтра конденсатора заключается в более высоком выходном напряжении, но он имеет более низкое регулирование напряжения, чем входной фильтр дросселя.
Источник питания дросселя будет иметь дроссель, следующий сразу за выпрямителем. Основное преимущество входного питания дросселя – лучшее регулирование напряжения, но за счет гораздо более низкого выходного напряжения. Входной фильтр дросселя должен иметь определенный минимальный ток, протекающий через него для поддержания регулирования.
Дроссель в собранном приборе
Пример:
Разница напряжений между двумя типами фильтров может быть довольно большой. Например, предположим, что у вас есть трансформатор 300-0-300 и двухполупериодный выпрямитель.
Если вы используете конденсаторный входной фильтр, вы получите максимальное напряжение постоянного тока без нагрузки в 424 вольт, которое снизится до напряжения, зависящего от тока нагрузки и сопротивления вторичных обмоток.
Если вы используете тот же трансформатор с входным фильтром дросселя, пиковое выходное напряжение постоянного тока будет составлять 270 В и будет гораздо более строго регулироваться, чем входной фильтр конденсатора (меньше перемен напряжения питания с изменениями тока нагрузки).
Как обозначается дроссель на схеме
Условные обозначения:
Условное графическое обозначение дросселей
Из чего состоит дроссель
Есть схожесть с трансформатором, но слой обмотки всего один. Такая конструкция помогает стабилизировать сеть, а также исключить шанс резкого скачка напряжения.
Как подключить дроссель
Схема подключения очень простая и представляет собой цепь последовательно соединённого дросселя и самого устройства ДРЛ 250. Подключение идёт через сеть 220 вольт и работает при обычной частоте. Поэтому их без труда можно поставить в домашнюю сеть. Дроссель работает как стабилизатор и корректировщик напряжения.
Схема подключения дросселя
Как отличить резистор от дросселя
По внешнему виду: от резисторов отличаются обычно толщиной (дроссели толще), от конденсаторов – неправильной формой «капельки».
Более точный способ – сопротивление. У дросселя оно почти нулевое.
Что такое дроссель
Дроссель – это катушка индуктивности, которая обладает большим сопротивлением по отношению к переменному току. В схеме постоянного тока дроссель оказывает гораздо меньшее сопротивление. Название электрического компонента имеет немецкое происхождение – Drossel, что означает сглаживание, торможение.
Конструкция
Принципиальная схема дросселя представляет собой намотанный провод на ферромагнитный сердечник. Отсюда становится понятно, что такое дроссель. Электроэлемент напоминает трансформатор, но имеет одну обмотку.
Принцип работы
Принцип работы электрического дросселя заключается в сдерживании резкого нарастания тока и сглаживании линии падения напряжения. Как работает электрический дроссель, видно на примере люминесцентного светильника. Чтобы газ в колбе не сгорел, а постепенно разогревался, катушка постепенно доводит ток до номинального значения.
Входящий ток «тратит» свою силу на индукцию магнитного поля вокруг катушки. Когда магнитный поток достигнет своего максимума, ток начнёт проходить беспрепятственно через катушку.
Важно! Дроссели встречаются во всех электрических схемах. Сглаживание первоначального электрического напряжения защищает радио,- и электрические компоненты от критических перегрузок.
Устройство индуктивной катушки
Прибор подавляет происходящие в переменном токе пульсации. В электрических цепях проходит электричество разной частоты, поэтому для подавления помех применяют низкочастотные и высокочастотные катушки.
Низкочастотные устройства
Катушки имеют большие размеры. Провод в них намотан вокруг сердечника из трансформаторной стали. В аппаратуре, питание которой обеспечивается мощным напряжением, устанавливают дроссельные блоки низкой частоты. Индуктивные катушки в каскадном исполнении противостоят резким изменениям характеристик тока.
Что такое электрическое дросселирование, знает каждый электрик. На промышленных предприятиях без этого не обходится ни одно электрооборудование.
Высокочастотные элементы
Высокочастотный электронный дроссель гораздо меньше низкочастотного собрата. Катушка может быть выполнена из однослойной или многослойной намотки. Для высокочастотных дросселей применяют ферритовые сердечники или стержни из магнитного диэлектрического материала.
Область применения
Катушки индуктивности используют, как:
Токоограничители
Для чего нужны дроссели в качестве токоограничителей, можно узнать из следующего списка:
Обратите внимание! Аббревиатура ДРЛ означает Дуговая Ртутная Лампа. ДНАТ – Дуговая Натриевая Трубка.
Катушки насыщения
После насыщения магнитного поля величина сопротивления катушки перестаёт расти. Ранее катушки насыщения составляли основу стабилизаторов напряжения. Сегодня их заменили электронные системы.
Фильтры сглаживания
Что это такое в электронике дроссель? Это фильтры сглаживания, которые выпрямляют линию пульсации переменного напряжения. В результате обеспечивается стабильность работы электронной аппаратуры. Такой фильтр выглядит в виде бочонка на USB-кабеле. Внутри него находится одновитковая катушка. В электронных платах используют дроссели марки r68.
Магнитные усилители (МУ)
Они были включены в систему управления электромоторов. Магнитная индукция в сердечнике насыщалась намагничиванием стали сердечника. В пускателе использовалось сразу несколько обмоток. Сегодня вместо магнитных пускателей применяют тиристорные системы.
Резонансные контуры
Резонансную схему применяют в тюнерах. Индуктивная катушка параллельно с конденсатором объединена в единую систему, что составляет резонансный контур. Схема обеспечивает малое сопротивление с фиксированной частотой.
Электронный дроссель в радио,- и компьютерных схемах
Катушки индуктивности типа r68 применяют в монтажных платах с целью выделения токов определённой частоты. Также они исполняют роль защиты, как от внешних, так и внутренних помех частей схемы.
Основные характеристики
К основным характеристикам относятся следующие показатели:
Дополнительная информация. Характеристики катушек индуктивности нужны для расчёта новых моделей устройств. Параметры также используются при проектировании печатных плат.
Разновидности дросселей
Их различают по назначению и способу установки. Однофазные катушки индуктивности используют в лампах дневного света, питающихся от сети 220 в. Трёхфазные устройства работают в схемах питания напряжением 380 вольт для дуговых ртутных ламп и дуговых натриевых трубок.
