Флотация что это

Флотация что это

Флотация

Флотация что это

Содержание

История вопроса

В развитии теории флотации сыграли важную роль работы рус. физикохимиков — И. С. Громека, впервые сформулировавшего в конце XIX века основные положения процесса смачивания, и Л. Г. Гурвича, разработавшего в начале XX века положения о гидрофобности и гидрофильности. Существенное влияние на развитие современной теории флотации оказали труды А. Годена, А. Таггарта (США), И. Уорка (Австралия), советских учёных П. А. Ребиндера, А. Н. Фрумкина, И. Н. Плаксина, Б. В. Дерягина, профессора В. Р. Кривошеина и других.

Методы флотации

В зависимости от характера и способа образования межфазных границ (вода — масло — газ), на которых происходит закрепление разделяемых компонентов (см. Поверхностно-активные вещества) различают несколько видов флотации.

Для образования пузырьков предлагались различные методы: образование углекислого газа за счёт химической реакции (С. Поттер, США, 1902), выделение газа из раствора при понижении давления (Ф. Элмор, Великобритания, 1906) — вакуумная флотация, энергичное перемешивание пульпы, пропускание воздуха сквозь мелкие отверстия.

Для проведения пенной флотации производят измельчение руды до крупности 0,5-1,0 мм в случае природногидрофобных неметаллических полезных ископаемых с небольшой плотностью (сера, уголь, тальк) и до 0,1-0,2 мм для руд металлов. Для создания и усиления разницы в гидратированности разделяемых минералов и придания пене достаточной устойчивости к пульпе добавляются флотационные реагенты. Затем пульпа поступает во флотационные машины. Образование флотационных агрегатов (частиц и пузырьков воздуха) происходит при столкновении минералов с пузырьками воздуха, вводимого в пульпу, а также при возникновении на частицах пузырьков газов, выделяющихся из раствора. На флотацию влияют ионный состав жидкой фазы пульпы, растворённые в ней газы (особенно кислород), температура, плотность пульпы. На основе изучения минералого-петрографического состава обогащаемого полезного ископаемого выбирают схему флотации, реагентный режим и степень измельчения, которые обеспечивают достаточно полное разделение минералов. Лучше всего флотацией разделяются зёрна размером 0,1-0,04 мм. Более мелкие частицы разделяются хуже, а частицы мельче 5 мкм ухудшают флотацию более крупных частиц. Отрицательное действие частиц микронных размеров уменьшается специфическими реагентами. Крупные (1-3 мм) частицы при флотации отрываются от пузырьков и не флотируются. Поэтому для флотации крупных частиц (0,5-5 мм) в СССР были разработаны способы пенной сепарации, при которых пульпа подаётся на слой пены, удерживающей только гидрофобизированные частицы. С той же целью созданы флотационные машины кипящего слоя с восходящими потоками аэрированной жидкости.

Пенная флотация — гораздо более производительный процесс, чем масляная и плёночная флотации. Этот метод применяется наиболее широко.

Для очистки воды, а также извлечения компонентов из разбавленных растворов в 1950-х годах был разработан метод ионной флотации, перспективный для переработки промышленных стоков, минерализованных подземных термальных и шахтных вод, а также морской воды. При ионной флотации отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимодействуют с флотационными реагентами-собирателями, чаще всего катионного типа, и извлекаются пузырьками в пену или плёнку на поверхности раствора. Тонкодисперсные пузырьки для флотации из растворов получают также при электролитическом разложении воды с образованием газообразных кислорода и водорода (электрофлотация). При электрофлотации расход реагентов существенно меньше, а в некоторых случаях они не требуются.

Широкое использование флотации для обогащения полезных ископаемых привело к созданию различных конструкций флотационных машин с камерами большого размера (до 10-30 м³), обладающих высокой производительностью. Флотационная машина состоит из ряда последовательно расположенных камер с приёмными и разгрузочными устройствами для пульпы. Каждая камера снабжена аэрирующим устройством и пеносъёмником.

Области применения

В мире благодаря флотации вовлекаются в промышленное производство месторождения тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Фабрики выпускают до пяти видов концентратов. В ряде случаев хвосты флотации не являются отходами, а используются в качестве стройматериалов, удобрений для сельского хозяйства и в др. целях. Флотация является ведущим процессом при обогащении руд цветных металлов. Внедряется использование оборотной воды, что снижает загрязнение водоёмов.

Флотореагенты

Существует несколько типов флотореагентов, отличающихся принципом действия:

Источник

Флотация

Флотация что этоФЛОТАЦИЯ (французским flottation, английский flotation, букв. — плаванье на поверхности воды * а. flotation; н. Flotation, Flotatieren, Schaumschwimnaufereitung; ф. flottation; и. flotacion) — процесс разделения мелких твёрдых частиц (главным образом минералов) в водной суспензии (пульпе) или растворе, основанный на избирательной концентрации (адсорбции) частиц на границах раздела фаз в соответствии с их поверхностной активностью или смачиваемостью. Гидрофобные (плохо смачиваемые водой) частицы избирательно закрепляются на границе раздела фаз (обычно газа и воды) и отделяются от гидрофильных (хорошо смачиваемых водой) частиц.

Флотация — один из основных методов обогащения полезных ископаемых, применяется также для очистки воды от органических веществ (нефти, масел), бактерий, тонкодисперсных осадков солей и др. Помимо горноперерабатывающих отраслей промышленности флотация используется в пищевой, химической и других отраслях для очистки промышленных стоков, ускорения отстаивания, выделения твёрдых взвесей и эмульгирования веществ и т.п. Широкое применение флотации привело к появлению большого количества модификаций процесса по различным признакам (рис.).

Реклама

Разнообразные способы образования газовых пузырьков и комбинации этих способов соответствуют различным типам флотационных машин. Соединение камер флотационных машин в определённой последовательности с направлением потоков пенных и камерных продуктов на перефлотацию, доизмельчение, перечистную или контрольную флотации составляет схему флотации, которая позволяет получить концентрат требуемого качества при заданном извлечении полезного компонента. Концентрат может быть получен пенным (прямая флотация) или камерным продуктом (обратная флотация); в последнем случае флотации подвергается пустая порода.

Для проведения пенной флотации производят измельчение руды до крупности 0,5-1 мм в случае природно-гидрофобных неметаллических полезных ископаемых с небольшой плотностью (сера, уголь, тальк) и до 0,1-0,2 мм для руд металлов. Для создания и усиления разницы в гидратированности разделяемых минералов и придания пене достаточной устойчивости к пульпе добавляются флотационные реагенты. Затем пульпа поступает во флотационные машины. Образование флотационных агрегатов (частиц и пузырьков воздуха) — аэрофлокул происходит при столкновении минералов с пузырьками воздуха, вводимого в пульпу.

Во флотационных машинах часто происходит побочный процесс — осаждение гидрофобных частиц на стенках и особенно деревянных деталях, т.н. флотации твёрдой стенкой. Этот эффект был положен в основу метода флотации тонких шлемов (-10 мкм) с помощью носителя — гидрофобных частиц флотационной крупности, селективно взаимодействующих с извлекаемыми шламами; образующиеся агрегаты подвергались обычной пенной флотации.

Для очистки воды, а также извлечения компонентов из разбавленных растворов в 50-х гг. был разработан метод ионной флотации.

Широкое распространение флотации, возникшей первоначально благодаря ряду эмпирических изобретений, оказало значительное влияние на становление физической химии поверхностных явлений, а развитая теория стала основой совершенствования процесса флотации.

В развитии теории флотации важную роль сыграли работы русских физико-химиков: И. С. Громека, впервые сформулировавшего в конце 19 века основные положения процесса смачивания; Л. Г. Гурвича, разработавшего в начале 20 века положения о гидрофобности и гидрофильности. П. А. Ребиндер развил теорию адсорбционных и поверхностно-активных процессов, указал на роль флокуляции в процессе флотации. Вопросы электрохимических взаимодействий при флотации впервые рассмотрел А. Н. Фрумкин (1930), а затем Р. Ш. Шафеев и В. А. Чантурия. Теория аэрации при флотации развита В. И. Классеном. Теория взаимодействия реагентов с минералами при флотации развита И. Н. Плаксиным и его школой (В. А. Глембоцкий, Классен, Шафеев, В. И. Тюрникова и др.), а также А. Таггартом, А. Годеном, Д. Фюрстенау (США), И. Уорком (Австралия), М. Г. Флемингом (Великобритания) и др. Кинетике флотации, математическому моделированию и управлению процессом флотации посвящены работы К. Ф. Белоглазова, О. С. Богданова, Л. А. Барского, В. З. Козина, И. И. Максимова, Ю. Б. Рубинштейна, а также П. Инуэ (Япония), Фюрстенау (США) и др. Создание теории селективной флотации минералов связано с именами М. А. Эйгелеса, С. И. Митрофанова, С. И. Полькина и др.

Совершенствование процесса флотации идёт по пути синтеза новых видов флотационных реагентов, конструирования флотационных машин, замены воздуха другими газами (кислород, азот), а также внедрения систем управления параметрами жидкой фазы флотационной пульпы. Благодаря флотации вовлекаются в промышленное производство месторождения тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых.

Источник

ФЛОТА́ЦИЯ

В книжной версии

Том 33. Москва, 2017, стр. 442

Скопировать библиографическую ссылку:

ФЛОТА́ЦИЯ (от франц. flotter – пла­вать), гид­ро­ме­ха­ни­че­ский про­цесс раз­де­ле­ния мел­ких час­тиц, ос­но­ван­ный на разл. сма­чи­ва­нии их жид­ко­стью и из­би­ра­тель­ном при­ли­па­нии к по­верх­но­сти раз­де­ла фаз (как пра­ви­ло, жид­кость – газ) за счёт сил по­верх­но­ст­но­го на­тя­же­ния. При Ф. пу­зырь­ки га­за или ка­п­ли при­ли­па­ют к пло­хо сма­чи­вае­мым во­дой час­ти­цам и под­ни­ма­ют их к по­верх­но­сти. Ф. при­ме­ня­ет­ся в хи­мич., неф­те­пе­ре­ра­ба­ты­ваю­щей, пи­ще­вой и др. от­рас­лях пром-сти, для обо­га­ще­ния по­лез­ных ис­ко­пае­мых, очи­ст­ки сточ­ных вод (от твёр­дых час­тиц и ка­пель ор­га­нич. при­ме­сей), для вы­де­ле­ния и раз­де­ле­ния бак­те­рий и т. д. В за­ви­си­мо­сти от спо­со­ба об­ра­зо­ва­ния по­верх­но­сти раз­де­ла раз­ли­ча­ют сле­дую­щие ви­ды Ф.: пен­ная, ва­ку­ум­ная, фло­то­гра­ви­та­ция, ион­ная, элек­тро­фло­та­ция, мас­ля­ная и др. Для ин­тен­си­фи­ка­ции Ф. за счёт соз­да­ния ус­ло­вий се­лек­тив­но­го (из­би­ра­тель­но­го) раз­де­ле­ния в жид­кость до­бав­ля­ют фло­то­реа­ген­ты (ча­ще все­го ПАВ), из­ме­няю­щие по­верх­но­ст­ное на­тя­же­ние вбли­зи по­верх­но­сти раз­де­ла фаз.

Источник

Флотация

Литература : Kлассен B. И., Mокроусов B. A., Bведение в теорию флотации, 2 изд., M., 1959; Mитрофанов C. И., Cелективная флотация, 2 изд., М., 1967; Глембоцкий B. A., Kлассен B. И., Флотация, M., 1973; Глембоцкий B. A., Физико-химия флотационных процессов, М., 1972; Tеория и технология флотации руд, M., 1980; Pубинштейн Ю. Б., Филиппов Ю. A., Kинетика флотации, М., 1980.

Л. A. Барский.

Полезное

Смотреть что такое «Флотация» в других словарях:

флотация — и, ж. flottation f., англ. floatation букв. всплывание. Способ обогащения полезных ископаемых, основанный на всплывании измельченных частей полезного ископаемого на поверхность жидкости, находящейся в обогатительном устройстве. БАС 1. Флотация… … Исторический словарь галлицизмов русского языка

Флотация — Процесс обогащения полезных ископаемых, основанный на разности поверхностных свойств и избирательном контакте частиц минералов к поверхности раздела фаз: жидкость газ, жидкость жидкость и др. Источник … Словарь-справочник терминов нормативно-технической документации

ФЛОТАЦИЯ — (франц. flottation от flotter плавать на поверхности воды), процесс разделения мелких твердых частиц (главным образом минералов), основанный на различии их в смачиваемости водой. Для обогащения полезных ископаемых широко применяется пенная… … Большой Энциклопедический словарь

ФЛОТАЦИЯ — извлечение из воды различных веществ с помошью мелких пузырьков воздуха, увлекающих эти вещества на поверхность воды, которые остаются там в виде пены. Применяется в очистке сточных вод. Экологический словарь, 2001 Флотация извлечение из воды… … Экологический словарь

Флотация — способ обогащения, при котором измельченная горная порода обрабатывается специальными растворами. При этом частицы одних минералов смачиваются и тонут, а других не смачиваются и уносятся пеной, что позволяет избавиться от пустой породы. См. также … Финансовый словарь

флотация — разделение, флотирование Словарь русских синонимов. флотация сущ., кол во синонимов: 2 • разделение (99) • … Словарь синонимов

флотация — Способ отделения одних минералов от других в жидкой среде, основанный на способности одних минералов прилипать к воздушным пузырькам и переходить вместе с ними в пенный слой, а других оставаться во взвешенном состоянии [Терминологический словарь… … Справочник технического переводчика

ФЛОТАЦИЯ — (французское flottation, от flotter плавать на поверхности воды), процесс разделения мелких твердых частиц (главным образом минералов), основанный на различии в их смачиваемости водой. Применяется для обогащения полезных ископаемых … Современная энциклопедия

ФЛОТАЦИЯ — ФЛОТАЦИЯ, способ отделения полезных рудных ископаемых от ненужных горных пород и других примесей. Руду в том виде, как она поступает из шахты, мелко мелют и смешивают с водой, в которую добавлены химикалии, носящие название смачивающих агентов.… … Научно-технический энциклопедический словарь

ФЛОТАЦИЯ — ФЛОТАЦИЯ, флотации, мн. нет, жен. (англ. flotation) (горн.). Способ обогащения руд, основанный на принципе использования всплывания частиц полезного ископаемого на поверхность жидкости, находящейся в обогатительном приборе. Толковый словарь… … Толковый словарь Ушакова

Источник

ФЛОТАЦИЯ

Посредством флотации можно разделять также водорастворимые соли, взвешенные в их насыщенных р-рах [напр., отделять сильвин (KCl) от галита (NaCl)]. Благодаря флотации в пром. произ-во вовлекаются м-ния тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Флотацию применяют также для очистки воды от орг. в-в (нефти, масел и др.), тонкодисперсных осадков солей и шламов, для выделения и разделения бактерий и т. д.