Встраиваемые модели монтируют в корпусе прибора. В этом случае устройства защищены от пыли и влаги. В закрытом виде устройства помещены в специальных коробах.
Электронные аналоги
На смену индукционным катушкам в их традиционном исполнении пришли полупроводниковые радиодетали: транзисторы, тиристоры.
Следует заметить. Для высокочастотных приборов транзисторы не используют.
Маркировка малогабаритных устройств
Устройства для электронных плат имеют размеры не более 2-3 см. Нанести читаемую маркировку в цифровом или буквенном обозначении практически невозможно. Для этого применяют цветовую маркировку электронных дросселей. Дроссели на схемах изображают в виде спирали с параллельной чертой.
На цилиндрический корпус радиодетали наносят несколько цветных колец. Первые две полосы (слева направо) означают величину индуктивности, измеряемую в мГенри. Третья полоса указывает множитель, на который нужно умножить число индуктивности. Четвёртое кольцо выражает допустимое отклонение в % от номинала. Если его не окажется на корпусе детали, то принято считать допуск в пределах 20%.
Например, цвета колец расположились в следующем порядке: коричневый, жёлтый, оранжевый и серебристый. Это означает величину индуктивности 14 mH, где допуск отклонения составляет 10%.
Технический прогресс не стоит на месте. С каждым годом появляются новые аналоги устаревших моделей. Разработка новых технологий во всех сферах деятельности человека требует совершенствования радиодеталей, в том числе дросселей.
Видео
Катушка индуктивности, дроссель.
К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания & etc. В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.
Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.
Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.
Как работает дроссель.
Каково устройство дросселя, на чем основан принцип его работы?
Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).
В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.
У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.
Как работает трансформатор.
Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is ). Это вызовет пропорциональное увеличение тока(Ip ) и в первичной обмотке. Будет верным соотношение:
Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:
1. Допустимые токи и напряжения для первичной и вторичной обмоток.
3. Диапазон рабочих частот трансформатора.
Параллельный колебательный контур.
Цветовая и кодовая маркировка индуктивностей.
Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.
Первые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.
D=±0,3 нГн; J=±5%; К=±10%; M=±20%
Индуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.
Как измерить индуктивность катушки, дросселя.
Дроссель – это прибор, уменьшающий напряжение
Ни одна люминесцентная газоразрядная лампа (бытовой или офисный светильник, уличный фонарь) без дросселя работать не будет. Это своеобразный гаситель или ограничитель напряжения, которое подается в колбу газоразрядной лампы. А точнее сказать, на ее электроды. В принципе, с немецкого так это слово и переводится. Но это не единственная функция данного прибора. Еще дроссель создает пусковое напряжение, которое необходимо для образования электрического разряда между электродами. Именно таким образом зажигается люминесцентный источник света. Кстати, пусковое напряжение краткосрочное, длится доли секунды. Итак, дроссель – это прибор, который отвечает и за включение лампы, и за ее нормальную работу.
Принцип работы
Необходимо сразу оговориться, что в основе принципа работы этого прибора лежит самоиндукция катушки. Если рассмотреть устройство дросселя, то это обычная катушка, которая работает по типу электрического трансформатора. То есть, можно смело применять в разговоре термин дроссель трансформатор. Хотя в конструкции лежит всего лишь одна обмотка.
По сути, катушка – это сердечник из стальных или ферромагнитных пластин, которые изолированы друг от друга. Это делается специально для того, чтобы не образовались токи Фуко, которые создают большие помехи. У такой катушки очень большая индуктивность. При этом она на самом деле выступает мощным сдерживающим барьером при снижении напряжения в сети, а особенно при его сильном росте.
Но именно эта конструкция считается низкочастотной. Почему такое у нее название? Все дело в том, что переменный ток, который протекает в бытовых сетях – это широкий диапазон колебаний: от единицы до миллиарда герц и выше. Пределы диапазона очень велики, поэтому чисто условно колебания разделяют на три группы:
Так вот вышеописанная конструкция – это низкочастотный дроссель трансформатор. Что касается высокочастотных приборов, то их конструкция отличается отсутствием сердечника. Вместо них, как основа навивки медного провода, используются пластиковые каркасы или обычные резисторы. При этом сам дроссель трансформатор представляет собой секционную (многослойную) навивку.
Дроссели очень тщательно рассчитываются по задаваемым параметрам, которые будут поддерживать работу ламп дневного света. Особенно это касается начала свечения, где необходимо разрядом пробить газовую среду. Здесь требуется высокое напряжение. После чего прибор, наоборот, становится сдерживающим устройством. Ведь для того, чтобы лампа светилась, большого напряжения не надо. Отсюда и экономичность светильников данного типа.
Сердечник для дросселя
Материал для сердечника также представлен несколькими позициями. Его выбор лежит в основе габаритов самого дросселя. К примеру, магнитный сердечник – это возможность уменьшить размеры дросселя до минимума. При этом показатели индуктивности не изменяются.
Оптимальный вариант для высокочастотных приборов – это сердечники из магнитодиэлектрических сплавов или феррита. Кстати, именно сплавы позволяют использовать сердечники данного типа практически во всех диапазонах.
Характеристики
Выбирать дроссель трансформатор надо по нескольким характеристикам, главная из которых – индуктивность (измеряется в генри Гн). Но кроме этого еще есть и другие:
Разновидность дросселей
Люминесцентные лампы представлены на рынке большим ассортиментом. И у каждого вида ламп дневного света свой дроссель трансформатор. К примеру, лампа ДРЛ и ДНАТ не могут зажигаться от одного вида дросселя. Все дело в различных параметрах пуска и поддержания горения. Здесь и напряжение отличается, и сила тока.
А вот лампа МГЛ может работать и от дросселя лампы ДРЛ, и от ДНАТ. Но тут есть один момент. Яркость свечения данного источника света будет зависеть от подаваемого напряжения. Да и цветовая температура будет разной.
Внимание! Любой дроссель трансформатор по сроку эксплуатации «переживет» несколько ламп. Конечно, при оговорке, что эксплуатация светильника проводится правильно.
Но учитывать приходится тот факт, что лампа с годами «стареет». На вольфрамовые электроды люминесцентных ламп дневного света наносится специальная паста из щелочных металлов. Так вот эта паста постепенно испаряется, электроды оголяются, а, значит, повышается напряжение, что приводит к перегреву дросселя. Конечный результат может быть двух вариантов:
Поэтому совет – не стоит ждать, когда лампа сама перегорит. Есть специальный график замены, который определяет производитель, и которого необходимо строго придерживаться. Опытные электрики при проведении профилактических работ обязательно проверяют эти осветительные приборы на параметр напряжения. Если он подходит к пределу нормы, то лампу меняют еще до срока эксплуатации. Лучше заменить недорогую лампу, чем дорогой дроссель трансформатор.
Добавим, что производители сегодня предлагают усовершенствованные системы защиты люминесцентных светильников. В их конструкцию добавили предохранительные автоматы, которые срабатывают при повышении напряжения внутри газоразрядного источника света.
Разделение по назначению
По сути, все дроссели делятся на две основные группы, как и лампы, в которых они устанавливаются.
По месту установки эти приборы делятся также на две группы:
Электронные аналоги
Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.
По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.
Полезные советы
Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна. Поэтому была введена цветовая маркировка. То есть, на приборе нанесено несколько цветных колец, которые определяют индуктивность устройства. Первых два кольца – это номинальная индуктивность, третье – это множитель, четвертое – это допуск.
Внимание! Если на дросселе всего три цветных кольца, то по умолчанию принимается, что его допуск составляет 20%.
Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).
Заключение по теме
Итак, нами было проведено определение значения дросселя, его устройство, принцип работы и классификация. Как показывает практика, это устройство может работать десятилетиями, если правильно эксплуатировать сам светильник. Даже самые большие скачки напряжения дроссель прекрасно гасит. А, значит, лампа будет светить долго и без проблем.
Что такое дроссель?
В цепях с переменным током с целью ограничения тока нагрузки используются дроссели, то есть индуктивные сопротивления. Такие устройства обеспечивают существенную экономию электроэнергии, не допускают перегрузку и чрезмерный нагрев.
Дроссель представляет собой один из видов катушек индуктивности, основным назначением которого является задержание влияния тока на конкретный диапазон частот. Причём резкое изменение силы тока в катушке невозможно, поскольку работает закон самоиндукции, вследствие чего создается дополнительное напряжение. Рассмотрим детально принцип действия, виды и назначение дросселей.
Назначение
Многих интересует, что такое дроссель и как он выглядит. Устройство выполнено в виде железного трансформатора, единственным отличием является наличие одной обмотки. Катушка накручена на сердечник из трансформаторной стали, при этом пластины разделены и не контактируют друг с другом с целью снижения вихревого тока.
Электронный дроссель характеризуется высоким уровнем индуктивности до 1Гн, катушка эффективно противодействует изменениям тока в электроцепи. При снижении силы тока катушка его поддерживает, а в случае резкого повышения катушка обеспечивает ограничение и предотвращение резкого скачка.
Рассматривая, для чего нужен дроссель, следует назвать такие цели:
Зачем же нужен дроссель? Основным его назначением в электросхеме является задержка на себе тока конкретного частотного диапазона или накопление энергии в магнитном поле.
Важность дросселя объясняется тем фактом, что люминесцентные газоразрядные лампы (к примеру, бытовые светильники, фонари на улицах) не функционируют без дросселя. Он выступает в роли ограничителя напряжения, подающегося на электроды газоразрядной лампы.
Также дроссельные устройства формируют пусковое напряжение, требуемое для создания электрического разряда между электродами. Благодаря этому обеспечивается включение люминесцентной лампы. Пусковое напряжение рассчитано всего на доли секунды. Таким образом, дроссель – это устройство, отвечающее за включение лампы и ее стабильное функционирование.
Принцип работы
Электронный дроссель имеет простую конфигурацию и понятный принцип функционирования. Он представляет собой катушку из электропровода, которая намотана на сердечник из специального ферромагнитного материала. Принцип работы базируется на самоиндукции катушки. При рассмотрении конструкции дросселя, становится понятным, что она работает как электрический трансформатор, только с одной обмоткой.
Сердечник и ферромагнитные пластины изолированы с целью предотвращения токов Фуко, создающих существенные помехи. Катушка имеет большую индуктивность, причем непосредственно выступает защитным ограждением при резких скачках напряжения в сети.
Однако данная конструкция считается низкочастотной. Переменный ток в бытовых сетях колеблется в широком диапазоне, поэтому колебания разделяются на три категории:
В высокочастотных устройствах не предусмотрен сердечник, вместо него применяются каркасы из пластика или стандартные резисторы. А сам дроссель в таком случае имеет конфигурацию многослойной навивки.
В процессе расчетов и составления схем, как подключить дроссель учитываются его параметры и характеристики сети, в которой необходимо поддерживать работу ламп. Особенное внимание при подключении необходимо уделять этапу начала свечения лампы, когда требуется пробивание газовой среды при помощи разряда. В этот момент необходимо высокое напряжение, а после этого прибор выступает в качестве сдерживающего напряжение элемента.
Электрический дроссель: принцип действия, назначение, применение
Дроссель (в переводе с немецкого – «сокращать») – это одна из разновидностей катушек индуктивности. Главное предназначение этого элемента электрической схемы – «задерживать» (снижать на определенный период времени) влияние токов определенного диапазона частот. При этом резко изменить силу тока в катушке практически нереально – здесь вступает в силу закон самоиндукции, благодаря которому на выходе формируется дополнительное напряжение.
Дроссель необходим в электрической цепи в том случае, когда необходимо подавить переменную составляющую тока (например, помехи), существенно снизить пульсации в сети, а также ограничить или разделить в соответствии с поставленной задачей различные частотные сигналы (изоляция или развязка).
В электро – и радиотехнике применяется переменный ток в диапазоне от единиц до сотен миллиардов Гц. (1 герц – это одно колебание в секунду).
Условно такие широкие границы подразделяются на несколько участков:
Конструктивно низкочастотный дроссель очень напоминает обычный электрический трансформатор, только всего с одной обмоткой.
Последняя представляет собой витки изолированного провода, навитого на стальной сердечник, набранный из изолированных пластин (чтобы избежать возникновение токов Фуко), и обладает большой индуктивностью. Такая катушка характеризуется сильным противодействием любым изменениям тока в цепи: поддерживает его при убывании, и сдерживает при резком нарастании.