Помимо горноперерабатывающих отраслей пром-сти флотацию используют в хим., пищ. и др. отраслях для ускорения отстаивания, выделения твердых взвесей и эмульгир. орг. в-в; для разделения синтетич. орг. ионитов и выделения из пульп ионитов, нагруженных разл. адсорбатами; при переработке бумажных отходов для отделения чистых целлюлозных волокон от испачканных; для очистки натурального каучука от примесей; для извлечения нафталина из воды, охлаждающей коксовый газ; очистки пром. стоков и др.

Разновидности процесса Широкое применение флотации привело к появлению большого числа разновидностей процесса.

Вакуумная флотация. По этому способу, предложенному Ф. Элмором (Великобритания, 1906), жидкость, содержащая твердые частицы, насыщается газом, к-рый при понижении давления выделяется из нее в виде мелких пузырьков на пов-сти гидрофобных частиц.

Ионная флотация разработана в 50-х гг. 20 в. (Ф. Себба, ЮАР) для очистки воды, а также извлечения полезных компонентов из разб. р-ров. Отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимод. с флотореагентами-собирателями, обычно катион-ного типа, и извлекаются пузырьками газа в пену либо пленку на пов-сти р-ра. Способ перспективен для переработки пром. стоков, минерализов. подземных термальных и шахтных вод и морской воды.

Электрофлотация. Для ее проведения используют пов-сть пузырьков водорода и кислорода, выделяющихся при электролитич. разложении воды.

Другие способы флотации. Среди всех способов первой была предложена (1860) масляная флотация (В. Хайнс, Великобритания). Для ее осуществления измельченную руду перемешивают с минеральным маслом и водой; при этом сульфидные минералы селективно смачиваются маслом, всплывают вместе с ним и удаляются с пов-сти воды, а пустые породы (кварц, полевой шпат и др.) осаждаются. В России масляная флотация была применена для обогащения графитовой руды (Мариуполь, 1904). В дальнейшем этот способ усовершенствовали: масло диспергировали до эмульсионного состояния, что позволило извлекать тонкие шламы, напр. марганцевых руд.

В настоящее время масляная, пленочная и нек-рые др. способы флотации практически не применяются.

Собиратели (коллекторы). Роль этих реагентов заключается в селективной гидрофобизации (понижении смачива-емости) пов-сти нек-рых минеральных частиц и возникновении тем самым условий для прилипания к ним газовых пузырьков. Гидрофобизация достигается вытеснением гидрат-ной пленки с пов-сти частиц. Закрепление на ней м. б. обусловлено ван-дер-ваальсовыми силами (физ. адсорбция) либо образованием хим. связи (хемосорбция). По структурным признакам собиратели подразделяют на анионные, кати-онные, амфотерные и неионогенные. Молекулы анионных и катионных реагентов содержат неполярные (углеводородные) и полярные (амино-, карбокси- или др.) группы. Последние обращены к минералу, сорбируются на пов-сти частиц и гидрофобизируют ее, а неполярные группы обращены в воду, отталкивают ее молекулы и предотвращают гидратацию пов-сти частиц.

Катионные собиратели, среди к-рых наиб. распространены алифатич. первичные амины, а также вторичные амины (в керосине), соли четвертичных аммониевых оснований и ами-ноэфиры с короткой разветвленной цепью, используют для флотации калийных солей (гл. обр. KCl при отделении его от NaCl), кварца, силикатов, сульфидов и т. д.

Амфотерные собиратели имеют в своем составе амино- и карбоксильную группы, благодаря чему сохраняют активность как в кислой, так и в щелочной средах. Данные коллекторы особенно эффективны для флотации минералов класса оксидов в воде повышенной жесткости.

Неионогенные собиратели представлены неполярными соед.- углеводородными жидкостями преим. нефтяного происхождения (газойли, дизельные масла, керосин и т. д.), а также жирами и др. В виде водных эмульсий они служат для флотации алмазов, графита, калийных солей, молибденита, самородной S, талька, углей, фосфатов и др. минералов с неполярной пов-стью. Совместное применение полярных коллекторов с неполярными, а также диспергирование, напр. с помощью ультразвука, эмульсий последних (что усиливает адгезионное закрепление их на пов-сти минералов за счет физ. адсорбции) существенно улучшает флотацию крупных частиц; при этом наряду с адгезией флотация сопровождается также и хим. р-циями.

Модификаторы (регуляторы) позволяют сделать возможной, усилить, ослабить или исключить адсорбцию собирателей на минералах. Благодаря регуляторам уменьшается расход собирателей, достигаются разделение минералов с близкой плотностью, обогащение руд сложного состава с получением неск. концентратов. Модификаторы, улучшающие закрепление собирателей на пов-сти определенных минералов и ускоряющие флотацию, наз. активаторами; регуляторы, затрудняющие закрепление коллекторов,- подавителями, или депрессорами.

В большинстве случаев флотореагенты обладают комплексным действием (к-рое зависит от прир. состава пов-сти минералов, рН среды, т-ры пульпы и т.д.) и приведенная их классификация весьма условна.

Избирательность флотации регулируют наряду с иными факторами подбором реагентов, ассортимент к-рых достигает неск. сотен, и их расходом. При увеличении пов-сти флотируемых минералов расход собирателей и активаторов возрастает. Расход пенообразователей немного увеличивается при повышенном содержании обрабатываемого минерала и грубом помоле руды. Расход депрессоров возрастает при повышенной флотируемости подавляемых минералов, высоких концентрациях собирателей в пульпе (напр., при разделении коллективных концентратов), а также при использовании малоизбирательных коллекторов, содержащих в молекулах длинноцепочечные углеводородные радикалы (напр., высшие жирные к-ты и мыла).

Флотируемые компоненты руды извлекаются не полностью при недостатке вспенивателей, а при их избытке ухудшается селективность флотации. Средние расходы флотореагентов невелики и обычно составляют от неск. г до неск. кг на 1 т руды.

Флотационные процессы и оборудование Обогащение руд методом флотации производят на флотационных фабриках, осн. оборудование к-рых включает флотац. машины, контактные чаны и реагентные питатели.

Флотационные машины предназначены для проведения собственно флотации. В них осуществляют перемешивание твердых частиц (суспендирование пульпы) и поддержание их во взвешенном состоянии; аэрацию пульпы и диспергирование в ней воздуха; селективную минерализацию пузырьков путем контакта с обработанными флотореагентами частицами; создание зоны пенного слоя; разделение пульпы и минерализов. пены; удаление и транспортировку продуктов обогащения. Впервые патент на флотац. машину выдан в 1860; первые пром. образцы машин разработаны в 1910-14 (T. Гувер и Д. Кэллоу, США).

Широкое использование флотации для обогащения полезных ископаемых привело к созданию разных конструкций машин. Каждая машина состоит из ряда последовательно расположенных камер с приемными и разгрузочными устройствами для пульпы; каждая камера снабжена аэрирующим и пено-съемным устройствами. Различают одно- и многокамерные флотац. машины. К однокамерным относятся флотационные колонны, в к-рых высота камер превышает их ширину более чем в 3 раза; эти аппараты применяют при флотац. обогащении мономинеральных руд и флотац. отделении шламов.

Многокамерные машины позволяют реализовать сложные схемы обогащения полиминеральных руд с получением неск. концентратов.

По способам аэрации пульпы выделяют мех., пневмомех., пневмогидравлич. и пневматич. машины. В механических машинах взвешивание частиц руды (перемешивание пульпы), засасывание и диспергирование воздуха осуществляется аэратором, или импеллером. В отличие от этих устройств в пневмомеханическиемашины (схему камеры см. на рис.) воздух подается в зону импеллера принудительно с помощью воздуходувки. В пневмогидравлических машинах воздух диспергируется в аэраторах спец. конструкций (напр., в эжекторах) при взаимод. струй жидкости и воздуха. В пневматических машинах воздух диспергируется при продавливании через пористые перегородки.

Флотация что это

Работа мех. и пневмомех. машин в значит. степени определяется конструкцией импеллера, вариантом подвода к нему воздуха, особенностями перекачивания импеллером пульпы и ее циркуляции в камере. От способа перекачивания пульпы импеллером зависят особенности аэрации пульпы и гидроди-намич. режим в камере. Последний определяется также размерами зоны интенсивной циркуляции пульпы. По этому признаку различают машины с придонной циркуляцией и циркуляцией во всем объеме камеры.

Характер движения потоков пульповоздушной смеси в камере зависит от конструкций статора машины (имеет вид цилиндров или пластин), устройства для удаления минерализов. пены с пов-сти пульпы (обычно применяют лопастной пеносъемник), успокоителей (предотвращают разрушение пенного слоя), межкамерных перегородок, наличия отбойников и формы камеры (имеет, как правило, скошенные снизу боковые стенки, благодаря чему исключается накапливание в углах твердых частиц и облегчается их перемещение у дна от стенок к импеллеру).

Оптим. степень разделения минералов при изменении характеристики сырья достигается путем изменения кол-ва подаваемого в камеру воздуха, толщины пенного слоя и уровня пульпы, а также производительности импеллера. Средние показатели совр. мех. и пневмомех. машин: производительность по потоку пульпы 0,2-130 м 3 /мин; объем камер от 12-40 м 3 (в России) до 30-100 м 3 (за рубежом). Применение большеобъемных камер позволяет на 20-30% сократить капитальные затраты, металлоемкость машин, а также их энергоемкость (достигает 1,5-3,0 кВт/м 3 ).

По сравнению с мех. и пневмомех. машинами пневмогидравлич. флотац. машины отличаются большей скоростью, небольшими капитальными затратами, высокой производительностью, низкими металло- и энергоемкостью и т. д. Однако из-за отсутствия надежного в работе и долговечного аэрирующего устройства эти флотац. машины еще недостаточно широко применяют в практике обогащения полезных ископаемых.

Известны также мало распространенные пока машины: вакуумные и к о м п r е с с и о н н ы е (аэрация достигается выделением из пульпы растворенных газов); центробежные и со струйным аэрированием; электрофлотационные (аэрация пульпы пузырьками, выделяющимися при электролизе).

Другая аппаратура. Для обработки пульпы флотореагентами предназначены контактные чаны (кондиционеры), в к-рые сначала подаются, как правило, модификаторы, затем собиратели и далее пенообразователи. Время контактирования пульпы с реагентами составляет от неск. секунд до десятков мин. Реагентный режим флотации определяется ассортиментом флотореагентов и порядком их ввода во флотац. процесс. Подача ингредиентов в систему в заданных кол-вах обеспечивается реагентными питателями, или дозаторами реагентов.

Основные процессы и вспомогательные операции

Работа предприятий. Флотац. процессы подразделяют на прямые и обратные. При прямой флотации в пенный продукт, наз. концентратом, извлекают полезный минерал, в камерный продукт, наз. отходами или хвостам и,- частицы пустой породы. Последние извлекают в пенный продукт при обратной флотации.

Различают также основную, перечистную и контрольную флотац. операции. Основная флотация дает т. наз. черновой концентрат, из к-рого в результате перечистной флотации получают готовый концентрат. Камерный продукт основной флотации (несфлотированные частицы) подвергают одной или неск. операциям контрольной флотации с получением отвального продукта (отходов).

Камеры флотац. машин соединяют в такой последовательности, к-рая позволяет осуществлять упомянутые операции, циркуляцию промежуточных продуктов и получать концентраты требуемого качества при заданном извлечении полезного компонента. Показатели флотации особенно для сульфидных руд цветных металлов достигают высокого уровня. Так, из медной руды, содержащей 1,5-1,7% Cu, получают медный концентрат (35% Cu) с извлечением 93% Cu. Из медно-молибденовой руды, содержащей ок. 0,7% Cu и 0,05-0,06 Mo, производят медный концентрат (25% Cu) с извлечением 80% Cu и молибденовый концентрат (св. 50% Mo) с извлечением св. 70% Mo. Из свинцово-цинковой руды, содержащей ок. 1% Pb и 3% Zn, получают свинцовый концентрат с содержанием св. 70% Pb (извлечение св. 90%) и цинковый концентрат с содержанием 59% Zn (извлечение св. 90%) и т. д.