Также дроссели широко используются и при реализации различных высокочастотных электрических схем. В данном случае их исполнение может быть одно – или многослойным, при этом часто сердечники (как стальные, так и ферромагнитные) не используются. Иногда в качестве основы для навивки применяют обычные резисторы или пластмассовые каркасы. В диапазоне длинных и средних волн для обеспечения заданных параметров используется также специальная секционная намотка провода.
Главная техническая характеристика дросселя – индуктивность, которая измеряется в генри (Гн), сопротивление постоянному току, допустимое изменение напряжения, номинальный ток подмагничивания, а также добротность.
Последний показатель широко используется при расчетах колебательных контуров.
Применение магнитных сердечников позволяет существенно уменьшить габариты дросселей при тех же заявленных параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы, позволяющие, благодаря небольшой собственной емкости, использовать их в широком диапазоне.
По своему назначению такой вид катушек индуктивности можно подразделить на следующие виды:
Существуют также трехфазные дроссели для использования в соответствующих цепях.
Сегодня разнообразные типы дросселей нашли широкое применение для решения разнообразных инженерных задач.
Интересное видео об электрических дросселях смотрите ниже:
Дроссели в электрике: что это и где используются?
Чтобы зажечь лампу, натриевую или люминесцентную, необходимо выровнять ток. При включении в сеть лампы, для выполнения этой функции используется дроссель. Он является в данном случае пускорегулирующей аппаратурой. Это устройство необходимо чтобы лампа загорелась. Без данного элемента лампа не может быть запущена. Лампа в обычном режиме может разогреваться на протяжении пяти минут, а иногда и больше. Пусковой ток, которые выдает дроссель может быть значительно больше рабочего напряжения.
Вообще есть два типа дросселей – с одной и двумя обмотками. Однообмоточный также называется ДНаТ. В статье будут рассмотрены все аспекты работы дросселей, как они действуют и какие функции выполняет. В заключении читатель найдет интересный материал на данную тему и видеоролик, который поможет детальнее разобраться в работе дросселей.
Дроссель ДНаТ разновидности и способы подключения
Для того, чтобы обеспечить зажигание и выравнивание тока натриевых ламп, как высокого, так и низкого давления, при включении осветительных приборов в сеть, применяется дроссель днат, к которым относятся пускорегулирующая аппаратура и балласты.Это основные устройства, без которых применение натриевых ламп является не то, чтобы нецелесообразным, а попросту бессмысленным. Помимо пускорегулирующего аппарата, необходимо приобрести также импульсное зажигающее устройство, сокращенно ИЗУ, которое позволяет разогреть лампу, при этом используется импульс, который позволяет получить разряд в газовой смеси.
В настоящее время двухобмоточные дроссели считаются морально устаревшими, поэтому применяются достаточно редко. Пускорегулирующий аппарат можно приобрети как отечественного производства, так и зарубежного, данное утверждение касается и импульсного зажигающего устройства. Главное условие, заключается в том, что мощность дросселя и ИЗУ должна соответствовать мощности натриевой лампы.
Отметим тот факт, что импульсное зажигающее устройство (ИЗУ) может быть двух видов. К первому виду относятся ИЗУ двухпроводные, ко второму виду относятся ИЗУ с тремя проводами. Соответственно, трех проводные устройства надежнее, но при этом цена на них дороже, поэтому вопрос упирается в экономическую целесообразность приобретения изделия. Следующим термином, который относится к такому понятию, как дроссель днат, является балласт. Балластом принято называть пускорегулирующий аппарат и импульсное запускающее устройство, которые имеют металлический корпус.
Существуют и открытые пра. Вопрос выбора открытого или закрытого устройства, зависит от предпочтений отдельно взятого электрика. К достоинства пра в металлическом корпусе отнесем более низкую рабочую температуру, гарантии производителя относительно сборки изделия, и более простую схему монтажа в осветительных приборах. Остановимся на схеме подключения днат. Итак, основное условие, это соответствие мощности дросселя, мощности лампы. Например, если у вас дроссель днат 600, то и натриевая лампа должна быть 600. Правило простое, но если его не соблюдать, то период эксплуатации осветительного прибора значительно снизится, и светоотдача упадет до критической отметки.
Причем, для соединений необходимо применять медный провод, моножильный или многожильный, сечением 0,75х1,5, хотя также вопрос на любителя, можно взять провод и большего сечения, так сказать, с запасом. Уделите внимание вопросу приобретения сетевого шнура, он также должен выдерживать большие нагрузки, сечение должно быть порядка 1,5 – 2,5 мм, даже если дроссель для днат 150. Примерные параметры дросселей приведены в таблице ниже.
Следующий момент, на который обращаем внимание, это необходимость установки предохранителя. Многие будут утверждать, что это лишняя трата денег, но это высказывание не соответствует истине. Предохранитель, как верный страж, спасет при пробое балласта, когда возможны различные неприятности, которые могут закончиться либо взрывом лампы, пожаром или банальным выбиванием пробок, если у вас не прикручены жучки. Автомат лучше всего приобретать двухполюсной, так более удобно, чтобы не заморачиваться, как необходимо вставить вилку в розетку.
Причем к выбору автоматов необходимо подойти со всей степенью серьезности. Как, впрочем, и к покупке других деталей, таких как дроссель днат 250, пускорегулирующая аппаратура или импульсное зажигающее устройство. Поэтому, необходимо покупать комплектующие исключительно в торговых точках, которые не занимаются продажей бракованного неликвида.
При этом лучше переплатить и купить нормальный автомат или дроссель, чем недоплатить и купить ПРА для ДНаТ произведенное китайской промышленностью. Чтобы потом не получилось, как в русской пословице: скупой платит дважды. Схемы подключения всех обозначенных в статье устройств, в каждом конкретном случае разные, поэтому необходимо воспользоваться услугами профессионального электрика, который выполнит работу качественно.
Потери в обмотках
Существуют два принципиально разных вида потерь в дросселях: потери в сердечнике и потери в обмотках. Первые обусловлены вихревыми токами внутри самого сердечника и магнитными свойствами материала — потерями на перемагничивание, отображаемыми в виде петли гистерезиса. Причина потерь в обмотках — это сопротивление самих проводов, обычно медных.