Важное значение для достаточного полного разделения минералов наряду с ионным составом жидкой фазы пульпы, составом растворенных в ней газов (особенно сильно влияние кислорода воздуха), ее т-рой и плотностью, схемой и реагент-ным режимом флотации имеет степень измельчения сырья. Лучше всего обогащаются частицы крупностью 0,15-0,04 мм. Для разделения частиц мельче 40 мкм наиб. пригодны фло-тац. колонны, в к-рых исходная пульпа после смешения с флотореагентами поступает в среднюю или верх. часть (ниже уровня пенного слоя), где встречается с восходящим потоком пузырьков воздуха, вводимого в ниж. часть.

Благодаря противотоку пульпы и воздуха, а также большей, чем в других флотац. машинах, вторичной минерализации пенного слоя достигается высокая селективность процесса. Для флотации частиц крупнее 0,15 мм в России разработаны машины пенной сепарации, в к-рых пульпу подают на слой пены, удерживающей только гидрофобизированные частицы, а также машины кипящего слоя с восходящими потоками аэрированной жидкости.

В технологии флотации большое внимание уделяется качеству воды, к-рое характеризуется пределами содержания взвешенных частиц, катионов и анионов, рН, жесткостью и т. д. Для достижения требуемого качества воду подвергают спец. подготовке, включающей удаление с помощью коагулянтов и флокулянтов взвешенных частиц, электрохим. обработку, корректировку ионного состава воды подачей извести, к-т, щелочей и др. (см. также Водоподготовка).

Совершенство флотации, кроме качества получаемых концентратов, уровня извлечения полезных компонентов, расходов флотореагентов и т. п., определяется также степенью использования оборотной воды. Напр., на флотац. фабриках США, обогащающих фосфатные руды, при расходе воды 11,2-84,2 м 3 на 1 т руды доля водооборота составляет 66-95%; на фосфатных фабриках бывшего СССР расходуется 13,8-35,7 м 3 воды на 1 т руды при водообороте 80-100%.

Целевые продукты флотации направляют для обезвоживания в непрерывно действующие отстойники-сгустители, гидросепараторы и гидроциклоны (40-60% влаги в сгущенном продукте), фильтры (10-15%) и сушилки (1-3% влаги). Для ускорения сгущения и отстаивания пульпы обрабатывают реагента-ми-флокулянтами (полиакриламид, полисахариды и др.) и магн. методами.

Осн. направления совершенствования процесса

1. Разработка бессточных систем, основанных на использовании селективных флотореагентов, обеспечивающих разделение минералов в воде с повышенной жесткостью.

2. Более широкое применение методов электрохим. активации флотации путем направленного изменения флотац. св-в минералов, регулирования окислит.-восстановит. потенциала и ионного состава жидкой фазы пульпы.

3. Использование флотац.-хим. технологий переработки бедных и труднообогатимых руд с целью комплексного применения сырья и охраны окружающей среды.

4. Дальнейшее совершенствование конструкций флотац. машин с камерами большой емкости, обеспечивающих снижение капитальных и энергетич. затрат, путем улучшения аэрац. характеристик машин, использования износостойких материалов, автоматизир. основных узлов.

Кроме того, совершенствование флотации идет по пути синтеза новых флотореагентов, замены воздуха др. газами (азот, кислород), а также внедрения систем управления параметрами жидкой фазы флотац. пульпы.

Лит.: Краткая химическая энциклопедия, т. 5, M., 1967, с. 455-59; Теория и технология флотации руд, M., 1980; Рубинштейн Ю.Б., Филиппов Ю.А., Кинетика флотации, M., 1980; Глембоцкий В.А., Клас-сен В.И., Флотационные методы обогащения, 2 изд., M., 1981; Справочник по обогащению руд. Основные процессы, 2 изд., M., 1983; Абрамов А. А., Флотационные методы обогащения, M., 1984; Дерягин Б.В., Духин С. С., Pyлев H. H., Микрофлотация, M., 1986; Методы исследования флотационного процесса, M., 1990; Мещеряков H. Ф., Кондиционирующие и флотационные аппараты и машины, M., 1990; Горная энциклопедия, т. 4, M., 1989, с. 576-77, т. 5, M., 1991, с. 319-23. Ю. В. Рябов.

Источник

Способ очистки сточных вод флотацией — что это такое и какие виды бывают?

Очистка многих видов производственных сточных вод проводится в несколько этапов, одним из которых является флотация. Суть процесса состоит в фиксировании частичек загрязнений на поверхности пузырьков растворенного воздуха. Агрегированные комплексы образуют на поверхности пену, которую удаляют специальными устройствами.

Флотационный способ очистки сточных вод – это разновидность адсорбции на воздушных микроскопических капсулах, позволяющая разделять смеси, выделять многие виды грязи из водной среды.

Суть метода

При флотации сточные воды насыщаются тем или иным способом воздухом, пузырьки которого присоединяют частицы грязи, образуя флотокомплексы. Сформировавшиеся агрегаты поднимаются на поверхность, образуя пенный концентрат флотационного шлама.

Флотация что это

Чем быстрее получатся адсорбированные комплексы из примесей, тем скорее они всплывут на поверхность в виде пены, легче и эффективнее произойдет очистка.

Флотация успешно применяется для удаления веществ, «боящихся» воды, с явно выраженными гидрофобными свойствами:

Все примеси, отделяемые флотационным способом, представляют собой дисперсные частицы, которые не оседают при отстаивании.

Она проводится непрерывно, имеет большой диапазон возможного применения. Процесс идет с высокой скоростью, приводит к получению шлама с пониженной влажностью, который впоследствии можно рекуперировать.

Сложность проведения очистки таким способом обусловлена необходимостью строго контролировать количество и размеры воздушных пузырьков, в некоторых случаях увеличивать гидрофобность частиц с помощью дополнительно вводимых в среду реагентов.

Флотация что этоГлавная действующая сила при флотационной очистке – это микроскопические полости воздуха, которые получают непосредственным выделением из воды или дроблением газовой составляющей по всей толще жидкости.

Способ получения насыщенных воздухом стоков, дробления пузырьков определяет классификацию флотационных методов.

С выделением воздуха из раствора

Технология очистки посредством выделения пузырьков из загрязненной водной среды подразумевает использование напора или вакуума.

Напорная

При напорной очистке флотацией в раствор, перекачанный в сатуратор, нагнетают воздушный поток. После чего масса поступает во флотационную камеру, давление в которой равно атмосферному.

Образовавшиеся воздушные капсулы фиксируют на своей поверхности частицы примесей; агрегированные комплексы поднимаются в верхний слой, образуя флотационную пену.

Флотация что это

Подробнее о напорном способе флотационной очистки сточных вод смотрите в видео:

Эрлифтная

Для удаления отходов из сточных вод, поставляемых в химической промышленности, часто применяют эрлифтную модификацию метода. Очистка происходит благодаря перепадам высот, на которых расположены резервуары, что значительно сокращает энергозатраты на проведение флотации.

Емкость со сточной водой располагается на высоте, достигающей 30 м. Грязный поток поступает в аэратор, расположенный значительно ниже. В него нагнетают воздух, а затем поднимают массу по эрлифтным трубам во флотационную камеру.

Подъем воздушного потока стимулирует образование сначала воздушных пузырьков, а затем агрегированных комплексов. Вся грязь всплывает в верхнем слое, снизу остается относительно очищенная вода, которую подвергают дальнейшей обработке для приведения в нормальное состояние.

Вакуумная

При таком способе очистки водный раствор аэрируют для насыщения воздухом, затем в специальном отсеке удаляют нерастворившуюся воздушную часть. В камере флотации полученный раствор попадает в зону пониженного давления, значения которого меньше, чем атмосферные показатели.

Это приводит к обильному появлению пузырьков в окружении спокойной окружающей среды. Прилипание примесей к поверхности происходит прочно, сохраняется надежно до полного всплывания агрегата на поверхность.

С насыщением раствора воздухом

При некоторых видах загрязнений сточных масс воды раствор дополнительно насыщают воздухом по одному из нескольких возможных алгоритмов.

Импеллерная

Флотация что этоНасыщение посредством небольших специальных турбин – импеллеров позволяет получать пузырьки маленьких размеров, которые могут адсорбировать молекулы жиров и продуктов переработки нефти.

Вращение лопастей, сориентированных вверх, создает вихревое движение в водной массе, приводит к образованию большого количества мелких пузырьков одинаково маленькой величины.

Вращение импеллера производится со строго заданной скоростью, обеспечивающей образование большого количества мелких пузырьков.

Метод позволяет убрать из стоков нерастворимые частицы при концентрации их в растворе, достигающей 3 г/л, а также компоненты нефтяных фракций, молекулы жиров.

Безнапорная и пневматическая

Без напора раствор можно насытить воздухом посредством вращения рабочего колеса, соединенного с насосом. Безнапорным способом формируются относительно большие пузырьки воздуха, которые фиксируют на себе:

Получившиеся агрегаты в целостном состоянии поднимаются вверх, очищая стоки.

При использовании пневматического нагнетания воздуха трубы с форсунками кладут внизу флотационных емкостей. Пневматические установки с форсунками на дне применяют в случае, если в среде имеются агрессивные вещества, контакт которых с вращающимися рабочими деталями допускать нельзя.

Барботажная

Флотация что этоВ качестве источников для насыщения сточных вод воздушными пузырьками иногда используются пористые структуры с одинаково маленькими ячейками, через которые с заданной скоростью пропускают воздушный поток.

Диаметр пор не превышает 20 мкм, что создает возможность подачи микроскопических порций воздуха.

Достоинством метода является интенсивное насыщение стоков, неудобство заключается в том, что мелкие ячейки часто забиваются грязевыми примесями. Если объем сточной воды не очень велик барботаж проводится в камере с пористыми колпачками. Агрегированная грязь образует пену в верхнем слое, которая стекает за пределы резервуара по специальному каналу.

Электролитическая

Большую эффективность демонстрирует электролиз сточных вод, при котором на катоде выделяется водород, а на анодном электроде газообразный кислород. Интенсивность электролиза можно регулировать составом и формой электродов.

Химической и биологической природы

Применение механических способов образования агрегатов и всплывание их на поверхность не всегда приводит к полному выделению дисперсных частиц. В качестве дополнительного источника газовых пузырьков используются химические реагенты окислительной или карбонатной природы.

Хлорсодержащие окислители проводят обеззараживание, выделяют в пространство молекулы

Карбонатные добавки инициируют образование углекислого газа. Образующиеся газовые пузырьки адсорбируют примеси и выносят их в поверхностный пенный слой.

При флотационной очистке сточных вод с большим содержанием органических отходов, чаще всего бытового происхождения, образуется рыхлая пена. Для ее уплотнения используют биологическую технологию, которая заключается в том, что смесь нагревают и оставляют на несколько дней.

Благодаря присутствию микроорганизмов биомасса в таких условиях активно бродит, выделяя газы, которые

Направления применения

Флотация позволяет убрать из растворов разнообразные примеси, находящиеся в дисперсном состоянии.

Они образуются как побочный продукт при следующих производственных процессах:

Флотация что это

Флотацией очищают сточные воды, образующиеся на машиностроительных заводах, пищевых предприятиях, а также отделяют ил после биохимической очистки грязных водных растворов различного происхождения.

Заключение

Флотационный способ очистки позволяет убрать частицы грязи, не склонные к оседанию. Для повышения эффективности в сточные воды могут добавлять реагенты, увеличивающие или уменьшающие интенсивность приклеивания частиц к воздушным пузырькам. Иногда применяют соединения, стимулирующие образование пены, что ускоряет ее последующее отделение.

Флотация проводится при минимальном количестве дополнительных устройств, которые включают только агрегаты для выделения или подачи воздуха и средства удаления пенного слоя. Метод дает хорошие результаты при минимальных затратах.

Источник

Флотация — один из самых эффективных способов обогащения руд

Флотация — метод обогащения руд, основанный на свойстве Флотация что этомелких частиц разных веществ по-разному смачиваться. Частицы породы, легко смачивающиеся жидкостью (гидрофильные), отделяются от несмачиваемых, гидрофобных частиц.

Флотация проводится в специальных машинах и установках с помощью флотирующих реактивов. В их списке такие известные вещества, как медный купорос, хлорное железо, уротропин, сода.

Разделение происходит на границе сред, как правило, газа и жидкости. Газовые пузырьки или капельки масла прилипают к гидрофобным частицам и поднимают их на поверхность, а гидрофильные частицы опускаются на дно.

Серьезные теоретические исследования смачиваемости веществ начали вести в конце XIX века; они были глубоко развиты в XX веке, в том числе российскими и советскими учеными.

Самая первая — масляная флотация. Ее применяли для обработки сульфидных пород. Исходный материал мелко измельчали и смешивали со смесью воды и масел. Масло прилипало к частицам с полезными минералами и выталкивало их на поверхность, а ненужная порода собиралась на дне. Таким способом у нас в стране в начале 20-го века получали концентраты из графитовых и марганцевых руд.

Пленочная флотация — более позднее изобретение, основанное на свойстве несмачиваемых частиц плавать на поверхности жидкости и не тонуть. Для разделения веществ с разными свойствами породу мелко измельчали и подавали в поток жидкости. Часть частиц быстро смачивалась и опускалась на дно. Остальная порода удалялась.

Флотация что этоФлотация что этоФлотация что это
Железо хлорное 6-вод. «ч»Уротропин (гексаметилентетрамин)Сода кальцинированная техническая

Эти два флотационных процесса сейчас почти не применяются, уступив место различным модификациям пенной флотации. О ней мы подробно расскажем в следующей статье.

Для чего используется флотация

Методами флотации удается извлечь, например: Флотация что это

Источник

Флотация как способ обогащения

Разделение руды на элементы происходит на границе двух разных средств. Во флотационной установке гидрофобные частички прилипают к пузырькам газа или масла и поднимаются на поверхность, в то время как гидрофильные элементы оседают на дне емкости. Этот процесс имеет высокую эффективность и экономичность.

Полная автоматизация позволяет уменьшить себестоимость технологических операций на обогатительной фабрике и в гидрометаллургии.

Более подробно о том, что это такое – флотация, а также в каких сферах она используется, читайте далее.

Методы флотации

В зависимости от того, каким образом создается межфазная граница между средами, используются четыре разных способа флотации:

Где применяется флотация

Благодаря универсальности и эффективности метода технология флотации используется при добыче таких полезных ископаемых6

Способы использования флотационных устройств

Рассматриваемая обогатительная технология в зависимости от типа используемого устройства позволяет решить несколько различны задач:

Помимо перечисленных задач, флотационные устройства могут применяться для выделения солей из перенасыщенного раствора, для очистки каучука естественного происхождения от посторонних примесей, а также очистки бытовых и промышленных канализационных стоков.

Разновидности оборудования

Для обогащения руд методом флотации используются такие типы и виды оборудования:

При покупке оборудования необходимо обращать внимание на объем камеры, пропускную способность установки, мощность привода импеллера, удельный расход воздуха и другие характеристики.

Источник

Значение слова «флотация»

Флотация что это

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

ФЛОТА’ЦИЯ, и, мн. нет, ж. [англ. flotation] (горн.). Способ обогащения руд, основанный на принципе использования всплывания частиц полезного ископаемого на поверхность жидкости, находящейся в обогатительном приборе.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

флота́ция

1. метод обогащения полезных ископаемых, который основан на различии способностей минералов удерживаться на межфазовой поверхности, обусловленный различием в удельных поверхностных энергиях

Делаем Карту слов лучше вместе

Флотация что этоПривет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова запитый (прилагательное):

Источник

Флотация

Полезное

Смотреть что такое «Флотация» в других словарях:

флотация — и, ж. flottation f., англ. floatation букв. всплывание. Способ обогащения полезных ископаемых, основанный на всплывании измельченных частей полезного ископаемого на поверхность жидкости, находящейся в обогатительном устройстве. БАС 1. Флотация… … Исторический словарь галлицизмов русского языка

Флотация — (франц. flottation, англ. flotation, букв. плаванье на поверхности воды * a. flotation; н. Flotation, Flotatieren, Schaumschwimnaufereitung; ф. flottation; и. flotacion) процесс разделения мелких твёрдых частиц (гл. обр. минералов) в… … Геологическая энциклопедия

Флотация — Процесс обогащения полезных ископаемых, основанный на разности поверхностных свойств и избирательном контакте частиц минералов к поверхности раздела фаз: жидкость газ, жидкость жидкость и др. Источник … Словарь-справочник терминов нормативно-технической документации

ФЛОТАЦИЯ — (франц. flottation от flotter плавать на поверхности воды), процесс разделения мелких твердых частиц (главным образом минералов), основанный на различии их в смачиваемости водой. Для обогащения полезных ископаемых широко применяется пенная… … Большой Энциклопедический словарь

ФЛОТАЦИЯ — извлечение из воды различных веществ с помошью мелких пузырьков воздуха, увлекающих эти вещества на поверхность воды, которые остаются там в виде пены. Применяется в очистке сточных вод. Экологический словарь, 2001 Флотация извлечение из воды… … Экологический словарь

Флотация — способ обогащения, при котором измельченная горная порода обрабатывается специальными растворами. При этом частицы одних минералов смачиваются и тонут, а других не смачиваются и уносятся пеной, что позволяет избавиться от пустой породы. См. также … Финансовый словарь

флотация — разделение, флотирование Словарь русских синонимов. флотация сущ., кол во синонимов: 2 • разделение (99) • … Словарь синонимов

флотация — Способ отделения одних минералов от других в жидкой среде, основанный на способности одних минералов прилипать к воздушным пузырькам и переходить вместе с ними в пенный слой, а других оставаться во взвешенном состоянии [Терминологический словарь… … Справочник технического переводчика

ФЛОТАЦИЯ — (французское flottation, от flotter плавать на поверхности воды), процесс разделения мелких твердых частиц (главным образом минералов), основанный на различии в их смачиваемости водой. Применяется для обогащения полезных ископаемых … Современная энциклопедия

ФЛОТАЦИЯ — ФЛОТАЦИЯ, способ отделения полезных рудных ископаемых от ненужных горных пород и других примесей. Руду в том виде, как она поступает из шахты, мелко мелют и смешивают с водой, в которую добавлены химикалии, носящие название смачивающих агентов.… … Научно-технический энциклопедический словарь

ФЛОТАЦИЯ — ФЛОТАЦИЯ, флотации, мн. нет, жен. (англ. flotation) (горн.). Способ обогащения руд, основанный на принципе использования всплывания частиц полезного ископаемого на поверхность жидкости, находящейся в обогатительном приборе. Толковый словарь… … Толковый словарь Ушакова

Источник

Флотация

Флотация [flotation] — процесс обогащения полезных ископаемых, основанный на избирательном прилипании частиц минералов, диспергированных в жидкой среде, к поверхности раздела двух фаз: жидкость-газ, жидкость-жидкость и др. Флотация осуществляется с помощью флотационных реагентов — органическ ПАВ, вводимых во флотационный процесс для регулирования флотируемости минералов. В зависимости от характера воздействия на физико-химические свойства поверхности минералов различают флотационные реагенты — модификаторы, собиратели, пенообразователи и регуляторы. Флотация осуществляется во флотационных машинах. Благодаря флотация в России и за рубежом вовлекаются в промышленное производство месторождения тонковкрапленных руд и обеспечивается комплексное использование полезных ископ. В ряде случаев хвосты флотации не являются отходами, а используются в качестве стройматериалов, удобрений для сельского хозяйства и в других целях. Флотация — ведущий процесс при обогащении руд цветных металлов:

Полезное

Смотреть что такое «Флотация» в других словарях:

флотация — и, ж. flottation f., англ. floatation букв. всплывание. Способ обогащения полезных ископаемых, основанный на всплывании измельченных частей полезного ископаемого на поверхность жидкости, находящейся в обогатительном устройстве. БАС 1. Флотация… … Исторический словарь галлицизмов русского языка

Флотация — (франц. flottation, англ. flotation, букв. плаванье на поверхности воды * a. flotation; н. Flotation, Flotatieren, Schaumschwimnaufereitung; ф. flottation; и. flotacion) процесс разделения мелких твёрдых частиц (гл. обр. минералов) в… … Геологическая энциклопедия

Флотация — Процесс обогащения полезных ископаемых, основанный на разности поверхностных свойств и избирательном контакте частиц минералов к поверхности раздела фаз: жидкость газ, жидкость жидкость и др. Источник … Словарь-справочник терминов нормативно-технической документации

ФЛОТАЦИЯ — (франц. flottation от flotter плавать на поверхности воды), процесс разделения мелких твердых частиц (главным образом минералов), основанный на различии их в смачиваемости водой. Для обогащения полезных ископаемых широко применяется пенная… … Большой Энциклопедический словарь

ФЛОТАЦИЯ — извлечение из воды различных веществ с помошью мелких пузырьков воздуха, увлекающих эти вещества на поверхность воды, которые остаются там в виде пены. Применяется в очистке сточных вод. Экологический словарь, 2001 Флотация извлечение из воды… … Экологический словарь

Флотация — способ обогащения, при котором измельченная горная порода обрабатывается специальными растворами. При этом частицы одних минералов смачиваются и тонут, а других не смачиваются и уносятся пеной, что позволяет избавиться от пустой породы. См. также … Финансовый словарь

флотация — разделение, флотирование Словарь русских синонимов. флотация сущ., кол во синонимов: 2 • разделение (99) • … Словарь синонимов

флотация — Способ отделения одних минералов от других в жидкой среде, основанный на способности одних минералов прилипать к воздушным пузырькам и переходить вместе с ними в пенный слой, а других оставаться во взвешенном состоянии [Терминологический словарь… … Справочник технического переводчика

ФЛОТАЦИЯ — (французское flottation, от flotter плавать на поверхности воды), процесс разделения мелких твердых частиц (главным образом минералов), основанный на различии в их смачиваемости водой. Применяется для обогащения полезных ископаемых … Современная энциклопедия

ФЛОТАЦИЯ — ФЛОТАЦИЯ, способ отделения полезных рудных ископаемых от ненужных горных пород и других примесей. Руду в том виде, как она поступает из шахты, мелко мелют и смешивают с водой, в которую добавлены химикалии, носящие название смачивающих агентов.… … Научно-технический энциклопедический словарь

ФЛОТАЦИЯ — ФЛОТАЦИЯ, флотации, мн. нет, жен. (англ. flotation) (горн.). Способ обогащения руд, основанный на принципе использования всплывания частиц полезного ископаемого на поверхность жидкости, находящейся в обогатительном приборе. Толковый словарь… … Толковый словарь Ушакова

Источник

Флотация. Технологии и процесс

Уважаемые коллеги! В очередном выпуске рассылки от НПЦ «ПромВодОчистка» мы решили подробнее остановиться на флотации – процессе обогащения воды воздухом. Как это делается и для чего нужно, читайте подробнее в нашей статье.

Факт 1. Отделенные частицы собираются в виде пены (флотопродукт) на поверхности жидкости

Флотацию называют естественной, если разность между природной плотнос­тью агрегатов частиц и плотностью воды достаточна для их разделения.

Принудительной флотацией называют процесс, в котором для улучшения отде­ления частиц, обладающих природной флотируемостью (но имеющих недостаточ­ную скорость разделения), используются различные внешние средства (воздух или воздух и различные реагенты).

Пузырьки газа обычно классифицируют по их размеру: средние (2-4 мм), мелкие (от сотен микрометров до 1 мм)-и микропузырьки (40-70 мкм).

В области обработки воды термином «флотация» (в буквальном смысле этого сло­ва) принято называть флотацию, спровоцированную действием микропузырьков, подобных тем, которые можно видеть в струе «белой» воды, вытекающей из крана сети распределения воды, т. е. струи, обогащенной газом, растворенным в ней под большим давлением. Последний процесс называют напорной флотацией или флотацией растворенным воздухом (FAD — от фр. flottationaairdissout или DAF — от англ. dissolvedairflotation).

В горно-обогатительной и нефтяной промышленности для обозначения флота­ции с использованием воздуха или иного газа, диспергированного до состояния мелких пузырьков диаметром 0,2-2 мм, используется термин механическая фло­тация (в англоязычных странах применяются термины IAF — Induced Air Flotation или IGF — Induced Gas Flotation (принудительная флотация воздухом или газом)).

Факт 2. Восходящая скорость микропузырька газа в воде в ламинарном режиме описы­вается уравнением Стокса

При увеличении диаметра пузырька его восходящая скорость возрастает и уве­личивается турбулентность течения вокруг него, вследствие чего его движение пе­рестает подчиняться закону Стокса. Поэтому для расчета восходящей скорости пу­зырьков размерами 20-20 ООО мкм (рис. 1) последовательно применяются законы Стокса, Аллена и Ньютона.

Результаты расчета показывают (см. рис. 1 и 2), что:

Флотация что это

Рисунок 1. Восходящая скорость пузырьков воздуха в воде

Флотация что это

Рисунок 2. Восходящая скорость микропузырьков воздуха в воде

О размере пузырьков

Для отделения флокул целесообразно использовать микропузырьки, посколь­ку пузырек диаметром 1,2 мм заключает в себе в 8000 раз больше воздуха, чем мик­ропузырек размером 60 мкм. Из этого следует:

В тех случаях, когда целью обработки является увеличение скорости естествен­ной флотации и удержание на поверхности воды образовавшейся пены, для отде­ления крупных, рыхлых, более легких, чем вода, частиц, обладающих гидрофобностью, можно использовать пузырьки больших размеров. Именно это имеет место при отделении жиров.

Факт 3. Выделяют два основных типа флотации – естественную и принудительную

Естественная флотация

Процесс флотации широко используется для предварительного извлечения жиров, хотя, как правило, соответствующие аппараты не называют флотаторами. Перед такой двухфазной флотацией может производиться коалесценция (позволя­ющая микрокапелькам сливаться друг с другом) в целях получения размеров ка­пель, благоприятствующих отделению жиров от воды.

Принудительная флотация воздухом без использования реагентов

В данном случае мы имеем дело с естественной флотацией, для проведения ко­торой сквозь массу жидкости продувают пузырьки воздуха. Ее преимущественно применяют для отделения диспергированных жиров (частицы гидрофобны, вслед­ствие чего воздух с легкостью прилипает к их поверхности).

При обычном извлечении жиров воздух подается через диффузоры пузырьками средних размеров (2-4 мм), создающими турбулентность, что позволяет также от­делять тяжелые частицы (как минеральные, так и органические), прилипшие к жи­рам.

Флотация что это

Рисунок 3. Растворимость воздуха в воде при 20 о С

Для более глубокого извлечения жиров на стадии предварительной обработки ГСВ воздух подается мелкими пузырьками (от сотен микрометров до 1 мм) с по­мощью погружного механического аэратора. Таким образом реализуется процесс квазифлотации, состоящий в аккумулировании плавающих веществ и удержании их на поверхности жидкости.