Дроссели, используемые в импульсных силовых приборах, подвержены воздействию ВЧ-пульсаций тока, что может привести к существенному росту эффективного сопротивления обмотки и связанных с ним потерь в медных проводниках. Сопротивление обмотки силовых дросселей включает в себя две составляющие: сопротивление постоянному и переменному току, возникающее в результате действия скин-эффекта и эффекта близости.
Изменение тока в проводе индуцирует магнитный поток, который, в свою очередь, приводит к снижению тока в центральной части провода до очень малых величин. Это ведет к уменьшению эффективного поперечного сечения проводника и увеличению его сопротивления с ростом частоты. Поэтому чем выше частота и ток, тем больше потери мощности. На рабочих частотах той цепи, в которую включен дроссель, сопротивление переменному току может становиться очень большим, часто намного превышающим сопротивление по постоянному току, что ведет к существенному росту потерь в медных проводниках.
Кроме того, в силовых дросселях, оснащенных сердечниками с зазором, магнитное поле в зоне воздушного промежутка создает сильный локальный эффект близости, способный значительно увеличить сопротивление медных проводников по переменному току, а, значит, привести к росту соответствующих потерь и даже выходу дросселя из строя. Все описанные явления влияют на величину потерь мощности в любом электромагнитном устройстве. Взаимосвязь этих явлений значительно усложняет процесс разработки дросселей. Например, один из распространенных способов уменьшения сопротивления по переменному току — применение литцендрата. Однако при этом значительно снижается поперечное сечение проводника, что ведет к резкому росту сопротивления постоянному току.
Рассмотрим другой пример. Для снижения потерь в обмотках при работе в режимах высоких постоянных токов часто применяются дроссели с обмотками из фольги, позволяющие эффективно использовать пространство внутри сердечника. Однако появление даже очень небольшого переменного тока может привести к возникновению в таких обмотках существенных потерь. Все это неприемлемо для большинства современных силовых систем. Многие преобразователи постоянного тока требуют использования дросселей, способных работать в режиме пульсирующих токов с большой постоянной составляющей.
Даже при условии того, что переменная составляющая тока будет всегда намного меньше постоянной составляющей, сопротивление переменному току может стать на порядок больше сопротивления постоянному току. Проблема становится все более острой по мере того, как в современных установках повышается плотность тока и рабочая частота. К счастью, уже найдены способы снижения потерь по переменному току в медных проводниках.
Однако порошковые сердечники, как правило, характеризуются гораздо большими потерями на перемагничивание, чем ферритовые. Поэтому в силовых установках с высоким уровнем пульсаций тока иногда все же предпочитают использовать сердечники с зазором — из-за меньших потерь в них. Или же применяют порошковые сердечники из материала со сравнительно высокой магнитной проницаемостью и зазором, что позволяет использовать преимущества и того, и другого подхода. Но в этих случаях приходится решать проблемы, связанные с краевыми эффектами в зазорах, а также с потерями в медных проводниках, которые могут быть весьма значительными.
Обмотки из литцендрата
Другая работа, проведенная West Coast Magnetics совместно с Thayer School of Engineering, позволила найти способы решения ряда проблем, связанных с применением обмоток из литцендрата в силовых дросселях с сердечниками с зазором. Дело в том, что поле в зоне зазора бывает довольно сильным, что может привести к возникновению локальных потерь в части обмотки, расположенной близко к нему. Было показано, что для заданной геометрии сердечника и каркаса существует оптимальное соотношение параметров обмотки из литцендрата и ее расположения внутри каркаса, позволяющее минимизировать потери в обмотке.
Используя эти данные, программа рассчитывает напряженность поля внутри каркаса, а также идеальное расположение в нем обмотки. Кроме того, программа определяет суммарные потери в обмотке и выбирает количество жил, требуемое для заполнения доступного внутреннего пространства. Для примера рассмотрим дроссель индуктивностью 10,6 мкГн, работающий на частоте 250 кГц со среднеквадратичным значением пульсаций тока 4 А.
Как понизить напряжение сопротивлением?
Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер. Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:
R=(14.7-3.3)/0.02)= 570 Ом
Но резисторы отличаются по максимальной рассеиваемой мощности:
Ближайший по номиналу в большую сторону – резистор на 0.25 Вт. Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими. Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока. Недостаток – выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.
Как понизить переменное напряжение дросселем или конденсатором?
Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации. Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления. Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление).
Пример использования индуктивного сопротивление – это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников. А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.
Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны – нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.
Заключение
Более подробно о том, что такое дроссель и зачем он нужен, можно узнать прочитав статью дроссели. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
ElectronicsBlog
Обучающие статьи по электронике
Дроссель и его параметры
Что такое электрический дроссель?
Дросселем, в общем случае, называют катушку индуктивности, чаще всего с сердечником, которая служит для устранения или уменьшения переменного (импульсного) тока, разделения или ограничения сигналов различной частоты. Исходя из этого, дроссели условно можно разделить на следующие типы:
— сглаживающие дроссели, предназначены для ослабления переменной составляющей постоянного тока или напряжения различной частоты, то есть сглаживания пульсаций, на выходе и входе силовых преобразователей или выпрямителей;
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
— дроссели переменного тока, предназначены для ограничения электрического тока, при резких изменениях нагрузки, например, при пуске электродвигателей или источников питания;
— дроссели насыщения, или управляемые дроссели, предназначенные для регулирования индуктивного сопротивления за счёт изменения тока подмагничивания.
Дроссели, как и любая другая катушка индуктивности, может быть без сердечника, с замкнутым сердечником, с сердечником, имеющим малый зазор и с сердечником, имеющим большой зазор или разомкнутым сердечником. Поэтому в независимости от назначения дросселя его принцип действия основан на электромагнитных свойствах катушки индуктивности и сердечника, на котором она выполнена.
Принцип работы идеального дросселя
Дроссель, как и любой другой элемент электрической цепи, содержит ряд параметров, которые определяются его физическими и конструктивными характеристиками. В зависимости от назначения дросселя одни его характеристики стараются улучшить, а значение других уменьшить. Но, несмотря на характер работы дросселя, его основным параметром является индуктивность, поэтому рассмотрим дроссель, содержащий только один параметр – индуктивность, такой дроссель называется идеальным и он характеризуется следующими допущениями:
— обмотка дросселя не имеет активного сопротивления;
— отсутствует межвитковая ёмкость проводников дросселя;
— магнитное поле в сердечнике однородно, то есть значение индукции и напряженности в различных его точках имеет одинаковое значение.
С учётом таких допущений, представим сердечник, на который намотана катушка.
Идеальный дроссель.
Подадим на катушку переменное напряжение U, в результате по катушке потечёт переменный ток I, создающий в сердечнике переменный магнитный поток Φ. Тогда в соответствии с законом самоиндукции в витках обмотки возникнет ЭДС самоиндукции Е. Так как у нас отсутствует активное сопротивление обмотки идеального дросселя, то ЭДС самоиндукции уравновесит напряжение, вызвавшее электрический ток
В тоже время индуктивность, как коэффициент самоиндукции можно определить по следующему выражению
где ω – количество витков катушки,
S – площадь поперечного сечения сердечника,
B – магнитная индукция,
I – величина электрического тока.
Тогда выражение для ЭДС самоиндукции будет иметь вид
Данное выражение показывает, что ЭДС самоиндукции зависит от конструкции и размеров дросселя, а также от скорости изменения магнитного поля (dB/dt).
Так как в идеальном дросселе отсутствуют активные нагрузки, а только индуктивная составляющая, то активная мощность будет равняться нулю. В индуктивном элементе расходуется только реактивная мощность на создание магнитного поля.
Принцип работы реального дросселя
В реальном дросселе, в отличие от идеального, кроме индуктивности имеется ещё рад параметров, вносящих активную составляющею мощности. Рассмотрим реальный дроссель
Магнитные силовые линии реальной катушки.
Поступающий в дроссель переменный ток возбуждает вокруг катушки переменное магнитное поле, определяемое магнитным потоком Φ. В идеальном дросселе он полностью замыкается через сердечник Φ0, но в реальности к нему добавляется магнитный поток рассеяния, охватывающий как витки по отдельности, так и группы витков провода. Он зависит от расположения витков, сечения провода, плотности укладки витков провода и так далее. Поток рассеивания достаточно трудно выразить количественно, поэтому для его характеристики вводят понятие потокосцепление рассеяния ΨS, который можно выразить через индуктивность рассеяния LS обмоток дросселя
В соответствии с законом электромагнитной индукции, поток рассеяния возбуждает ЭДС рассеяния
Поток рассеяния в дросселе негативно влияет на работу устройств, так как вызывает паразитные шумы, наводки и потери мощности в целом.
Кроме потерь реактивной мощности потоками рассеяния, в реальном дросселе происходят потери активной мощности в сопротивлении витков обмотки и потерях в сердечнике, обусловленных его ферромагнитными свойствами.
Эквивалентная схема дросселя
Для анализа работы реального дросселя создадим схему замещения, которая учитывает его основные и паразитные параметры.
Эквивалентная схема дросселя с учётом паразитных параметров.
Таким образом, на характеристики дросселя кроме собственной индуктивности дросселя L, являющейся основным параметром, так сказать полезным, присутствует паразитная индуктивность LS, обусловленная потоком рассеяния, активное сопротивление R обмоточного провода, межвитковая ёмкость С обмотки дросселя, а также проводимости gμ. Проводимость gμ характеризует мощность, которая затрачивается на перемагничивание сердечника, из-за наличие петли гистерезиса.
Уравнение соответствующее эквивалентной схеме будет иметь вид
Как видно на схеме ток в дросселе состоит из двух составляющих: Iμ – ток отвечающий за создание основного магнитного потока Φ0 и Iа – ток, учитывающий потери мощности при перемагничивании и нагрев сердечника
где РС – мощность потерь в сердечнике.
Основной параметр дросселя – индуктивность L определяется по выражениям для индуктивностей различных типов, например, индуктивность без сердечника, индуктивности на замкнутых сердечниках, индуктивности на сердечниках с зазором и индуктивности на разомкнутых сердечниках.
Остальные параметры определить несколько сложнее. Рассмотрим определение данных параметров.
Как рассчитать межвитковую ёмкость обмотки дросселя?
В дросселе, между витками, слоями и металлическими предметами вокруг дросселя существует некоторая разность потенциалов, создающих электрическое поле. Для оценки влияния данного поля вводят понятие межвитковой ёмкости или собственной ёмкости дросселя, величина которой зависит от размеров и конструктивных особенностей дросселя.
Межвитковая ёмкость C обмотки, являясь паразитным параметром, совместно с индуктивностью рассеивания и собственной индуктивностью дросселя образуют различные виды фильтров и колебательных контуров. Хотя данный параметр имеет небольшое значение, тем не менее, в определённых условиях его приходится учитывать, однако точный расчёт затруднён в связи с большим влиянием различных конструктивных параметров, в первую очередь, взаимного расположения витков провода между собой. Так наибольшей межвитковой ёмкостью обладают катушки намотанные «внавал», а наименьшей – катушки с намоткой типа «Универсаль» или секционные катушки.
Межвитковую емкость Собщ дросселя можно представить в виде суммы емкостей между внутренним слоем обмотки и магнитопроводом С1 и межслоевой емкости внутри обмотки С2
Ёмкость между внутренним слоем обмотки и магнитопроводом можно определить из эмпирической формулы
где εа – абсолютная диэлектрическая проницаемость среды вокруг проводника, εа = ε0εr,
εr – относительная диэлектрическая проницаемость,
r – радиус поперечного сечения провода,
а – расстояние между магнитопроводом и осью провода,
n – число витков в слое,
р1 – периметр витка внутреннего слоя обмотки.
Относительная диэлектрическая проницаемость берётся для материала каркаса дросселя, если бескаркасное исполнение, то соответственно проницаемость воздуха либо изоляции проводника, в зависимости от необходимой точности.
Емкость между слоя обмотки так же вычисляется по эмпирической формуле
где рср – периметр среднего витка обмотки,
b – расстояние между осями витков в соседних слоях,
В данном случае диэлектрическая проницаемость берётся для материала межслоевой изоляции.
Во всех случаях необходимо добиваться уменьшения межвитковой ёмкости обмотки. Для этого применяют различные виды намоток и материалов для каркасов и межслоевой изоляции с малым значением диэлектрической проницаемости.
Как рассчитать индуктивность рассеяния дросселя?