Принудительная флотация с использованием реагентов (механическая флотация, или вспенивание)

Принудительная флотация этого типа протекает в условиях, весьма отличающих­ся от характерных для напорной флотации: другие плотность и размеры твердых частиц, размеры пузырьков воздуха, условия смешивания. Для изменения поверх­ностного натяжения используются специальные реагенты.

Факт 4. Напорная флотация наи­лучшим образом отвечает условиям извлечения достаточно хрупких флокул, обла­дающих относительно невысокой плотностью, обусловленной их составом (гидрок­сиды и/или ОВ)

Формирование микропузырьков предварительным насыщением

Флотация что это

Рисунок 4. Различные типы напорной флотации

Предварительное насыщение под давлением является наиболее распростра­ненным способом формирования микропузырьков.

Контакт воды с воздухом происходит в закрытом сосуде под давлением в не­сколько бар; воздух растворяется в воде в соответствии с законом Генри (на рис. 3 показана зависимость концентрации воздуха, растворенного в насыщенной воде при 20 «С, от давления).

В качестве жидкости, подвергаемой предварительному насыщению воздухом, используют либо исходную воду (частично или полностью) — прямое насыщение, либо часть рециркулируемой обработанной воды — косвенное насыщение (рис. 4).

При осветлении поверхностных вод или ПСВ, как правило, применяют косвенное насыщение; расход насыщенной воздухом воды составляет от 5 до 50 % расхода обрабатываемой воды; давление 4-6 бар. На практике используют воду, содержа­щую растворенный воздух в количествах, отвечающих 70-95%-му насыщению воды при данном давлении. Расход сжатого воздуха существенно изменяется в зависи­мости от области применения напорной флотации.

Флотация что это

Рисунок 5. Микропузырьковое молоко (напорная флотация)

При сгущении осадка (гидроксидные осадки или избыточный активный ил) насы­щение осуществляется прямым способом, поскольку с учетом концентрации фло­тируемых ВВ (2-6 г/л) требуется гораздо большее количество воздуха.

Пузырьки воздуха образуются при уменьшении давления в специальном устрой­стве; на рис. 36 показана зависимость от температуры объема воздуха, высвобож­дающегося в форме микропузырьков для случая 100%-го насыщения воды воздухом и 100%-го снятия давления. Конструкция устройства, в котором происходит процесс снятия давления, определяет качество (размеры и однородность) образу­ющихся пузырьков.

Отметим, что один пузырек диаметром 2 мм заключает в себе столько же воздуха, сколько его содержится в 106 микропузырьков размером по 20 мкм. Кроме того, крупные пузырьки создают турбулентные потоки, опасные для нормального пере­мешивания, т. е. формирования смеси так называемой белой воды (микропузырьковое молоко) со сфлокулированной водой (рисунок 5 — вид струи молочно-белой воды, в которой практически отсутствуют пузырьки крупных размеров).

Все установки напорной флотации содержат:

При обработке сточных вод не всегда удается сфлотировать все ВВ. Неизбежно, что в конце концов часть наиболее тяжелых частиц оседает на дно уста­новки. Вследствие этого флотомашины, используемые для обработки ПСВ или ГСВ, обычно оснащаются системой удаления осадка со дна (днище, имеющее значи­тельный наклон, или скребки-осадкоудалители).

Напорная флотация при обработке вод применяется для различных целей:

Подробную информацию о насосах-флотаторах производства НПЦ «ПромВодОчистка» вы можете найти в соответствующем разделе нашего каталога: Насосы флотаторы

Источник

Что такое флотация воды

С каждым годом ухудшение экологической обстановки в целом и сокращение запасов чистой воды в частности заставляет человечество изобретать новые способы улучшить воздух, воду, утилизировать отходы производства и потребления. Для обеспечения качественной очистки отработанных вод с возможностью дальнейшего их использования в технологическом процессе применяют разные методы. Флотация для очистки воды занимает среди них не последнее место, помогает эффективно избавлять промышленные промывные воды от загрязнителей наряду с обратным осмосом, флокуляцией и коагуляцией водных растворов.

Очистка воды методом флотации

В переводе с английского флотация означает «плавание на поверхности воды». В основе процесса флотации воды лежит явление избирательного смачивания. Молекулярные силы действуют специфически и способствуют прилипанию взвешенных веществ к пузырькам мелкодиспергированного в воде воздуха. На поверхности водного раствора образуется пенный слой, насыщенный извлекаемыми примесями.

После механической фильтрации и отстаивания сточных вод, в растворе остаются взвешенные примеси. Флотация для очистки сточных вод направлена на удаление из водных растворов таких взвесей. Кроме суспензированных твердых примесей методом флотации можно освобождать воду от продуктов нефтепереработки, масел, ПАВ и других эмульгированных жидких веществ. В некоторых случаях возможно удаление ионов, растворенных в воде, в том числе радиоактивных. В таком случае используемые реагенты должны образовывать поверхностно-активные комплексы с извлекаемыми ионами. Такая очистка носит название пенной сепарации.Флотация что это

Механизм флотационной адсорбции

В водный раствор, подлежащий очистке, подают высокодиспергированный воздух. Мельчайший газовый пузырек сближается с гидрофобной поверхностью взвешенной частички. Разделяющая их тонкая граница постепенно уменьшается, теряет устойчивость и при достижении критического значения разрывается. Это есть элементарный акт пенной флотации сточных вод.

Для интенсификации флотационного процесса повышают гидрофобность поверхности частиц вводом специальных реагентов. Избирательно адсорбируясь на частичках примесей, они уменьшают их смачивание. В результате процесс прилипания к газовым пузырькам идет быстрее и качественнее.

Виды флотации при очистке воды

Способов добавления в очищаемый раствор воздуха множество, среди которых по размерам получаемых газовых пузырьков можно выделить следующие методы.

В установках электрофлотации очищаемый водный раствор пропускают в поле между электродами, на поверхности которых выделяются газовые пузырьки водорода и кислорода. Электроды могут быть растворимыми и нерастворимыми. При использовании растворимых электродов электрофлотационный процесс сопровождается электрокоагуляцией, которая повышает эффективность флотации.Флотация что это

Реагенты для очистки сточных вод методом флотации

Преимущества и недостатки технологии флотации сточных вод

Флотация как процесс очистки сточных вод имеет свои плюсы и минусы. В качестве преимуществ можно назвать:

При всех достоинствах избирательное действие пузырьков воздуха во флотационном методе напрямую зависит от показателей гидрофобности загрязняющих веществ. Постоянный контроль работы флотаторов для получения газовых пузырьков нужного размера, добавление гидрофобизирующих реагентов, вспенивателей можно отнести к недостаткам данного способа очистки промывных вод.

Флотация и коагуляция при очистке сточных вод

В процессе флотации воды главным собирателем загрязнений является высокодиспергированный воздух. Образование пузырьков внутри раствора вызывают разными методами. Пузырьки сорбируют вокруг себя мельчайшие частички примесей, которые имеют меньшую массу, чем сила, выталкивающая воздух на поверхность. Загрязнители всплывают вместе с воздухом, образуя флотационную пену. Она содержит максимальную концентрацию удаляемых соединений и постепенно выводится из системы.

Эффективность очистки сточных вод флотацией

Источник

флотация

ФЛОТАЦИЯ ( франц. flottation, англ. flotation, букв. — плавание на поверхности воды)

разделение мелких твердых частиц ( гл. обр. минералов) и выделение капель дисперсной фазы из эмульсий. Основана на разл. смачиваемости частиц (капель) жидкостью ( преим. водой) и на их избират. прилипании к поверхности раздела, как правило, жидкость — газ (очень редко твердые частицы — жидкость). Осуществляют Ф. гл. обр. с использованием спец. веществ — флотац. реагентов (флотореа-гентов).

Области применения

Ф. — один из гл. методов обогащения полезных ископаемых. С ее помощью обогащаются: все медные, молибденовые и свинцово-цинковые руды, значит. часть бериллиевых, висмутовых, железных, золотых, литиевых, марганцевых, мышьяковых, оловянных, ртутных, серебряных, сурьмяных, титановых и др. руд; неметаллич. ископаемые — апатит и фосфориты, барит, графит, известняк (для производства цемента), магнезит, песок (для производства стекла), плавиковый и полевой шпаты и т. д.

Посредством Ф. можно разделять также водорастворимые соли, взвешенные в их насыщенных растворах [ напр., отделять сильвин (KCl) от галита (NaCl)]. Благодаря Ф. в пром. производство вовлекаются м-ния тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Ф. применяют также для очистки воды от орг. веществ (нефти, масел и др.), тонкодисперсных осадков солей и шламов, для выделения и разделения бактерий и т. д.

Помимо горноперерабатывающих отраслей промышленности Ф. используют в хим., пищ. и др. отраслях для ускорения отстаивания, выделения твердых взвесей и эмульгир. орг. веществ; для разделения синтетич. орг. ионитов и выделения из пульп ионитов, нагруженных разл. адсорбатами; при переработке бумажных отходов для отделения чистых целлюлозных волокон от испачканных; для очистки натурального каучука от примесей; для извлечения нафталина из воды, охлаждающей коксовый газ; очистки пром. стоков и др.

Разновидности процесса

Широкое применение Ф. привело к появлению большого числа разновидностей процесса.

Пенная флотация — наиболее распространенный способ Ф., которым в мире ежегодно обогащают 1 млрд. т горной массы — более 20 типов руд. Первый патент на этот способ был выдан братьям Адольфу и Артуру Бесселям (Германия, 1877). Согласно патенту, частицы графита, закрепившиеся на газовых пузырьках, образующихся при кипячении суспензии (пульпы), всплывали на поверхность жидкости и выводились из зоны разделения. В дальнейшем для увеличения числа и суммарной поверхности пузырьков такой способ их образования заменили принудит. подачей газа (обычно воздуха) в аппарат для разделения — флотац. машину.

Ф и з. — х и м. основы. Применительно к пенному режиму Ф. осуществляется в трехфазной среде «твердые частицы — жидкость — газ», наз. пульпой. Твердая фаза представлена частицами минералов, получаемых при дроблении и помоле руды с целью выделения полезных компонентов из сростков с минералами пустой породы; тяжелые минералы измельчают до крупности 0,1–0,2 мм, легкие (уголь, сера, фосфаты и др.) — до 0,2–3 мм. Жидкая фаза содержит воду, продукты выщелачивания минералов, флотореагенты, растворенные газы, продукты износа оборудования, коллоидные частицы и т. д. Газовая фаза состоит из пузырьков (размеры от десятков мкм до 1–2 мм), образующихся при прохождении воздуха через диспергирующее устройство (аэратор). Положит. роль во Ф. могут играть газовые пузырьки, выделяющиеся из раствора.

Сущность элементарного акта Ф. заключается в следующем. При сближении в водной среде пузырька газа и гидрофобной поверхности минеральной частицы ( см. лиофильность и лиофобность), адгезия которой к воде меньше когезии воды, разделяющая их водная прослойка при достижении некоторой критич. толщины становится неустойчивой и самопроизвольно прорывается. Этот этап завершается полным смачиванием частицы, обеспечивающим прочное слипание пузырька и частицы. Вследствие того, что плотность комплексов, или агрегатов «пузырьки — частицы», меньше плотности пульпы, они всплывают (флотируют) на ее поверхность и образуют пенный минерализованный слой, который удаляется из флотац. машины.

Известно неск. модификаций пенной Ф.: вакуумная, фло-тогравитация, ионная, электрофлотация, Ф. с выделением CO2, пенная сепарация.

Вакуумная флотация. По этому способу, предложенному Ф. Элмором (Великобритания, 1906), жидкость, содержащая твердые частицы, насыщается газом, который при понижении давления выделяется из нее в виде мелких пузырьков на поверхности гидрофобных частиц.

Флотогравитация — комбинир. процесс обогащения полезных ископаемых, совмещающий Ф. и разделение мелких твердых частиц под действием силы тяжести или в поле центробежных сил. Процесс проводят в спец. аппаратах (концентрационные столы, винтовые сепараторы, ленточные шлюзы, концентраторы, осадочные машины). В них благодаря обработке пульпы флотореагентами и введению в нее пузырьков воздуха образуются т. наз. аэрофлокулы определенных минералов, имеющие меньшую плотность, чем частицы, не взаимодействующие с воздушными пузырьками. Создаваемое при этом различие в плотности способствует более эффективному разделению частиц минералов, в т. ч. меньшей крупности, чем при обычном гравитац. обогащении. В промышленности флотогравитацию используют для выделения сульфидных минералов из вольфрамовых и оловянных концентратов, а также для отделения циркона от пирохлора, шеелита от касситерита и др.

Ионная флотация разработана в 50-х гг. 20 в. (Ф. Себба, ЮАР) для очистки воды, а также извлечения полезных компонентов из разб. растворов. Отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимод. с флотореагентами-собирателями, обычно катион-ного типа, и извлекаются пузырьками газа в пену либо пленку на поверхности раствора. Способ перспективен для переработки пром. стоков, минерализов. подземных термальных и шахтных вод и морской воды.

Электрофлотация. Для ее проведения используют поверхность пузырьков водорода и кислорода, выделяющихся при электролитич. разложении воды.

Предложен также способ Ф., согласно которому в пульпу вводят пузырьки CO2, образующегося в результате хим. реакции.