Индуктивность рассеяния LS, также как и межвитковая ёмкость, является паразитным параметром и негативно влияет на индуктивные элементы, в частности на дроссель. Индуктивность рассеяния вместе с межвитковой емкостью образуют фильтр нижних частот, вызывающий уменьшение амплитуды переменного напряжения и тока на высоких частотах. Данное обстоятельство приводит к тому, что увеличиваются активные потери мощности и происходит нагрев дросселя.
Индуктивность рассеяния зависит от типа конструкции дросселя и его размеров и может быть определена по следующему выражению
рср – периметр среднего витка обмотки,
w – количество витков провода в дросселе,
l – длина намотки,
h – толщина намотки.
В большинстве случаев необходимо добиваться уменьшения индуктивности рассеяния, для чего стараются как можно плотнее уложить провод в намотке, уменьшения количества слоёв обмотки дросселя и увеличения длины намотки. В идеале стремятся использовать однослойные обмотки, если это возможно.
Стоит отметить, что приведённые выражения для определения паразитных параметров межвитковой ёмкости С и индуктивности рассеяния LS являются ориентировочными и могут в различных случаях давать погрешность порядка 20 %. Поэтому при необходимости знать точное значение их определяют экспериментальным путём различными способами.
На сегодня всё, а в следующей статье я расскажу о потерях мощности и нагреве дросселей при работе.
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ
Дроссель электрический
Смотреть что такое «Дроссель электрический» в других словарях:
ДРОССЕЛЬ ЭЛЕКТРИЧЕСКИЙ — катушка индуктивности, которую включают в электрическую цепь для устранения (подавления) переменной составляющей тока в цепи, разделения или ограничения электрических сигналов различной частоты. Применяется, напр., в выпрямителях тока … Большой Энциклопедический словарь
ДРОССЕЛЬ ЭЛЕКТРИЧЕСКИЙ — катушка индуктивности, к рую включают в электрич. цепь последовательно с нагрузкой (см. рис.) для устранения (подавления) перем. составляющей тока в цепи, а также для разделения или ограничения сигналов разл. частоты. Реактивное электрич.… … Большой энциклопедический политехнический словарь
дроссель электрический — катушка индуктивности, которую включают в электрическую цепь для устранения (подавления) переменной составляющей тока в цепи, разделения или ограничения электрических сигналов различной частоты. Применяется, например, в выпрямителях тока. * * *… … Энциклопедический словарь
дроссель электрический — катушка индуктивности, включаемая в электрическую цепь последовательно с нагрузкой для устранения (подавления) переменной составляющей тока в цепи, а также для разделения или ограничения сигналов различной частоты. Дроссель обычно выполняют с… … Энциклопедия техники
ДРОССЕЛЬ ЭЛЕКТРИЧЕСКИЙ — катушка индуктивности, к рую включают в электрич. цепь для устранения (подавления) переменной составляющей тока в цепи, разделения или ограничения электрич. сигналов разл. частоты. Применяется, напр., в выпрямителях тока. Схема включения дросселя … Естествознание. Энциклопедический словарь
электрический дроссель — дроссель Дроссель электрический, катушка индуктивности, которую включают в электрическую цепь для устранения (подавления) переменной составляющей тока в цепи, разделения или ограничения сигналов различной частоты. Дроссель электрический… … Справочник технического переводчика
Дроссель — (нем. Drossel) ограничитель, регулятор. Дроссель электрический катушка индуктивности, обладающая высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включается в электрическую цепь постоянного тока для… … Википедия
Электрический аппарат — электротехническое устройство, предназначенное для изменения, регулирования, измерения и контроля электрических и неэлектрических параметров различных устройств, машин, механизмов и т. п., а также для их защиты от перегрузок при… … Большая советская энциклопедия
электрический реактор — Индуктивная катушка, предназначенная для использования ее в силовой электрической цепи Примечание. Силовая электрическая цепь по ГОСТ 18311 80 [ГОСТ 18624 73] Недопустимые, нерекомендуемые дроссель Тематики реактор электрический Классификация… … Справочник технического переводчика
ДРОССЕЛЬ — (1) электрический ка тушка индуктивности, которую включают в электрическую цепь последовательно с нагрузкой RH для устранения (подавления) переменной составляющей тока в цепи, а также для разделения или ограничения сигналов различной частоты; (2) … Большая политехническая энциклопедия
дроссель
Полезное
Смотреть что такое «дроссель» в других словарях:
ДРОССЕЛЬ — • ДРОССЕЛЬ, в технике другое название акселератора на любом средстве передвижения, оснащенном ДВИГАТЕЛЕМ ВНУТРЕННЕГО СГОРАНИЯ. Так называется потому, что такие двигатели имеют дроссельную заслонку в карбюраторе, управляемую акселератором (педалью … Научно-технический энциклопедический словарь
дроссель — катушка, клапан Словарь русских синонимов. дроссель сущ., кол во синонимов: 4 • гидродроссель (1) • … Словарь синонимов
ДРОССЕЛЬ — (Throttle) 1. Прибор, осуществляющий понижение давления пара путем пропуска его через суженное отверстие при сохранении теплосодержания пара постоянным. 2. Катушка на железном сердечнике, обладающая большим индуктивным сопротивлением. Применяется … Морской словарь
дроссель — дроссель, мн. дроссели, род. дросселей и в профессиональной речи дросселя, дросселей … Словарь трудностей произношения и ударения в современном русском языке
дроссель — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия EN chokeinductor … Справочник технического переводчика
ДРОССЕЛЬ — (1) электрический ка тушка индуктивности, которую включают в электрическую цепь последовательно с нагрузкой RH для устранения (подавления) переменной составляющей тока в цепи, а также для разделения или ограничения сигналов различной частоты; (2) … Большая политехническая энциклопедия
дроссель — 3.11 дроссель: Клапан, в котором вход и выход соединены посредством канала установленного сечения. Источник: ГОСТ Р 53780 2010: Лифты. Общие требования безопасности к устройству и установке оригинал документа … Словарь-справочник терминов нормативно-технической документации
Дроссель — (нем. Drossel) ограничитель, регулятор. Дроссель электрический катушка индуктивности, обладающая высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включается в электрическую цепь постоянного тока для… … Википедия
ДРОССЕЛЬ — (от немецкого drosseln душить, сокращать) 1) местное гидродинамическое сопротивление (сужение трубопровода, вентиль, кран). Дроссель широко применяют для измерения и регулирования расходов жидкостей и газов. 2) смотри Литниковый дроссель … Металлургический словарь
дроссель — droselis statusas T sritis automatika atitikmenys: angl. choke vok. Choke, m; Drossel, f rus. дроссель, m pranc. bobine de choc, f … Automatikos terminų žodynas
Зачем нужен дроссель и как он работает? Показываю, как измерить индуктивность различных дросселей
Среди электронных компонентов на плате практически всегда имеется дроссель, он же — катушка индуктивности. Зачем он нужен и как он работает? В этой статье я измерю индуктивность различных катушек и расскажу как работает дроссель.