Другие способы флотации. Среди всех способов первой была предложена (1860) масляная Ф. (В. Хайнс, Великобритания). Для ее осуществления измельченную руду перемешивают с минеральным маслом и водой; при этом сульфидные минералы селективно смачиваются маслом, всплывают вместе с ним и удаляются с поверхности воды, а пустые породы (кварц, полевой шпат и др.) осаждаются. В России масляная Ф. была применена для обогащения графитовой руды (Мариуполь, 1904). В дальнейшем этот способ усовершенствовали: масло диспергировали до эмульсионного состояния, что позволило извлекать тонкие шламы, напр. марганцевых руд.

В настоящее время масляная, пленочная и некоторые др. способы Ф. практически не применяются.

Флотационные реагенты

Флотореагенты — хим. вещества (чаще всего применяют ПАВ), которые добавляют при Ф. в пульпу для создания условий селективного (избирательного) разделения минералов. Флотореагенты позволяют регулировать взаимод. минеральных частиц и газовых пузырьков, хим. реакции и физ.-хим. процессы в жидкой фазе, на границах раздела фаз и в пенном слое путем гидрофобизации поверхности одних и гидратации поверхности др. твердых частиц. По назначению различают три группы фло-тореагентов: собиратели, пенообразователи и модификаторы. По хим. составу флотореагенты бывают органическими (пре-им. собиратели и пенообразователи) и неорганическими ( в осн. модификаторы); те и другие м. б. неионогенными, мало или практически нерастворимыми в воде, и ионогенными, хорошо растворимыми в ней веществами.

Собиратели (коллекторы). Роль этих реагентов заключается в селективной гидрофобизации (понижении смачива-емости) поверхности некоторых минеральных частиц и возникновении тем самым условий для прилипания к ним газовых пузырьков. Гидрофобизация достигается вытеснением гидрат-ной пленки с поверхности частиц. Закрепление на ней м. б. обусловлено ван-дер-ваальсовыми силами (физ. адсорбция) либо образованием хим. связи (хемосорбция). По структурным признакам собиратели подразделяют на анионные, кати-онные, амфотерные и неионогенные. Молекулы анионных и катионных реагентов содержат неполярные (углеводородные) и полярные (амино-, карбокси- или др.) группы. Последние обращены к минералу, сорбируются на поверхности частиц и гидрофобизируют ее, а неполярные группы обращены в воду, отталкивают ее молекулы и предотвращают гидратацию поверхности частиц.

К анионным собирателям относятся соед., которые содержат сульфгидрильную (меркапто-) или гидроксильную группы, а также их производные — т. наз. сульфгидрильные и оксгид-рильные реагенты. Сульфгидрильные реагенты предназначены для Ф. минералов сульфидных руд Cu, Pb, Zn, Ag, Au, Co, Ni, Fe и включают ксантогенаты (изопропил-, пентил- и этилпроизводные), дитиофосфаты (дикрезил- и диэтилпроиз-водные), меркаптаны и их производные (диалкилтионокарба-маты). Оксгидрильные реагенты применяют для Ф. карбонатов, оксидов, сульфатов, фосфатов, фторидов и некоторых др. минералов; к этим реагентам относятся алифатич. (кар-боновые) кислоты, моноалкилсульфаты, сульфосукцинаты, ал-кан- и алкиларилсульфонаты, алкилгидроксамовые и алкил-арилфосфоновые кислоты и их соли, алкилариловые эфиры фосфорных кислот и их соли, сульфированные алкилмоноглице-риды.

Катионные собиратели, среди которых наиб. распространены алифатич. первичные амины, а также вторичные амины (в керосине), соли четвертичных аммониевых оснований и ами-ноэфиры с короткой разветвленной цепью, используют для Ф. калийных солей ( гл. обр. KCl при отделении его от NaCl), кварца, силикатов, сульфидов и т. д.

Амфотерные собиратели имеют в своем составе амино- и карбоксильную группы, благодаря чему сохраняют активность как в кислой, так и в щелочной средах. Данные коллекторы особенно эффективны для Ф. минералов класса оксидов в воде повышенной жесткости.

Неионогенные собиратели представлены неполярными соед. — углеводородными жидкостями преим. нефтяного происхождения (газойли, дизельные масла, керосин и т. д.), а также жирами и др. В виде водных эмульсий они служат для Ф. алмазов, графита, калийных солей, молибденита, самородной S, талька, углей, фосфатов и др. минералов с неполярной поверхностью. Совместное применение полярных коллекторов с неполярными, а также диспергирование, напр. с помощью ультразвука, эмульсий последних (что усиливает адгезионное закрепление их на поверхности минералов за счет физ. адсорбции) существенно улучшает Ф. крупных частиц; при этом наряду с адгезией Ф. сопровождается также и хим. реакциями.

Пенообразователи (вспениватели), адсорбируясь на поверхности раздела газ — жидкость, понижают поверхностное натяжение, способствуют образованию устойчивой гидратной оболочки пузырьков воздуха, уменьшают их крупность и препятствуют коалесценции, умеренно стабилизируют мине-рализов. пену. В качестве вспенивателей используют одноатомные алифатич. спирты ( напр., метилизобутилкарбинол), гомологи фенола (крезолы и ксиленолы), техн. продукты (пихтовое и сосновое масла), содержащие терпеновые спирты, монометиловые и монобутиловые эфиры полипропилен-гликолей, полиалкоксиалканы ( напр., 1,1,1,3-тетраэтоксибу-тан) и др. Пенообразующими свойствами обладают некоторые собиратели (амины, карбоновые кислоты).

Модификаторы (регуляторы) позволяют сделать возможной, усилить, ослабить или исключить адсорбцию собирателей на минералах. Благодаря регуляторам уменьшается расход собирателей, достигаются разделение минералов с близкой плотностью, обогащение руд сложного состава с получением неск. концентратов. Модификаторы, улучшающие закрепление собирателей на поверхности определенных минералов и ускоряющие Ф., наз. активаторами; регуляторы, затрудняющие закрепление коллекторов,- подавителями, или депрессорами.

В большинстве случаев флотореагенты обладают комплексным действием (которое зависит от прир. состава поверхности минералов, pH среды, температуры пульпы и т. д.) и приведенная их классификация весьма условна.

Избирательность Ф. регулируют наряду с иными факторами подбором реагентов, ассортимент которых достигает неск. сотен, и их расходом. При увеличении поверхности флотируемых минералов расход собирателей и активаторов возрастает. Расход пенообразователей немного увеличивается при повышенном содержании обрабатываемого минерала и грубом помоле руды. Расход депрессоров возрастает при повышенной флотируемости подавляемых минералов, высоких концентрациях собирателей в пульпе ( напр., при разделении коллективных концентратов), а также при использовании малоизбирательных коллекторов, содержащих в молекулах длинноцепочечные углеводородные радикалы ( напр., высшие жирные кислоты и мыла).

Флотируемые компоненты руды извлекаются не полностью при недостатке вспенивателей, а при их избытке ухудшается селективность Ф. Средние расходы флотореагентов невелики и обычно составляют от неск. г до неск. кг на 1 т руды.

Флотационные процессы и оборудование

Обогащение руд методом Ф. производят на флотационных фабриках, осн. оборудование которых включает флотац. машины, контактные чаны и реагентные питатели.

Флотационные машины предназначены для проведения собственно Ф. В них осуществляют перемешивание твердых частиц (суспендирование пульпы) и поддержание их во взвешенном состоянии; аэрацию пульпы и диспергирование в ней воздуха; селективную минерализацию пузырьков путем контакта с обработанными флотореагентами частицами; создание зоны пенного слоя; разделение пульпы и минерализов. пены; удаление и транспортировку продуктов обогащения. Впервые патент на флотац. машину выдан в 1860; первые пром. образцы машин разработаны в 1910–14 (T. Гувер и Д. Кэллоу, США).

Широкое использование Ф. для обогащения полезных ископаемых привело к созданию разных конструкций машин. Каждая машина состоит из ряда последовательно расположенных камер с приемными и разгрузочными устройствами для пульпы; каждая камера снабжена аэрирующим и пено-съемным устройствами. Различают одно- и многокамерные флотац. машины. К однокамерным относятся флотационные колонны, в которых высота камер превышает их ширину более чем в 3 раза; эти аппараты применяют при флотац. обогащении мономинеральных руд и флотац. отделении шламов.

Многокамерные машины позволяют реализовать сложные схемы обогащения полиминеральных руд с получением неск. концентратов.

По способам аэрации пульпы выделяют мех., пневмомех., пневмогидравлич. и пневматич. машины. В механических машинах взвешивание частиц руды (перемешивание пульпы), засасывание и диспергирование воздуха осуществляется аэратором, или импеллером. В отличие от этих устройств в пневмомеханическиемашины (схему камеры см. на рис.) воздух подается в зону импеллера принудительно с помощью воздуходувки. В пневмогидравлических машинах воздух диспергируется в аэраторах спец. конструкций ( напр., в эжекторах) при взаимодействии струй жидкости и воздуха. В пневматических машинах воздух диспергируется при продавливании через пористые перегородки.

Флотация что это

Работа мех. и пневмомех. машин в значит. степени определяется конструкцией импеллера, вариантом подвода к нему воздуха, особенностями перекачивания импеллером пульпы и ее циркуляции в камере. От способа перекачивания пульпы импеллером зависят особенности аэрации пульпы и гидродинамич. режим в камере. Последний определяется также размерами зоны интенсивной циркуляции пульпы. По этому признаку различают машины с придонной циркуляцией и циркуляцией во всем объеме камеры.

Характер движения потоков пульповоздушной смеси в камере зависит от конструкций статора машины (имеет вид цилиндров или пластин), устройства для удаления минерализов. пены с поверхности пульпы (обычно применяют лопастной пеносъемник), успокоителей (предотвращают разрушение пенного слоя), межкамерных перегородок, наличия отбойников и формы камеры (имеет, как правило, скошенные снизу боковые стенки, благодаря чему исключается накапливание в углах твердых частиц и облегчается их перемещение у дна от стенок к импеллеру).

Оптим. степень разделения минералов при изменении характеристики сырья достигается путем изменения количества подаваемого в камеру воздуха, толщины пенного слоя и уровня пульпы, а также производительности импеллера. Средние показатели совр. мех. и пневмомех. машин: производительность по потоку пульпы 0,2–130 м 3 /мин; объем камер от 12–40 м 3 (в России) до 30–100 м 3 (за рубежом). Применение большеобъемных камер позволяет на 20–30% сократить капитальные затраты, металлоемкость машин, а также их энергоемкость (достигает 1,5–3,0 кВт/м 3 ).

По сравнению с мех. и пневмомех. машинами пневмогидравлич. флотац. машины отличаются большей скоростью, небольшими капитальными затратами, высокой производительностью, низкими металло- и энергоемкостью и т. д. Однако из-за отсутствия надежного в работе и долговечного аэрирующего устройства эти флотац. машины еще недостаточно широко применяют в практике обогащения полезных ископаемых.

Известны также мало распространенные пока машины: вакуумные и к о м п ρ е с с и о н н ы е (аэрация достигается выделением из пульпы растворенных газов); центробежные и со струйным аэрированием; электрофлотационные (аэрация пульпы пузырьками, выделяющимися при электролизе).

Другая аппаратура. Для обработки пульпы флотореагентами предназначены контактные чаны (кондиционеры), в которые сначала подаются, как правило, модификаторы, затем собиратели и далее пенообразователи. Время контактирования пульпы с реагентами составляет от неск. секунд до десятков мин. Реагентный режим Ф. определяется ассортиментом флотореагентов и порядком их ввода во флотац. процесс. Подача ингредиентов в систему в заданных количествах обеспечивается реагентными питателями, или дозаторами реагентов.

Основные процессы и вспомогательные операции

Работа предприятий. Флотац. процессы подразделяют на прямые и обратные. При прямой Ф. в пенный продукт, наз. концентратом, извлекают полезный минерал, в камерный продукт, наз. отходами или хвостам и,- частицы пустой породы. Последние извлекают в пенный продукт при обратной Ф.

Различают также основную, перечистную и контрольную флотац. операции. Основная Ф. дает т. наз. черновой концентрат, из которого в результате перечистной Ф. получают готовый концентрат. Камерный продукт основной Ф. (несфлотированные частицы) подвергают одной или неск. операциям контрольной Ф. с получением отвального продукта (отходов).

Камеры флотац. машин соединяют в такой последовательности, которая позволяет осуществлять упомянутые операции, циркуляцию промежуточных продуктов и получать концентраты требуемого качества при заданном извлечении полезного компонента. Показатели Ф. особенно для сульфидных руд цветных металлов достигают высокого уровня. Так, из медной руды, содержащей 1,5–1,7% Cu, получают медный концентрат (35% Cu) с извлечением 93% Cu. Из медно-молибденовой руды, содержащей ок. 0,7% Cu и 0,05–0,06 Mo, производят медный концентрат (25% Cu) с извлечением 80% Cu и молибденовый концентрат ( св. 50% Mo) с извлечением св. 70% Mo. Из свинцово-цинковой руды, содержащей ок. 1% Pb и 3% Zn, получают свинцовый концентрат с содержанием св. 70% Pb (извлечение св. 90%) и цинковый концентрат с содержанием 59% Zn (извлечение св. 90%) и т. д.

Важное значение для достаточного полного разделения минералов наряду с ионным составом жидкой фазы пульпы, составом растворенных в ней газов (особенно сильно влияние кислорода воздуха), ее температурой и плотностью, схемой и реагент-ным режимом Ф. имеет степень измельчения сырья. Лучше всего обогащаются частицы крупностью 0,15–0,04 мм. Для разделения частиц мельче 40 мкм наиб. пригодны фло-тац. колонны, в которых исходная пульпа после смешения с флотореагентами поступает в среднюю или верх. часть (ниже уровня пенного слоя), где встречается с восходящим потоком пузырьков воздуха, вводимого в ниж. часть.