Дроссель (далее катушка индуктивности) это пассивный электронный компонент, который позволяет накапливать энергию в виде магнитного поля. Катушка индуктивности состоит из сердечника и обмотки. Не стоит путать катушку и трансформатор, так как они отличаются по строению и выполняют различные функции.
На самом деле практически любой проводник может быть рассмотрен как катушка индуктивности, но зачастую индуктивность прочих элементов бесконечно мала, поэтому не учитывается.
Дроссель чаще всего выполняется в виде катушки с определенным числом витков медного провода вокруг цилиндрического или тороидального сердечника. Вот несколько дросселей, которые я выпаял из различных устройств:
Источник: Собственное фото
Вот одно из основных свойств катушки индуктивности:
Постоянный ток практически беспрепятственно протекает по катушке индуктивности, в то время, как переменный ток через него протекать не может.
Это свойство позволяет использовать дроссели в качестве цепях фильтров в импульсных источниках питания, не пропуская высокочастотные импульсы в бытовую сеть. Всё дело в реактивном сопротивлении, которое и оказывает значительное влияние на переменный ток. Это происходит из за того, что ток в полупериоде, отстает от напряжения. Если же подать на дроссель постоянное напряжение, то оно пройдет через катушку, но не сразу, что позволит использовать плавное включение нужного устройства, «сгладив» резкий импульс. Дроссель будет некоторое время запасать электроэнергию в виде магнитного поля.
Способность дросселя накапливать энергию называют индуктивностью. Единица энергии, которую может запасти дроссель называется равна 1 Генри. Для того, чтобы измерить индуктивность катушки или дросселя необходимо иметь специальный прибор — RLC Метр. Многие современные мультиметры также умеют измерять индуктивность, но не мой. Я использую отдельный бескорпусной прибор, про который я уже рассказывал ранее в следующей статье:
Измерю им несколько дросселей, имеющихся у меня в наличии.
Источник: собственное фото
Данный элемент обладает очень маленькой индуктивностью, всего 0.03 мГ (мили Генри)
Источник: Собственное фото
Катушка цилиндрической формы, обладает индуктивностью 3.05 мГ.
Источник: Собственное фото
Тут я измерил индуктивность катушки от реле из этой статьи. Как мы видим, реле обладает большей индуктивностью, аж 2577 мГ.
Постарался объяснить все простыми словами, но надеюсь ваши комментарии помогут мне дополнить и расширить эту статью. Не стесняйтесь, пишите и критикуйте, буду рад любой обратной связи от читателя.
Инженер по телевизионному оборудованию Электрика и электроника, это не только моё хобби, но и работа
Дроссель
Дро́ссель (нем. Drossel ) — ограничитель, регулятор.
Примечания
дроссельная (редукционная) арматура — элемент трубопроводной арматуры, предназначенный для снижения (редуцирования) рабочего давления в системе за счёт увеличения гидравлического сопротивления в проточной части[1]; Дроссельная арматура предназначена не для снижения рабочего давления, а для регулирования протока жидкости или газа. Для редуцирования давления предназначена редукционная аппаратура. Это разные вещи по устройству и принципу действия
См. также
Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюда из другой статьи Википедии, пожалуйста, вернитесь и уточните ссылку так, чтобы она указывала на статью. |
Полезное
Смотреть что такое «Дроссель» в других словарях:
ДРОССЕЛЬ — • ДРОССЕЛЬ, в технике другое название акселератора на любом средстве передвижения, оснащенном ДВИГАТЕЛЕМ ВНУТРЕННЕГО СГОРАНИЯ. Так называется потому, что такие двигатели имеют дроссельную заслонку в карбюраторе, управляемую акселератором (педалью … Научно-технический энциклопедический словарь
дроссель — катушка, клапан Словарь русских синонимов. дроссель сущ., кол во синонимов: 4 • гидродроссель (1) • … Словарь синонимов
ДРОССЕЛЬ — (Throttle) 1. Прибор, осуществляющий понижение давления пара путем пропуска его через суженное отверстие при сохранении теплосодержания пара постоянным. 2. Катушка на железном сердечнике, обладающая большим индуктивным сопротивлением. Применяется … Морской словарь
дроссель — дроссель, мн. дроссели, род. дросселей и в профессиональной речи дросселя, дросселей … Словарь трудностей произношения и ударения в современном русском языке
дроссель — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия EN chokeinductor … Справочник технического переводчика
ДРОССЕЛЬ — (1) электрический ка тушка индуктивности, которую включают в электрическую цепь последовательно с нагрузкой RH для устранения (подавления) переменной составляющей тока в цепи, а также для разделения или ограничения сигналов различной частоты; (2) … Большая политехническая энциклопедия
дроссель — 3.11 дроссель: Клапан, в котором вход и выход соединены посредством канала установленного сечения. Источник: ГОСТ Р 53780 2010: Лифты. Общие требования безопасности к устройству и установке оригинал документа … Словарь-справочник терминов нормативно-технической документации
дроссель — (нем. drossel) 1) ал. катушка индуктивности, которую включают в электрическую цепь для устранения (подавления) переменной составляющей тока в цепи, разделения или ограничения электрических сигналов различной частоты; примен., напр., в… … Словарь иностранных слов русского языка
ДРОССЕЛЬ — (от немецкого drosseln душить, сокращать) 1) местное гидродинамическое сопротивление (сужение трубопровода, вентиль, кран). Дроссель широко применяют для измерения и регулирования расходов жидкостей и газов. 2) смотри Литниковый дроссель … Металлургический словарь
дроссель — droselis statusas T sritis automatika atitikmenys: angl. choke vok. Choke, m; Drossel, f rus. дроссель, m pranc. bobine de choc, f … Automatikos terminų žodynas