Благодаря противотоку пульпы и воздуха, а также большей, чем в других флотац. машинах, вторичной минерализации пенного слоя достигается высокая селективность процесса. Для Ф. частиц крупнее 0,15 мм в России разработаны машины пенной сепарации, в которых пульпу подают на слой пены, удерживающей только гидрофобизированные частицы, а также машины кипящего слоя с восходящими потоками аэрированной жидкости.

Во флотац. машинах весьма часто наблюдается побочный процесс, заключающийся в осаждении на стенках камеры гидрофобных частиц. На этом процессе, наз. Ф. твердой стенкой, основано разделение тонких шламов (10 мкм и менее) с применением носителя — гидрофобных частиц флотац. крупности, избирательно взаимодействующих с извлекаемыми шламами; образующиеся агрегаты подвергают обычной пенной Ф.

В технологии Ф. большое внимание уделяется качеству воды, которое характеризуется пределами содержания взвешенных частиц, катионов и анионов, pH, жесткостью и т. д. Для достижения требуемого качества воду подвергают спец. подготовке, включающей удаление с помощью коагулянтов и флокулянтов взвешенных частиц, электрохим. обработку, корректировку ионного состава воды подачей извести, кислот, щелочей и др. ( см. также водоподготовка).

Совершенство Ф., кроме качества получаемых концентратов, уровня извлечения полезных компонентов, расходов флотореагентов и т. п., определяется также степенью использования оборотной воды. Например, на флотац. фабриках США, обогащающих фосфатные руды, при расходе воды 11,2–84,2 м 3 на 1 т руды доля водооборота составляет 66–95%; на фосфатных фабриках бывшего СССР расходуется 13,8–35,7 м 3 воды на 1 т руды при водообороте 80–100%.

Целевые продукты Ф. направляют для обезвоживания в непрерывно действующие отстойники-сгустители, гидросепараторы и гидроциклоны (40–60% влаги в сгущенном продукте), фильтры (10–15%) и сушилки (1–3% влаги). Для ускорения сгущения и отстаивания пульпы обрабатывают реагента-ми-флокулянтами (полиакриламид, полисахариды и др.) и магн. методами.

Ф. на обогат. фабриках осуществляется как механизир., автоматизир. непрерывный процесс — от поступления руды до выпуска концентратов и хвостов. Регулирование крупности частиц при измельчении, подачи флотореагентов по их остаточной концентрации в пульпе, непрерывный анализ ее плотности, температуры и pH лежат в основе автоматизир. управления работой флотац. фабрик. Важное место на них занимают внутр. транспорт сырья и готовой продукции, водо- и энергоснабжение, охрана труда и окружающей среды и др. Мощность наиб. крупных совр. фабрик по горной массе достигает 50–55 тыс. т в сут. Одна из первых в мире флотац. фабрик была пущена в России (1904).

Осн. направления совершенствования процесса

1. Разработка бессточных систем, основанных на использовании селективных флотореагентов, обеспечивающих разделение минералов в воде с повышенной жесткостью.

2. Более широкое применение методов электрохим. активации Ф. путем направленного изменения флотац. свойств минералов, регулирования окислительно-восстановит. потенциала и ионного состава жидкой фазы пульпы.

3. Использование флотац.-хим. технологий переработки бедных и труднообогатимых руд с целью комплексного применения сырья и охраны окружающей среды.

4. Дальнейшее совершенствование конструкций флотац. машин с камерами большой емкости, обеспечивающих снижение капитальных и энергетич. затрат, путем улучшения аэрац. характеристик машин, использования износостойких материалов, автоматизир. основных узлов.

Кроме того, совершенствование Ф. идет по пути синтеза новых флотореагентов, замены воздуха др. газами (азот, кислород), а также внедрения систем управления параметрами жидкой фазы флотац. пульпы.

Лит.: Краткая химическая энциклопедия, т. 5, М., 1967, с. 455–59; Теория и технология флотации руд, М., 1980; Рубинштейн Ю.Б., Филиппов Ю.А., Кинетика флотации, М., 1980; Глембоцкий В.А., Клас-сен В.И., Флотационные методы обогащения, 2 изд., М., 1981; Справочник по обогащению руд. Основные процессы, 2 изд., М., 1983; Абрамов А. А., Флотационные методы обогащения, М., 1984; Дерягин Б.В., Духин С. С., Pyлев H. H., Микрофлотация, М., 1986; Методы исследования флотационного процесса, М., 1990; Мещеряков H. Ф., Кондиционирующие и флотационные аппараты и машины, М., 1990; Горная энциклопедия, т. 4, М., 1989, с. 576–77, т. 5, М., 1991, с. 319–23.

Источник

Что такое флотация: преимущества и недостатки этого способа очистки

Флотация что этоОчистка сточных вод, в первую очередь, включает в себя этап прохождения отстойника как в локальных очистных сооружения, так и в общегородских. Отставание воды очищает воду только от крупных взвесей, которые осаждаются на дно, являясь тяжелее воды. Но как быть с теми частицами, которые легче воды и не подвержены осаждению? Существует метод для выделения и таких сложных загрязнителей, который называют флотацией.

Флотационная очистка применяется как одна из ступеней очистки сточных вод от таких примесей.

Подробнее о флотации

В толще воды плавают различные мелкие твердые частицы, коллоидные взвеси и другие примеси, которые не оседают. Флотацию применяют для очищения сточных вод от ПАВ, нефтепродуктов, жиров, волокнистых веществ и взвесей активного ила. Также флотационный процесс по типу пенной сепарации способен удалить некоторые растворенные в воде вещества.

Физико-химические законы флотации

В основу флотационной очистки заложены сложные физико-химические процессы. Главным образом рассматривается понятие смачиваемости, то есть индивидуальной способности тех или иных веществ к смачиванию. Эта способность напрямую определяет поведение этих соединений на границе раздела фаз жидкости и газа. Существует два типа веществ:

В зависимости от того, к какому типу относится то или иное вещество, оно хорошо убирается при помощи флотационной очистки или же, наоборот, не поддается выделению таким способом.

Этапы флотации

Процесс флотации несложен для понимания, его можно описать следующим образом:

Эффективность процесса флотации

Те или иные факторы могут понижать или повышать эффективность флотации, как способа очистки сточных вод. Наиболее значимое влияние оказывают приведенные ниже факторы:

На эти факторы можно оказать воздействие с помощью специальных реагентов, которые будут описаны далее.

Реагенты для улучшения флотации

Как описано выше, флотация зависит от качества пенообразования и гидрофобности частиц. Существуют специальные добавки, которые направлены на повышение качества пены и увеличения гидрофобности примесей. Реагенты можно разделить на две основные группы:

Реагенты собиратели

Наиболее часто встречаемый вид загрязнителей имеет в своем составе частицы с двоякими качествами, имеющими часть гидрофобных и часть гидрофильных групп. Их способность смачивания недостаточна для связывания с пузырьками воздуха, поэтому флотация малоэффективна. Чтобы решить эту проблему, в стоки добавляют так называемые добавки-собиратели, которые также имеют двоякую структуру, состоящую из гидрофильных (полярных) и гидрофобных (неполярных) групп. Полярные гидрофильные концы загрязнителя и собирателя слепляются между собой, а гидрофобные концы остаются свободными.

Собирателями для усиления флотации выступают поверхностно-активные вещества:

Реагенты пенообразователи

Качество пени играет одну из ключевых ролей в эффективности флотации. Существует группа добавок, которые направлены на улучшение пенообразования. Они предохраняют пузыри воздуха от разрушения, делая их упругими и значительно стабилизируя пенную массу. Это дает возможность удалить как можно больше загрязнителей из сточных вод. Такими стабилизаторами для пены являются:

Виды флотационной очистки стоков

Процесс флотации кратко описан как насыщение сточных вод воздухом с его диспергированием. То есть главная задача флотации заключается в получении пузырьков нужного диаметра в толщах сточных вод. Как именно это осуществляется описано ниже.

Выделение пузырьков воздуха из раствора

Флотация что этоЧтобы выделить воздушные пузырьки из раствора, используют напорную и вакуумную флотацию. Напорная флотация представляет собой нагнетание воздуха, а затем резкое снижение давления в системе, что провоцирует выделение пузырьковой массы в толще воды.

Такими способами весьма успешно удаляются мелкодисперсные примеси.

Пропускание воздуха через пористые материалы

Это один из простейших способов с точки зрения физики для получения диспергированного воздушного потока. Перед попаданием воздуха в сточные воды, его пропускают через материалы с порами, такие как пластины со сквозными щелями. Диаметр пузырьков регулируется размером данных пор.

Электролизная флотация

Этот способ воплощают помещением в воду двух электродов, через которые пускают ток. Во время электролиза вода вокруг электродов расщепляется на пузырьки водорода и кислорода. Наиболее часто используемый материал для электродов: алюминий и железо. Эти металлы выделяют в воду коагулянты, которые связывают взвеси и превращают их в подобие хлопьев. Эти хлопья соединяются с воздушными пузырьками и выходят на поверхность сточных вод в вид пены.

Механическое диспергирование

Кроме образования пузырьков воздуха в воде при помощи смены давления, также применяют механические способы. Для этого также существует несколько путей:

Пузырьки в этих трех способах образуются в результате вихревого процесса, который стимулируется перемешиванием.

Флотация – преимущества и недостатки способа

На сегодня флотация является одним из наиболее часто используемых приемов очистки стоков. Его применяют и промышленные очистительные сооружения и городские. Причиной этому служит целый ряд факторов, которые говорят в пользу флотации.

Преимущества флотационной очистки:

Безусловно, как и любой метод, флотация связана и с некоторыми отрицательными моментами.

Недостатки флотационной очистки:

Выводы о флотации

Сколько бы преимуществ ни имела флотация, она не является самостоятельной и окончательной очисткой сточных вод. Это лишь один из этапов сложнейшего процесса, который позволяет удалить из воды большую часть нежелательных веществ. Флотационная очистка позволяет избавить воду от нефтепродуктов и масел, которые невозможно удалить другими способами, а также волокнистые составляющие стоков. Обычно флотационную очистку используют после этапа отстойников, чтобы удалить те вещества, которые не подвержены осаждению.

Источник

ФЛОТАЦИЯ

Посредством Ф. можно разделять также водорастворимые соли, взвешенные в их насыщенных р-рах [напр., отделять сильвин (KCl) от галита (NaCl)]. Благодаря Ф. в пром. произ-во вовлекаются м-ния тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Ф. применяют также для очистки воды от орг. в-в (нефти, масел и др.), тонкодисперсных осадков солей и шламов, для выделения и разделения бактерий и т. д.

Помимо горноперерабатывающих отраслей пром-сти Ф. используют в хим., пищ. и др. отраслях для ускорения отстаивания, выделения твердых взвесей и эмульгир. орг. в-в; для разделения синтетич. орг. ионитов и выделения из пульп ионитов, нагруженных разл. адсорбатами; при переработке бумажных отходов для отделения чистых целлюлозных волокон от испачканных; для очистки натурального каучука от примесей; для извлечения нафталина из воды, охлаждающей коксовый газ; очистки пром. стоков и др.

Разновидности процесса Широкое применение Ф. привело к появлению большого числа разновидностей процесса.

Вакуумная флотация. По этому способу, предложенному Ф. Элмором (Великобритания, 1906), жидкость, содержащая твердые частицы, насыщается газом, к-рый при понижении давления выделяется из нее в виде мелких пузырьков на пов-сти гидрофобных частиц.

Ионная флотация разработана в 50-х гг. 20 в. (Ф. Себба, ЮАР) для очистки воды, а также извлечения полезных компонентов из разб. р-ров. Отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимод. с флотореагентами-собирателями, обычно катион-ного типа, и извлекаются пузырьками газа в пену либо пленку на пов-сти р-ра. Способ перспективен для переработки пром. стоков, минерализов. подземных термальных и шахтных вод и морской воды.

Электрофлотация. Для ее проведения используют пов-сть пузырьков водорода и кислорода, выделяющихся при электролитич. разложении воды.

Другие способы флотации. Среди всех способов первой была предложена (1860) масляная Ф. (В. Хайнс, Великобритания). Для ее осуществления измельченную руду перемешивают с минеральным маслом и водой; при этом сульфидные минералы селективно смачиваются маслом, всплывают вместе с ним и удаляются с пов-сти воды, а пустые породы (кварц, полевой шпат и др.) осаждаются. В России масляная Ф. была применена для обогащения графитовой руды (Мариуполь, 1904). В дальнейшем этот способ усовершенствовали: масло диспергировали до эмульсионного состояния, что позволило извлекать тонкие шламы, напр. марганцевых руд.

В настоящее время масляная, пленочная и нек-рые др. способы Ф. практически не применяются.

Собиратели (коллекторы). Роль этих реагентов заключается в селективной гидрофобизации (понижении смачива-емости) пов-сти нек-рых минеральных частиц и возникновении тем самым условий для прилипания к ним газовых пузырьков. Гидрофобизация достигается вытеснением гидрат-ной пленки с пов-сти частиц. Закрепление на ней м. б. обусловлено ван-дер-ваальсовыми силами (физ. адсорбция) либо образованием хим. связи (хемосорбция). По структурным признакам собиратели подразделяют на анионные, кати-онные, амфотерные и неионогенные. Молекулы анионных и катионных реагентов содержат неполярные (углеводородные) и полярные (амино-, карбокси- или др.) группы. Последние обращены к минералу, сорбируются на пов-сти частиц и гидрофобизируют ее, а неполярные группы обращены в воду, отталкивают ее молекулы и предотвращают гидратацию пов-сти частиц.

Катионные собиратели, среди к-рых наиб. распространены алифатич. первичные амины, а также вторичные амины (в керосине), соли четвертичных аммониевых оснований и ами-ноэфиры с короткой разветвленной цепью, используют для Ф. калийных солей (гл. обр. KCl при отделении его от NaCl), кварца, силикатов, сульфидов и т. д.

Амфотерные собиратели имеют в своем составе амино- и карбоксильную группы, благодаря чему сохраняют активность как в кислой, так и в щелочной средах. Данные коллекторы особенно эффективны для Ф. минералов класса оксидов в воде повышенной жесткости.

Неионогенные собиратели представлены неполярными соед.- углеводородными жидкостями преим. нефтяного происхождения (газойли, дизельные масла, керосин и т. д.), а также жирами и др. В виде водных эмульсий они служат для Ф. алмазов, графита, калийных солей, молибденита, самородной S, талька, углей, фосфатов и др. минералов с неполярной пов-стью. Совместное применение полярных коллекторов с неполярными, а также диспергирование, напр. с помощью ультразвука, эмульсий последних (что усиливает адгезионное закрепление их на пов-сти минералов за счет физ. адсорбции) существенно улучшает Ф. крупных частиц; при этом наряду с адгезией Ф. сопровождается также и хим. р-циями.

Модификаторы (регуляторы) позволяют сделать возможной, усилить, ослабить или исключить адсорбцию собирателей на минералах. Благодаря регуляторам уменьшается расход собирателей, достигаются разделение минералов с близкой плотностью, обогащение руд сложного состава с получением неск. концентратов. Модификаторы, улучшающие закрепление собирателей на пов-сти определенных минералов и ускоряющие Ф., наз. активаторами; регуляторы, затрудняющие закрепление коллекторов,- подавителями, или депрессорами.

В большинстве случаев флотореагенты обладают комплексным действием (к-рое зависит от прир. состава пов-сти минералов, рН среды, т-ры пульпы и т. д.) и приведенная их классификация весьма условна.

Избирательность Ф. регулируют наряду с иными факторами подбором реагентов, ассортимент к-рых достигает неск. сотен, и их расходом. При увеличении пов-сти флотируемых минералов расход собирателей и активаторов возрастает. Расход пенообразователей немного увеличивается при повышенном содержании обрабатываемого минерала и грубом помоле руды. Расход депрессоров возрастает при повышенной флотируемости подавляемых минералов, высоких концентрациях собирателей в пульпе (напр., при разделении коллективных концентратов), а также при использовании малоизбирательных коллекторов, содержащих в молекулах длинноцепочечные углеводородные радикалы (напр., высшие жирные к-ты и мыла).

Флотируемые компоненты руды извлекаются не полностью при недостатке вспенивателей, а при их избытке ухудшается селективность Ф. Средние расходы флотореагентов невелики и обычно составляют от неск. г до неск. кг на 1 т руды.

Флотационные процессы и оборудование Обогащение руд методом Ф. производят на флотационных фабриках, осн. оборудование к-рых включает флотац. машины, контактные чаны и реагентные питатели.

Флотационные машины предназначены для проведения собственно Ф. В них осуществляют перемешивание твердых частиц (суспендирование пульпы) и поддержание их во взвешенном состоянии; аэрацию пульпы и диспергирование в ней воздуха; селективную минерализацию пузырьков путем контакта с обработанными флотореагентами частицами; создание зоны пенного слоя; разделение пульпы и минерализов. пены; удаление и транспортировку продуктов обогащения. Впервые патент на флотац. машину выдан в 1860; первые пром. образцы машин разработаны в 1910-14 (T. Гувер и Д. Кэллоу, США).

Широкое использование Ф. для обогащения полезных ископаемых привело к созданию разных конструкций машин. Каждая машина состоит из ряда последовательно расположенных камер с приемными и разгрузочными устройствами для пульпы; каждая камера снабжена аэрирующим и пено-съемным устройствами. Различают одно- и многокамерные флотац. машины. К однокамерным относятся флотационные колонны, в к-рых высота камер превышает их ширину более чем в 3 раза; эти аппараты применяют при флотац. обогащении мономинеральных руд и флотац. отделении шламов.

Многокамерные машины позволяют реализовать сложные схемы обогащения полиминеральных руд с получением неск. концентратов.

По способам аэрации пульпы выделяют мех., пневмомех., пневмогидравлич. и пневматич. машины. В механических машинах взвешивание частиц руды (перемешивание пульпы), засасывание и диспергирование воздуха осуществляется аэратором, или импеллером. В отличие от этих устройств в пневмомеханическиемашины (схему камеры см. на рис.) воздух подается в зону импеллера принудительно с помощью воздуходувки. В пневмогидравлических машинах воздух диспергируется в аэраторах спец. конструкций (напр., в эжекторах) при взаимод. струй жидкости и воздуха. В пневматических машинах воздух диспергируется при продавливании через пористые перегородки.

Флотация что это

Работа мех. и пневмомех. машин в значит. степени определяется конструкцией импеллера, вариантом подвода к нему воздуха, особенностями перекачивания импеллером пульпы и ее циркуляции в камере. От способа перекачивания пульпы импеллером зависят особенности аэрации пульпы и гидроди-намич. режим в камере. Последний определяется также размерами зоны интенсивной циркуляции пульпы. По этому признаку различают машины с придонной циркуляцией и циркуляцией во всем объеме камеры.

Характер движения потоков пульповоздушной смеси в камере зависит от конструкций статора машины (имеет вид цилиндров или пластин), устройства для удаления минерализов. пены с пов-сти пульпы (обычно применяют лопастной пеносъемник), успокоителей (предотвращают разрушение пенного слоя), межкамерных перегородок, наличия отбойников и формы камеры (имеет, как правило, скошенные снизу боковые стенки, благодаря чему исключается накапливание в углах твердых частиц и облегчается их перемещение у дна от стенок к импеллеру).

Оптим. степень разделения минералов при изменении характеристики сырья достигается путем изменения кол-ва подаваемого в камеру воздуха, толщины пенного слоя и уровня пульпы, а также производительности импеллера. Средние показатели совр. мех. и пневмомех. машин: производительность по потоку пульпы 0,2-130 м 3 /мин; объем камер от 12-40 м 3 (в России) до 30-100 м 3 (за рубежом). Применение большеобъемных камер позволяет на 20-30% сократить капитальные затраты, металлоемкость машин, а также их энергоемкость (достигает 1,5-3,0 кВт/м 3 ).

По сравнению с мех. и пневмомех. машинами пневмогидравлич. флотац. машины отличаются большей скоростью, небольшими капитальными затратами, высокой производительностью, низкими металло- и энергоемкостью и т. д. Однако из-за отсутствия надежного в работе и долговечного аэрирующего устройства эти флотац. машины еще недостаточно широко применяют в практике обогащения полезных ископаемых.

Известны также мало распространенные пока машины: вакуумные и к о м п r е с с и о н н ы е (аэрация достигается выделением из пульпы растворенных газов); центробежные и со струйным аэрированием; электрофлотационные (аэрация пульпы пузырьками, выделяющимися при электролизе).

Другая аппаратура. Для обработки пульпы флотореагентами предназначены контактные чаны (кондиционеры), в к-рые сначала подаются, как правило, модификаторы, затем собиратели и далее пенообразователи. Время контактирования пульпы с реагентами составляет от неск. секунд до десятков мин. Реагентный режим Ф. определяется ассортиментом флотореагентов и порядком их ввода во флотац. процесс. Подача ингредиентов в систему в заданных кол-вах обеспечивается реагентными питателями, или дозаторами реагентов.

Основные процессы и вспомогательные операции

Работа предприятий. Флотац. процессы подразделяют на прямые и обратные. При прямой Ф. в пенный продукт, наз. концентратом, извлекают полезный минерал, в камерный продукт, наз. отходами или хвостам и,- частицы пустой породы. Последние извлекают в пенный продукт при обратной Ф.

Различают также основную, перечистную и контрольную флотац. операции. Основная Ф. дает т. наз. черновой концентрат, из к-рого в результате перечистной Ф. получают готовый концентрат. Камерный продукт основной Ф. (несфлотированные частицы) подвергают одной или неск. операциям контрольной Ф. с получением отвального продукта (отходов).

Камеры флотац. машин соединяют в такой последовательности, к-рая позволяет осуществлять упомянутые операции, циркуляцию промежуточных продуктов и получать концентраты требуемого качества при заданном извлечении полезного компонента. Показатели Ф. особенно для сульфидных руд цветных металлов достигают высокого уровня. Так, из медной руды, содержащей 1,5-1,7% Cu, получают медный концентрат (35% Cu) с извлечением 93% Cu. Из медно-молибденовой руды, содержащей ок. 0,7% Cu и 0,05-0,06 Mo, производят медный концентрат (25% Cu) с извлечением 80% Cu и молибденовый концентрат (св. 50% Mo) с извлечением св. 70% Mo. Из свинцово-цинковой руды, содержащей ок. 1% Pb и 3% Zn, получают свинцовый концентрат с содержанием св. 70% Pb (извлечение св. 90%) и цинковый концентрат с содержанием 59% Zn (извлечение св. 90%) и т. д.

Важное значение для достаточного полного разделения минералов наряду с ионным составом жидкой фазы пульпы, составом растворенных в ней газов (особенно сильно влияние кислорода воздуха), ее т-рой и плотностью, схемой и реагент-ным режимом Ф. имеет степень измельчения сырья. Лучше всего обогащаются частицы крупностью 0,15-0,04 мм. Для разделения частиц мельче 40 мкм наиб. пригодны фло-тац. колонны, в к-рых исходная пульпа после смешения с флотореагентами поступает в среднюю или верх. часть (ниже уровня пенного слоя), где встречается с восходящим потоком пузырьков воздуха, вводимого в ниж. часть.

Благодаря противотоку пульпы и воздуха, а также большей, чем в других флотац. машинах, вторичной минерализации пенного слоя достигается высокая селективность процесса. Для Ф. частиц крупнее 0,15 мм в России разработаны машины пенной сепарации, в к-рых пульпу подают на слой пены, удерживающей только гидрофобизированные частицы, а также машины кипящего слоя с восходящими потоками аэрированной жидкости.

В технологии Ф. большое внимание уделяется качеству воды, к-рое характеризуется пределами содержания взвешенных частиц, катионов и анионов, рН, жесткостью и т. д. Для достижения требуемого качества воду подвергают спец. подготовке, включающей удаление с помощью коагулянтов и флокулянтов взвешенных частиц, электрохим. обработку, корректировку ионного состава воды подачей извести, к-т, щелочей и др. (см. также Водоподготовка).

Совершенство Ф., кроме качества получаемых концентратов, уровня извлечения полезных компонентов, расходов флотореагентов и т. п., определяется также степенью использования оборотной воды. Напр., на флотац. фабриках США, обогащающих фосфатные руды, при расходе воды 11,2-84,2 м 3 на 1 т руды доля водооборота составляет 66-95%; на фосфатных фабриках бывшего СССР расходуется 13,8-35,7 м 3 воды на 1 т руды при водообороте 80-100%.

Целевые продукты Ф. направляют для обезвоживания в непрерывно действующие отстойники-сгустители, гидросепараторы и гидроциклоны (40-60% влаги в сгущенном продукте), фильтры (10-15%) и сушилки (1-3% влаги). Для ускорения сгущения и отстаивания пульпы обрабатывают реагента-ми-флокулянтами (полиакриламид, полисахариды и др.) и магн. методами.

Осн. направления совершенствования процесса

1. Разработка бессточных систем, основанных на использовании селективных флотореагентов, обеспечивающих разделение минералов в воде с повышенной жесткостью.

2. Более широкое применение методов электрохим. активации Ф. путем направленного изменения флотац. св-в минералов, регулирования окислит.-восстановит. потенциала и ионного состава жидкой фазы пульпы.

3. Использование флотац.-хим. технологий переработки бедных и труднообогатимых руд с целью комплексного применения сырья и охраны окружающей среды.

4. Дальнейшее совершенствование конструкций флотац. машин с камерами большой емкости, обеспечивающих снижение капитальных и энергетич. затрат, путем улучшения аэрац. характеристик машин, использования износостойких материалов, автоматизир. основных узлов.

Кроме того, совершенствование Ф. идет по пути синтеза новых флотореагентов, замены воздуха др. газами (азот, кислород), а также внедрения систем управления параметрами жидкой фазы флотац. пульпы.

Лит.: Краткая химическая энциклопедия, т. 5, M., 1967, с. 455-59; Теория и технология флотации руд, M., 1980; Рубинштейн Ю. Б., Филиппов Ю. А., Кинетика флотации, M., 1980; Глембоцкий В. А., Клас-сен В. И., Флотационные методы обогащения, 2 изд., M., 1981; Справочник по обогащению руд. Основные процессы, 2 изд., M., 1983; Абрамов А. А., Флотационные методы обогащения, M., 1984; Дерягин Б. В., Духин С. С., Pyлев H. H., Микрофлотация, M., 1986; Методы исследования флотационного процесса, M., 1990; Мещеряков H. Ф., Кондиционирующие и флотационные аппараты и машины, M., 1990; Горная энциклопедия, т. 4, M., 1989, с. 576-77, т. 5, M., 1991, с. 319-23. Ю. В. Рябов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *