Gsm что это

Gsm что это

Сети GSM. Взгляд изнутри.

Немного истории

За рамками рассмотрения останутся два очень важных вопроса: во-первых, частотно-временное разделение каналов (с этим можно ознакомиться здесь ) и, во-вторых, системы шифрования и защиты передаваемой речи (это настолько специфичная и обширная тема, что, возможно, в будущем ей будет посвящен отдельный материал).

Основные части системы GSM, их назначение и взаимодействие друг с другом.

Взгляните на рис. 1:

Gsm что это

Рис.1 Упрощенная архитектура сети GSM.
1.Международный идентификационный номер подписчика (IMSI)
2.Телефонный номер абонента в обычном смысле (MSISDN)
3.Категория подвижной станции
4.Ключ идентификации абонента (Ki)
5.Виды обеспечения дополнительными услугами
6.Индекс закрытой группы пользователей
7.Код блокировки закрытой группы пользователей
8.Состав основных вызовов, которые могут быть переданы
9.Оповещение вызывающего абонента
10.Идентификация номера вызываемого абонента
11.График работы
12.Оповещение вызываемого абонента
13.Контроль сигнализации при соединении абонентов
14.Характеристики закрытой группы пользователей
15.Льготы закрытой группы пользователей
16.Запрещенные исходящие вызовы в закрытой группе пользователей
17.Максимальное количество абонентов
18.Используемые пароли
19.Класс приоритетного доступа
Таблица 1. Полный состав долгосрочных данных, хранимых в HLR и VLR.
1.Параметры идентификации и шифрования
2.Временный номер мобильного абонента (TMSI)
3.Адрес реестра перемещения, в котором находится абонент (VLR)
4.Зоны перемещения подвижной станции
5.Номер соты при эстафетной передаче
6.Регистрационный статус
7.Таймер отсутствия ответа
8.Состав используемых в данный момент паролей
9.Активность связи
Таблица 2. Полный состав временных данных, хранимых в HLR.
1.Временный номер мобильного абонента (TMSI)
2.Идентификаторы области расположения абонента (LAI)
3.Указания по использованию основных служб
4.Номер соты при эстафетной передаче
5.Параметры идентификации и шифрования
Таблица 3. Полный состав временных данных, хранимых в VLR.

Регистрация в сети.

Все пользователи случайным образом разбиваются на 10 равноправных классов доступа (с номерами от 0 до 9). Кроме того, существует несколько специальных классов с номерами с 11 по 15 (разного рода аварийные и экстренные службы, служебный персонал сети). Информация о классе доступа хранится в SIM. Особый, 10 класс доступа, позволяет совершать экстренные звонки (по номеру 112), если пользователь не принадлежит к какому-либо разрешенному классу, или вообще не имеет IMSI (SIM). В случае чрезвычайных ситуаций или перегрузки сети некоторым классам может быть на время закрыт доступ в сеть.

Территориальное деление сети и handover.

Вообще говоря, разбиение сети на LA довольно непростая инженерная задача, решаемая при построении каждой сети индивидуально. Слишком мелкие LA приведут к частым перерегистрациям телефонов и, как следствие, к возрастанию трафика разного рода сервисных сигналов и более быстрой разрядке батарей мобильных телефонов. Если же сделать LA большими, то, в случае необходимости соединения с абонентом, сигнал вызова придется подавать всем сотам, входящим в LA, что также ведет к неоправданному росту передачи служебной информации и перегрузке внутренних каналов сети.

Во время разговора мобильный телефон постоянно контролирует уровень сигнала от соседних BTS (список каналов (до 16), за которыми необходимо вести наблюдение, задается базовой станцией). На основании этих измерений выбираются шесть лучших кандидатов, данные о которых постоянно (не реже раза в секунду) передаются BSC и MSC для организации возможного переключения. Существуют две основные схемы handover`а:

Интересно, что инициировать смену каналов может не только мобильный телефон, но и MSC, например, для лучшего распределения трафика.

Маршрутизация вызовов.

Поговорим теперь, каким образом происходит маршрутизация входящих вызовов мобильного телефона. Как и раньше, будем рассматривать наиболее общий случай, когда абонент находится в зоне действия гостевой сети, регистрация прошла успешно, а телефон находится в режиме ожидания.

При поступлении запроса (рис.2) на соединение от проводной телефонной (или другой сотовой) системы на MSC домашней сети (вызов «находит» нужный коммутатор по набранному номеру мобильного абонента MSISDN, который содержит код страны и сети).

Gsm что это

Рис.2 Взаимодействие основных блоков сети при поступлении входящего вызова.

Маршрутизация исходящих вызовов не представляет с идеологической точки зрения ничего нового и интересного. Приведу лишь некоторые из диагностических сигналов (таблица 4), свидетельствующие о невозможности установить соединение и которые пользователь может получить в ответ на попытку установления соединения.

Тип ошибкиЧастотаТип сигнала
Номер абонента занят425±15 Гц500мс гудок, 500 мс пауза
Перегрузка сети425±15 Гц200мс гудок, 200 мс пауза
Общая ошибка950±50Гц 1400±50Гц 1800±50ГцТройной гудок (длительность каждой части 330 мс), 1 с пауза
Таблица 4. Основные диагностические сигналы об ошибке при установлении соединения.

Заключение

Автор благодарит компанию Адмирал+ за помощь в подготовке материала.

Источник

Что означает GSM и для чего он нужен

Подбирая новый телефон или изучая новинки, пользователь регулярно видит в характеристиках строчку GSM 800/900/1800/1900. У него закономерно могут возникнуть вопросы «GSM: что это такое в телефоне?» и «Что означают эти цифры?». Эта статья постарается ответить на них, а также расскажет о том, как работает эта технология и какие привычные функции поддерживает.

Gsm что это

Что значит GSM

GSM (Global System for Mobile Communications) или 2G – международный стандарт цифровой мобильной связи. Разработан сотрудниками Европейского института стандартизации электросвязи в 80-х годах 20 века.

Использует для передачи информации радиоканалы частотой 800/900/1800/1900 МГц. Мобильные телефоны, выпущенные после 2000 года, поддерживают этот стандарт.

Скорость передачи информации – до 19,5 кбит/сек. Максимальное расстоянием между телефоном и базовой станцией – 35 километров. При необходимости его можно увеличить с помощью репитеров, усилителей до 120 километров.

Эволюция GSM или что такое 2.5G и 2.75G

Gsm что это

GPRS (General Packet Radio Service) или 2.5G – надстройка над стандартом GSM. Информация в ней передается в виде пакетов – сообщений, содержащих информацию об отправителе, получателе и передаваемые данные. Фрагмент фотографии, например.

EDGE (Enhanced Data rates for GSM Evolution ) или 2,75G – улучшенный вариант GPRS, использующий модуляцию 8PSK. Технология повышает скорость передачи до 270 кбит/сек.

Возможности GSM связи

Стандарт и надстройки поддерживают следующие функции:

Как это работает

Gsm что это

В передаче сигнала между абонентами участвуют 2 элемента:

Работает GSM связь следующим образом:

По окончании обмена соединение разрывается, а устройство продолжает прослушивать радиоэфир.

Преимущества и недостатки GSM

Gsm что это

Согласно Википедии, стандарт обладает следующими достоинствами:

К недостаткам относятся:

Подводя итог, можно сказать о GSM связи, то что этот стандарт позволил уменьшить телефоны, увеличить время автономной работы, улучшить качество связи и защищенность передаваемой информации.

Источник

GSM — что это такое в телефоне и как работает

GSM является активным стандартом мобильной сотовой связи в России и многих других странах. Именно на основе этой технологии и работают наши телефоны.

Каждый из нас слышал про этот термин, но не все до конца знают и понимают, что это такое, как работает и зачем вообще нужны все эти стандарты.

Gsm что это

Прошлый материал был посвящен тому, что это такое ростест и зачем и какую роль он играет при выборе смартфона с этим знаком. Сейчас вы узнаете про GSM, его определение и роль в развитии мобильных технологий.

Что такое GSM

GSM (Global System for Mobile Communications) — это международный стандарт связи второго поколения 2G, цифровая сеть, которая используется мобильными операторами для передачи в ней данных. Используется по всему миру и поддерживается практически всеми мобильными телефонами. Данные передаются в беспроводном формате, поэтому провода не нужны.

Переводится, как глобальная система мобильной связи. Основана на разделение каналов по времени TDMA и частоте FDMA. Является сетью второго поколения, означает цифровую связь.

Gsm что это

GSM-сетями на данный момент пользуется около 80% телефонов по всему миру, как основными, чтобы осуществлять беспроводные звонки. Всего есть три основных и используемых сети: GSM, TDMA и CDMA. Именно первая является наиболее используемой и популярной.

GSM в отличие от того же CDMA предлагает более широкие возможности для международного роуминга. Так, как на его долю приходится 80% всего рынка. Также, технология позволяет одновременно передавать данные и совершать звонки.

Работает на частоте: 800/900/1800/1900 МГц. Практически все современные телефоны поддерживают эти частоты без проблем. Сигнал распространяется на расстояние в 35 км от базовой станции/вышки. А средняя скорость передачи данных — до 20 кбит/сек.

Включает в себя надстройки: GPRS и EDGE. Они позволяют передавать данные в пакетном формате и увеличивают скорость передачи. Также их называют 2.5G и 2.75G. Именно с их помощью с телефона можно выходить и во всемирную паутину.

Интересно! Данные передаются в сжатом виде, это связано с низкой пропускной способностью канала, поэтому качество звука не очень хорошее.

Наряду с другими технологиями, является частью эволюции беспроводной мобильной связи, которая включает высокоскоростную передачу данных с коммутацией каналов (HSCSD), общую систему пакетной радиосвязи (GPRS), улучшенную среду GSM данных (EDGE) и универсальную службу мобильной связи. (UMTS).

Как это работает

Ключевым элементом работы GSM на мобильном телефоне или планшете является SIM карта, которая привязана к вашему оператору сотовой связи. Пользователь СИМ карты не привязывается к определенному телефону и может пользоваться услугами связи, на которые подписан с любого устройства куда он ее вставит.

Gsm что это

Мобильные телефоны идентифицируются при помощи IMEI. Сим карта идентифицируется, как IMSI. Все эти коды являются уникальными во всем мире. IMEI и IMSI независимы друг от друга, это обеспечивает личную мобильность. СИМ карта, как и телефон могут быть защищены паролем, чтобы ими никто не мог пользоваться кроме владельца.

Сигнал передается через вышки, которые устанавливают сотовые операторы, их довольно много, сигнал в среднем распространяется на 35 километров. Как только мобильный телефон находит такую вышку — происходит соединение и можно совершать звонки.

Выглядит работа в целом так:

1. GSM модуль, установленный в телефоне, связывается с ближайшей вышкой сотовой связи. Происходит обмен данными.

2. Вышка проверяет данные с сим карты, идентифицирует абонента и позволяет совершать звонки и другие действия. Все при этом шифруется.

Интересно! Кроме сим карты — ее идентификатора IMSI, станция также проверяет и IMEI самого смартфона и, если он будет в черном списке — может заблокировать любые вызовы.

Немного истории

История GSM берет свое начало в 1 982 году, когда Европейский институт стандартизации электросвязи создал Group Special Mobile, которую потом переименовали в Global System for Mobile Communications. Развиваться технология и активно распространятся начала лишь в 90-ых годах.

Целью создания было обеспечение мобильного роуминга между странами, которые состояли в общеевропейском сотрудничестве. Сотовую связь устанавливать предполагалось на частоте в 900МГц.

По состоянию на 2 003 год цифровые беспроводные услуги GSM предлагались в той или иной форме в 193 странах.

Особенности GSM

В заключение

Это были основные моменты, которые нужно знать об этом стандарте связи. Сейчас ему на смену пришли уже более новые и современные виды, обеспечивающие куда лучшее качество с быстрой передачей информации.

Источник

Как работают GSM-сети или краткие основы связи

Сотовым телефоном пользовались практически все, но мало кто задумывался – как же все это работает? В данном литературном опусе мы попытаемся рассмотреть, как же происходит связь с точки зрения Вашего оператора связи.

Когда Вы набираете номер и начинаете звонить, ну, или Вам кто-нибудь звонит, то Ваш аппарат по радиоканалу связывается с одной из антенн ближайшей базовой станции.

Gsm что это

Каждая из базовых станций содержит от одной до двенадцати приемо-передающих антенн, направленных в разные стороны, чтобы обеспечить связью абонентов со всех сторон. На профессиональном жаргоне антенны также называют «секторами». Вы их сами наверняка неоднократно видели – большие серые прямоугольные блоки.

Gsm что это

От антенны сигнал по кабелю передается непосредственно в управляющий блок базовой станции. Совокупность секторов и управляющего блока обычно и называется – BS, Base Station, базовая станция. Несколько базовых станций, чьи антенны обслуживают какую-либо определенную территорию или район города, подсоединены к специальному блоку – так называемому LAC, Local Area Controller, «контроллер локальной зоны», часто называемому просто контроллером. К одному контроллеру обычно подключается до 15 базовых станций.

В свою очередь, контроллеры, которых также может быть несколько, подключены к самому центральному «мозговому» блоку – MSC, Mobile services Switching Center, Центр Управления Мобильными услугами, в простонародье более известный как коммутатор. Коммутатор обеспечивает выход (и вход) на городские телефонные линии, на других операторов сотовой связи и так далее.

То есть в итоге вся схема выглядит примерно так:

Gsm что это

В небольших GSM-сетях используется только один коммутатор, в более крупных, обслуживающих более миллиона абонентов, могут использоваться два, три и более MSC, объединенных между собой.

Зачем же такая сложность? Казалось бы, можно антенны просто подключить к коммутатору – и все, никаких проблем бы не было. Но не все так просто. Дело тут в одном простом английском слове – handover. Этим термином обозначается эстафетная передача обслуживания в сотовых сетях. То есть, когда вы идете по улице или едите на машине (электричке, велосипеде, роликовых коньках, асфальтоукладчике. ) и при этом разговариваете по телефону, то, для того чтобы связь не прерывалась (а она не прерывается), необходимо вовремя переключать Ваш телефон из одного сектора в другой, из одной BS в другую, из одной Local Area в другую и так далее. Соответственно, если бы сектора были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору, которому и без того есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку, что снижает вероятность отказа оборудования и, как следствие, потери связи.

Пример – если вы с телефоном переходите из зоны действия одного сектора в зону действия другого, то переводом телефона занимается управляющий блок BS, не затрагивая при этом «вышестоящие» устройства – LAC и MSC. Соответственно, если переход происходит между разными BS, то им управляет LAC и так далее.

Работу коммутатора следует рассмотреть чуть подробнее. Коммутатор в сотовой сети осуществляет практически те же функции, что и АТС в проводных телефонных сетях. Именно он определяет, куда Вы звоните, кто Вам звонит, отвечает за работу дополнительных услуг, и, в конце концов – вообще, определяет, можно ли звонить или нет.

На последнем пункте остановимся – а что происходит, когда Вы включаете свой телефон?

Вот, включаете Вы свой телефон. На Вашей SIM-карте есть специальный номер, так называемый IMSI – International Subscriber Identification Number, Международный Опознавательный Номер Абонента. Это номер уникален для каждой SIM-карты в мире, и как раз по нему операторы отличают одного абонента от другого. При включении телефона он посылает этот код, базовая станция передает его на LAC, LAC – на коммутатор, в свою очередь. Тут в действие вступают два дополнительных модуля, связанных с коммутатором – HLR, Home Location Register и VLR, Visitor Location Register. Соответственно, Регистр Домашних Абонентов и Регистр Гостевых Абонентов. В HLR хранятся IMSI всех абонентов, которые подключены к данному оператору. В VLR в свою очередь содержатся данные обо всех абонентах, которые в данный момент пользуются сетью данного оператора. IMSI передается в HLR (разумеется, в сильно зашифрованном виде; вдаваться подробно в особенности шифрования мы не будет, скажем только, что за этот процесс отвечает еще один блок – AuC, Центр Аутентификации), HLR, в свою очередь, проверяет – есть ли у него такой абонент, и, если есть, то не заблокирован ли он, например, за неуплату. Если все в порядке, то этот абонент прописывается в VLR и с этого момента может совершать звонки. У крупных операторов может быть не один, а несколько параллельно работающих HLR и VLR. А теперь попробуем все вышесказанное отобразить на рисунке:

Gsm что это

Вот мы вкратце рассмотрели, как работает сотовая сеть. На самом деле там все куда сложнее, но если описывать все как есть досконально, то данное изложение по объему вполне может превысить «Войну и мир».

Далее мы рассмотрим, а как (и главное – за что!) оператор списывает у нас деньги со счета. Как Вы уже наверное слышали, тарифные планы бывают трех разных типов – так называемые «кредитные», «авансовые» и «припейд», от английского Pre-Paid, то есть предоплаченный. В чем же различие? Рассмотрим, как может происходить списание денег при разговоре:

Допустим, Вы куда-либо позвонили. На коммутаторе зафиксировалось – абонент такой-то звонил туда-то, поговорил, допустим, сорок пять секунд.

Первый случай – у Вас кредитная или авансовая система оплаты. В таком случае происходит следующее: данные о Ваших и не только Ваших звонках накапливаются в коммутаторе и затем, в порядке общей очереди, передаются в специальный блок, называемый Биллингом, от английского to bill – платить по счетам. Биллинг отвечает за все вопросы, связанные с деньгами абонентов – рассчитывает стоимость звонков, списывает абонентскую плату, списывает деньги за услуги и так далее.

Gsm что это

Скорость передачи информации из MSC в Биллинг зависит от того, какова вычислительная мощность биллинга, или, другими словами, с какой скоростью он успевает переводить технические данные о совершенных звонках в непосредственные деньги. Соответственно, чем больше абоненты разговаривают, или чем более «тормозной» биллинг, тем медленнее будет двигаться очередь, соответственно, тем больше будет задержка между самим разговором и фактическим списанием денег за этот разговор. С этим фактом связано часто высказываемое некоторыми абонентами недовольство – «Мол, деньги воруют! Два дня не разговаривал – энную сумму списали. ». Но при этом совсем не учитывается, что за разговоры, которые происходили, например, три дня назад, деньги-то сразу и не списали. Хорошее люди стараются не замечать. А в эти дни, например, биллинг мог просто не работать – из-за аварии, или из-за того, что его как-нибудь модернизировали.

В обратную сторону – от биллинга к MSC – стоит другая очередь, в которой биллинг сообщает коммутатору о состоянии счетов абонентов. Опять же довольно частый случай – задолженность счета может достигать нескольких десятков долларов, а по телефону еще можно звонить – это как раз из-за того, что «обратная» очередь еще не подошла и коммутатор пока не знает о том, что Вы злостные неплательщик и Вас давно надо заблокировать.

Авансовый же от кредитного тарифы отличаются лишь способом расчета с абонентом – в первом случае человек вносит какую-либо сумму на счет, и деньги за разговоры постепенно вычитаются из этой суммы. Это способ удобен тем, что позволяет в какой-то мере планировать и ограничивать свои расходы на связь. Второй вариант – кредитный, при котором суммарная стоимость всех разговоров за какой-либо период («биллинговый цикл»), обычно за месяц, выставляется в виде счета, который абонент должен оплатить. Кредитная система удобна тем, что страхует Вас от тех случаев, когда срочно необходимо позвонить, а деньги на счету вдруг закончились и телефон заблокирован.

Припейды устроены совсем по-другому:

Gsm что это

В припейде биллинг как таковой обычно называют «Припейд платформой».

А как же рассчитываются наши деньги, когда мы разговариваем, находясь в роуминге? Да и как вообще телефон работает в роуминге? Что же, попробуем ответить и на эти вопросы:

Номер IMSI состоит из 15-ти цифр, и первые 5 цифр, так называемые СС – Country Code (3 цифры) и NC – Network Code (5 цифр) – четко характеризуют оператора, к которому подключен данный абонент. По этим пяти цифрам VLR гостевого оператора находит HLR домашнего оператора и смотрит в нем – а, собственно, можно ли этому абоненту пользоваться роумингом у данного оператора? Если да, то IMSI прописывается у VLR гостевого оператора, а в HLR домашнего – ссылка на тот самый гостевой VLR, чтобы знать, где искать абонента.

Со списанием денег в биллинге ситуация тоже не очень простая. Из-за того, что звонки обрабатывает гостевой коммутатор, но деньги подсчитывает свой, «домашний» биллинг, вполне возможны большие задержки в списании средств – до месяца. Хотя существуют и системы, например, «Camel2», которые и в роуминге работают по принципу припейда, то есть списывают деньги в реальном времени.

Gsm что это

Тут возникает очередной вопрос – а за что списываются деньги в роуминге? Если «дома» все понятно – есть четко прописанные тарифные планы, то с роумингом ситуация другая – денег списывают много и непонятно, за что. Ну что же, попробуем разобраться:

Gsm что это

Все телефонные звонки в роуминге делятся на 3 основных категории:

Входящие звонки – в таком случае стоимость звонка складывается из:

Стоимости международного звонка из дома в гостевой регион
+
Стоимость входящего звонка у гостевого оператора
+
Некая надбавка, зависящая от конкретного гостевого оператора

Исходящий звонок домой:

Стоимость международного звонка из гостевого региона домой
+
Стоимость исходящего звонка у гостевого оператора

Исходящий звонок по гостевому региону:

Стоимость исходящего звонка у гостевого оператора
+
Некая надбавка, зависящая от конкретного оператора

Как видно, стоимость звонков в роуминге зависит только от двух вещей – от того, к какому оператору абонент подключен дома и того, каким оператором абонент пользуется в гостях. При этом выявляется одна очень важная вещь – стоимость минуты в роуминге абсолютно не зависит от выбранного абонентом тарифного плана.

Хотелось бы добавить еще одно замечание – если два телефона одного оператора вместе находятся в роуминге у другого оператора (ну, например, двое друзей поехали отдыхать), то разговаривать им друг с другом выйдет весьма накладно – звонящий платит, как за исходящий домой, а принимающий звонок – как за входящий из дома. Это один из недостатков стандарта GSM – то, что связь в этом случае идет через дом. Хотя технически вполне реально устроить связь «напрямую», но кто из операторов на это пойдет, если можно оставить все как есть и зарабатывать деньги?

Еще один вопрос, в последнее время часто интересующий владельцев более чем одного мобильного телефона – а сколько будет стоить переадресованный звонок с одного телефона на другой? И на этот вопрос ответить вполне реально:

Gsm что это

Допустим, с телефона B установлена переадресация на телефон С. С телефона А звонят на телефон B – соответственно, звонок переадресовывается на аппарат С. В этом случае платят:

Телефон А – как за исходящий на телефон В
(вообщем-то, это логично – ведь он на него и звонит)
Телефон В – платит цену переадресации
(обычно несколько центов за минуту)
+
стоимость международного звонка из региона, где зарегистрирован В, в регион, где зарегистрирован С
(если телефоны одного региона, то это составляющая равна нулю).
Телефон С – платит как за входящий с телефона А

В завершении тем хотелось бы упомянуть еще один тонкий момент – а сколько будет стоить переадресация в роуминге? А вот тут начинается самое интересное:

Gsm что это

Отсюда следует практический совет – при поездках желательно отключать все виды переадресации (можно оставить только безусловную – в этом случае «роуминговой петли» не получается), особенно переадресации на голосовую почту – иначе впоследствии можно долго удивляться – «Куда ж это деньги делись-то, а?»

Список терминов, использовавшихся в тексте:

Источник

Что такое GSM в телефоне и зачем это нужно?

Современные технологии сотовой связи позволяют мобильному устройству по-разному взаимодействовать с выбранной сетью.

Благодаря встроенному передатчику сигнала телефон получает возможность совершать и принимать вызовы, отправлять SMS, а также подключаться к интернету. Все эти функции на базовом уровне обеспечиваются общепринятым стандартом связи GSM.

Наверное, практически каждому пользователю мобильного телефона приходилось встречаться с подобной аббревиатурой. Увидеть ее можно в настройках выбранного режима сети, где по соседству также располагаются WCDMA и LTE. Давайте теперь разберемся, что же такое GSM и зачем он вообще нужен.

Что такое GSM?

GSM (Global System Of Mobile Communications) — глобальный стандарт цифровой сотовой связи, обладающий сегодня наибольшим покрытием. Впервые этот режим сети появился в конце 80-х годов благодаря разработкам Европейского института стандартизации электросвязи (ETSI).

Сеть GSM, как правило, относится ко второму поколению сотовых сетей интернета (2G) и поддерживает 4 вида частот на 850, 900, 1800 и 1900 МГц. В зависимости от количества доступных диапазонов есть разные классы смартфонов, например, двухдиапазонные или трехдиапазонные.

Технология GSM предоставляет услуги передачи голосовой информации, SMS и факсимильных сообщений. Также перечень основных возможностей стандарта включает определение входящих номеров, удержание вызова и конференц-связь одновременно с несколькими абонентами.

Дальность действия GSM-сети ограничивается 120 км, что на сегодняшний день не является проблемой ввиду большого распространения вышек сотовой связи. Тем не менее, достаточно низкая по современным стандартам скорость передачи данных (около 171,2 кбит/c) является главным недостатком GSM.

Зачем нужен GSM в телефоне?

В данное время на смену связи и интернета GSM постепенно приходят более совершенные технологии, такие как WCDMA и LTE (4G). Благодаря повышенной пропускной способности доступная скорость отправки и получения информации возросла до 3,6 Мбит/с (3G). За счет этого пользователи получают возможность не только оперативно загружать большие файлы, но и просматривать видео в высоком разрешении. Однако это удовольствие нельзя назвать дешевым, в особенности по сравнению с 2G-сетями. Причем здесь дело касается не только стоимости связи, но и дополнительного расхода АКБ.

Именно по этой причине в настройках смартфона можно настроить наиболее удобный режим сети. Как правило, по умолчанию там установлено значение «Автоматически», что позволяет устройству подстраиваться под доступный в текущем месте стандарт связи.

Gsm что это

Если есть потребность в экономии заряда батареи, можно переключить смартфон в режим GSM. Это позволит не только продлить время работы, но и улучшит качество связи, если в текущей локации слабый сигнал сетей 3G/4G.

Как включить GSM?

Чтобы внести изменения в работу сотовой связи на смартфоне (Android), нужно перейти в «Настройки», выбрать пункт «Мобильные сети» и нажать на «Режим сети». Тут можно свободно переключиться на GSM, WCDMA и LTE. Название пунктов могут отличаться — это зависит от версии ОС и фирменной оболочки.

Итоги

Несмотря на распространение 3G и 4G, GSM-интернет по-прежнему остается актуальным. Переключившись на этот стандарт связи в подходящий момент, можно заметно снизить нагрузку на аккумулятор телефона (при условии, что не нужна высокая скорость интернета).

Источник

Gsm что это

Gsm что это

Gsm что это

GSM (от названия группы Groupe Spécial Mobile, позже переименован в Global System for Mobile Communications) (русск. СПС-900) — глобальный стандарт цифровой мобильной сотовой связи, с разделением каналов по времени (TDMA) и частоте (FDMA). Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 80-х годов.

Содержание

Общие сведения

GSM относится к сетям второго поколения (2 Generation) (1G — аналоговая сотовая связь, 2G — цифровая сотовая связь, 3G — широкополосная цифровая сотовая связь, коммутируемая многоцелевыми компьютерными сетями, в том числе Интернет).

В зависимости от количества диапазонов, телефоны подразделяются на классы и вариацию частот в зависимости от региона использования.

В стандарте GSM применяется GMSK модуляция с величиной нормированной полосы ВТ — 0,3, где В — ширина полосы фильтра по уровню минус 3 дБ, Т — длительность одного бита цифрового сообщения.

GSM на сегодняшний день является наиболее распространённым стандартом связи. По данным ассоциации GSM (GSMA) на данный стандарт приходится 82% мирового рынка мобильной связи, 29% населения земного шара использует глобальные технологии GSM. В GSMA в настоящее время входят операторы более чем 210 стран и территорий.

Этапы развития

GSM сначала означало Groupe Spécial Mobile, по названию группы анализа, которая создавала стандарт. Теперь он известен как Global System for Mobile Communications (Глобальная Система для Мобильной Связи), хотя слово «Cвязь» не включается в сокращение. Разработка GSM началась в 1982 году группой из 26 Европейских национальных телефонных компаний. Европейская конференция почтовых и телекоммуникационных администраций (CEPT), стремилась построить единую для всех европейских стран сотовую систему диапазона 900 MГц. Достижения GSM стали «одними из наиболее убедительных демонстраций какое сотрудничество в Европейской промышленности может быть достигнуто на глобальном рынке».

В 1989 году Европейский Телекоммуникационный Институт Стандартов (ETSI) взял ответственность за дальнейшее развитие GSM. В 1990 году были опубликованы первые рекомендации. Спецификация была опубликована в 1991 году.

Коммерческие сети GSM начали действовать в Европейских странах в середине 1991 г. GSM разработан позже, чем аналоговая сотовая связь и во многих отношениях была лучше спроектирована. Северо-Американский аналог — PCS, вырастил из своих корней стандарты включая цифровые технологии TDMA и CDMA, но для CDMA потенциальное улучшение качества обслуживания так и не было никогда подтверждено.

GSM Phase 1

1982 (Groupe Spécial Mobile) — 1990 г. Global System for Mobile Communications. Первая коммерческая сеть в январе 1992 г. Цифровой стандарт, поддерживает скорость передачи данных до 9,6 кбит/с. Полностью устарел, производство оборудования под него прекращено.

В 1991 году были введены услуги стандарта GSM «ФАЗА 1».

GSM Phase 2

Стандарт GSM Phase 2 принят в 1993 г. [2] Цифровой стандарт, поддерживает скорость передачи данных до 9.6 кбит/с. С 1995 г. включает диапазон 1900 МГц. Второй этап развития GSM — GSM «Фаза 2», который завершился в 1997 г., предусматривает такие услуги:

Стандарт GSM Phase 2 считается устаревшим; но так как стандарт GSM подразумевает обратную совместимость, то старое оборудование базовых станций и телефоны могут работать (и работают) в современных сетях.

GSM Phase 2+

Следующий этап развития сетей стандарта GSM «ФАЗА 2+» не связан с конкретным годом внедрения. Новые услуги и функции стандартизируются и внедряются после подготовки и утверждения их технических описаний. Все работы по этапу «Фаза 2+» проводились Европейским институтом стандартизации электросвязи (ETSI). Количество уже внедрённых и находящихся в стадии утверждения услуг превышает 50. Среди них можно выделить следующие:

Предоставляемые услуги

GSM обеспечивает поддержку следующих услуг:

Дополнительные (необязательные к предоставлению) услуги:

и многие другие услуги.

Преимущества и недостатки

Преимущества стандарта GSM:

Недостатки стандарта GSM:

Стандарты и радиоинтерфейс

Стандарты GSM создаются и публикуются Европейским институтом телекоммуникационных стандартов. Документы обозначаются GSM nn.nn, например широко известен стандарт на GSM SIM карточки GSM 11.11.

В стандарте GSM определены 4 диапазона работы (ещё есть пятый):

900/1800 МГц (используется в Европе, Азии)

ХарактеристикиGSM-900GSM-1800
Частоты передачи MS и приёма BTS, МГц890 — 9151710 — 1785
Частоты приёма MS и передачи BTS, МГц935 — 9601805 — 1880
Дуплексный разнос частот приёма и передачи, МГц4595
Количество частотных каналов связи с шириной 1 канала связи в 200 кГц124374
Ширина полосы канала связи, кГц200200

GSM-900

Цифровой стандарт мобильной связи в диапазоне частот от 890 до 915 МГц (от телефона к базовой станции) и от 935 до 960 МГц (от базовой станции к телефону). Количество реальных каналов связи гораздо больше чем написано выше в таблице, т.к присутствует еще и временное разделение каналов TDMA, т.е на одной и той же частоте могут работать несколько абонентов с разделением во времени.

Модификация стандарта GSM-900, цифровой стандарт мобильной связи в диапазоне частот от 1710 до 1880 МГц.

Сеть GSM 900-1800 — это единая сеть,с общей структурой, логикой и мониторингом в которой телефон никуда не переключается. Вручную можно только запретить использовать один из диапазонов в тестовых или очень старых аппаратах.

Проблема состоит в том, что зона охвата для каждой базовой станции значительно меньше, чем в стандартах GSM-900, AMPS/DAMPS-800, NMT-450. Необходимо большее число базовых станций. Чем выше частота излучения, тем больше проникающая способность (характеризуется т. н. глубиной скин-слоя) радиоволн и тем меньше способность отражаться и огибать преграды.

Дальность связи в GSM лимитирована задержкой сигнала Timing advance и составляет до 35 км. При использовании режима extended cell возрастает до 75 км. Практически достижимо только в море, пустыне и горах.

850/1900 МГц (используется в США, Канаде, отдельных странах Латинской Америки и Африки)

ХарактеристикиGSM-850GSM-1900
Частоты передачи MS и приёма BTS, МГц824 — 8491850 — 1910
Частоты приёма и передачи BTS, МГц869 — 8941930 — 1990
Дуплексный разнос частот приёма и передачи, МГц4580

Структура GSM

Gsm что это

Gsm что это

Система GSM состоит из трёх основных подсистем:

В отдельный класс оборудования GSM выделены терминальные устройства — подвижные станции (MS — Mobile Station), также известные как мобильные (сотовые) телефоны.

Подсистема базовых станций

Gsm что это

Gsm что это

Базовая станция (BTS) обеспечивает приём/передачу сигнала между MS и контроллером базовых станций. BTS является автономной и строится по модульному принципу. Направленные антенны базовых станций могут располагаться на вышках, крышах зданий и т. д.

Контроллер базовых станций (BSC) контролирует соединения между BTS и подсистемой коммутации. В его полномочия также входит управление очерёдностью соединений, скоростью передачи данных, распределение радиоканалов, сбор статистики, контроль различных радиоизмерений, назначение и управление процедурой Handover.

Подсистема коммутации

NSS состоит из нижеследующих компонентов.

Центр коммутации (MSC — Mobile Switching Centre)

MSC контролирует определённую географическую зону с расположенными на ней BTS и BSC. Осуществляет установку соединения к абоненту и от него внутри сети GSM, обеспечивает интерфейс между GSM и ТфОП, другими сетями радиосвязи, сетями передачи данных. Также выполняет функции маршрутизации вызовов, управление вызовами, эстафетной передачи обслуживания при перемещении MS из одной ячейки в другую. После завершения вызова MSC обрабатывает данные по нему и передаёт их в центр расчётов для формирования счета за предоставленные услуги, собирает статистические данные. MSC также постоянно следит за положением MS, используя данные из HLR и VLR, что необходимо для быстрого нахождения и установления соединения с MS в случае её вызова.

Домашний регистр местоположения (HLR — Home Location Registry)

Содержит базу данных абонентов, приписанных к нему. Здесь содержится информация о предоставляемых данному абоненту услугах, информация о состоянии каждого абонента, необходимая в случае его вызова, а также Международный Идентификатор Мобильного Абонента (IMSI — International Mobile Subscriber Identity), который используется для аутентификации абонента (при помощи AUC). Каждый абонент приписан к одному HLR. К данным HLR имеют доступ все MSC и VLR в данной GSM-сети, а в случае межсетевого роуминга — и MSC других сетей.

Гостевой регистр местоположения (VLR — Visitor Location Registry)

VLR обеспечивает мониторинг передвижения MS из одной зоны в другую и содержит базу данных о перемещающихся абонентах, находящихся в данный момент в этой зоне, в том числе абонентах других систем GSM — так называемых роумерах. Данные об абоненте удаляются из VLR в том случае, если абонент переместился в другую зону. Такая схема позволяет сократить количество запросов на HLR данного абонента и, следовательно, время обслуживания вызова.

Регистр идентификации оборудования (EIR — Equipment Identification Registry)

Содержит базу данных, необходимую для установления подлинности MS по IMEI (International Mobile Equipment Identity). Формирует три списка: белый (допущен к использованию), серый (некоторые проблемы с идентификацией MS) и чёрный (MS, запрещённые к применению). У российских операторов (и большей части операторов стран СНГ) используются только белые списки, что не позволяет раз и навсегда решить проблему кражи мобильных телефонов.

Центр аутентификации (AUC — Authentification Centre)

Здесь производится аутентификация абонента, а точнее — SIM (Subscriber Identity Module). Доступ к сети разрешается только после прохождения SIM процедуры проверки подлинности, в процессе которой с AUC на MS приходит случайное число RAND, после чего на AUC и MS параллельно происходит шифрование числа RAND ключом Ki для данной SIM при помощи специального алгоритма. Затем с MS и AUC на MSC возвращаются «подписанные отклики» — SRES (Signed Response), являющиеся результатом данного шифрования. На MSC отклики сравниваются, и в случае их совпадения аутентификация считается успешной.

Подсистема OMC (Operations and Maintenance Centre)

Соединена с остальными компонентами сети и обеспечивает контроль качества работы и управление всей сетью. Обрабатывает аварийные сигналы, при которых требуется вмешательство персонала. Обеспечивает проверку состояния сети, возможность прохождения вызова. Производит обновление программного обеспечения на всех элементах сети и ряд других функций.

Источник

Как работает радиоинтерфейс в GSM-сетях

Gsm что это

Думаю, многие когда-либо задумывались над тем, как работают сотовые сети. Ведь мы пользуемся мобильными телефонами почти каждый день. Количество абонентов увеличивается с каждым днем, так же как и площади сетевого покрытия… На смену старым стандартам приходят новые, растут и «аппетиты» пользователей мобильного интернета. Если Вас интересует, как все это работает, добро пожаловать под кат! Поскольку инфраструктура сотовых сетей довольно велика, а ее описание может занять целую книгу, в данной статье мы остановимся на Um-интерфейсе, с помощью которого наши телефоны взаимодействуют с оборудованием оператора, а также другими абонентами.

Осторожно, злая собака много картинок!

Предисловие

Сегодня, спустя двадцать с лишним лет, мы пользуемся сетями нового поколения, вроде 3G и 4G, однако сети GSM никуда не исчезли — они все-еще используются банкоматами, терминалами, сигнализациями и даже современными телефонами для экономии электроэнергии и сохранения обратной совместимости. К тому же новинки, вроде UMTS (или W-CDMA) и LTE, имеют много общего с GSM. В отличие, например, от TCP/IP, сотовые сети менее доступны для изучения и исследований. Причин много: начиная от довольно высоких цен на оборудование, заканчивая запретом законодательств большинства стран на использования частот GSM-диапазонов без лицензии. На мой взгляд, понимание принципов работы сотовых сетей очень важно для специалистов в области информационной безопасности, да и не только. Именно поэтому я решил написать данную публикацию.

1. Введение в сотовые сети

1.1 Провайдеры услуг сотовой связи

По аналогии с интернет-провайдерами, услуги сотовой связи предоставляют определенные компании, чаще всего называемые «операторами». Каждый из них предлагает свой спектр услуг, а также устанавливает свои тарифные планы. Чаще всего операторы используют собственное оборудование для построения основной инфраструктуры сети; некоторые же используют уже имеющуюся, например, в России оператор Yota работает на базе оборудования оператора Megafon.

С точки зрения рядового абонента мобильных сетей, индивидуальность оператора заключается в качестве предоставляемых услуг связи, определенном диапазоне номеров, собственных брендовых SIM-картах, а также тарифных планах. Со стороны самих операторов, а также других телекоммуникационных областей, идентификация каждого из них осуществляется по коду страны (MCC — Mobile Country Code) и уникальному коду сети внутри страны (MNC — Mobile Network Code). Кроме этого, идентификация абонентов осуществляется не по привычному для нас телефонному номеру, а по международному идентификатору абонента — IMSI (International Mobile Subscriber Identity), который записан в SIM-карте абонента, а также в базе данных оператора. Телефонные номера просто-напросто «привязываются» к определенному IMSI, благодаря чему абонент может сменить оператора, сохранив свой номер телефона.

1.2 Принципы обеспечения сетевого покрытия

Покрытие определенной местности сотовой связью обеспечивается за счет распределения приемопередающих устройств по ее площади. Уверен, многие видели их на рекламных шитах, различных зданиях, и даже на отдельных мачтах. Чаще всего они представляют из себя несколько направленных антенн белого цвета, а также небольшое здание, куда тянутся провода. Так вот, в терминологии GSM такие комплексы называются базовыми станциями (BTS) и могут состоять из нескольких приемопередающих устройств — трансиверов (TRX — Transmitter/Receiver).

Gsm что это

Ключевая особенность сотовой связи заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Кстати, отсюда как раз и возникло название «сотовая связь». Каждая базовая станция покрывает один или несколько секторов, а также имеет один или несколько приемопередатчиков в каждом секторе, каждый из которых излучает сигнал на своей частоте. Проще говоря, сота — это одна из ячеек покрытия, имеющая свой уникальный идентификатор, называемый CI (Cell ID). Соты можно классифицировать по масштабу покрываемой территории: макросота (до 35 км, иногда до 70 км), обычная сота (до 5 км), микросота (до 1 км), пикосота (до 300 метров) и фемтосота (чаще встречаются внутри помещений, покрывают десятки метров).

Gsm что это

Базовые станции, расположенные поблизости, работают в различных частотных диапазонах, благодаря чему соты различных операторов могут частично или почти полностью накладываться друг на друга. Совокупность базовых станций, работающих совместно, называется зоной местоположения — LAC (Location Area Code). Все базовые станции обязательно передают в эфир свои идентификационные данные, такие как MCC, MNC, Cell ID, а также LAC, благодаря чему, мобильные телефоны подключается только к BTS своего оператора. Кроме этого, мобильные телефоны с определенным интервалом уведомляют сеть о своем текущем местоположении, т.е. LAC. Данная процедура называется Location Update, но об этом позже.

1.3 Инфраструктура сотовых сетей

Gsm что это

Базовые станции не могут существовать сами по себе, поэтому, находясь в определенном LAC, они подключаются к контроллеру базовых станций — BSC (Base Station Controller). Контроллеры, в свою очередь, выполняют балансировку нагрузки, а также активно участвуют в процессе обмена трафика между сетью и своими «подчиненными». Взаимодействие BTS и BSC осуществляется посредством интерфейса A-bis. В пределах сети у большинства операторов, чаще всего, несколько контроллеров базовых станций, которые посредством A-интерфейса и Gb-интерфейса к коммутационным узлам сети (MSC — Mobile Switching Center, SGSN — Serving GPRS Support Node).

MSC образует ядро сетевой инфраструктуры (Core Network), в которое входят следующие основные элементы:

1.4 Межоператорное взаимодействие

Сети различных операторов взаимодействуют между собой, благодаря чему, например, Алиса, являясь абонентом оператора A, может позвонить Бобу, который является абонентом оператора B. Называется эта сеть ОКС-7 или SS7, работает либо на базе специальных проводных/беспроводных коммуникационных сетей, либо поверх Интернета (да, да, сеть поверх сети). SS7 предоставляет набор протоколов для взаимодействия различных операторов. Роуминг тоже работает благодаря данной сети.

2. Um-интерфейс (GSM Air Interface)

2.1 Частотные диапазоны

Любое оборудование в сотовых сетях взаимодействует посредством определенных интерфейсов. Как уже говорилось, обмен данными между базовой станцией и абонентом осуществляется через Um-интерфейс, который в первую очередь является радиоинтерфейсом, следовательно обмен данными происходит в процессе приема/передачи радиоволн. Радиоволны являются таким же электромагнитным излучением, как тепло или свет. Ультрафиолетовое, рентгеновское и ионизирующее излучения так же являются видами электромагнитного излучения с определенными диапазонами частот и определенными длинами волн. Помните такую картинку?

Gsm что это

Так вот, диапазон радиоволн тоже разделен на дочерние диапазоны частот, например, диапазоны LF (30—300 кГц), MF (300—3000 кГц) и HF (3—30 МГц) чаще всего используются для радиосвязи и радиовещания; телевещание ведется в диапазонах VHF (30—300 МГц), UHF (300—3000 МГц) и SHF (3—30 ГГц); беспроводные сети, типа WiFi, а также спутниковое телевидение работают в том-же SHF. Больше всего нас интересует диапазон UHF, в котором работают сети GSM. Согласно стандарту 3GPP TS 45.005, в эфире им выделено целых 14 дочерних для UHF диапазонов, причем в различных странах используются различные диапазоны. Рассмотрим наиболее распространенные:

ХарактеристикиGSM-850P-GSM-900E-GSM-900DCS-1800PCS-1900
Uplink, МГц824.2 — 849.2890.0 — 915.0880.0 — 915.01710.2 — 1784.81850.2 — 1909.8
Downlink, МГц869.2 — 893.8935.0 — 960.0925.0 — 960.01805.2 — 1879.81930.2 — 1989.8
ARFCN128 — 2511 — 124975 — 1023, 0 — 124512 — 885512 — 810

P-GSM-900, E-GSM-900 и DCS-1800 используются преимущественно в странах Европы и Азии. Диапазоны GSM-850 и PCS-1900 используется в США, Канаде, отдельных странах Латинской Америки и Африки.

Любой выделенный под сотовую сеть диапазон делится на множество отрезков (обычно по 200 КГц), часть из которых называется Downlink — здесь данные в эфир передают только базовые станции (BTS), часть — Uplink, где вещают только телефоны (MS). Пары таких отрезков, где один принадлежит Downlink, а другой Uplink, образуют радиочастотные каналы, называемые ARFCN (Absolute radio-frequency channel number). Другими словами, телефон не может принимать и передавать данные на одной и той же частоте, вместо этого при передаче он переключается на частоты Uplink, а при приеме на Downlink, причем процесс переключения происходит очень быстро.

2.2 Физические каналы, разделение множественного доступа

С диапазонам разобрались. Теперь представьте небольшую закрытую комнату, в которой много людей. Если в определенный момент времени все начнут разговаривать, собеседникам будет трудно понимать друг друга. Некоторые начнут говорить громче, что только ухудшит ситуацию для остальных. Так вот, в физике это явление называется интерференцией. Иными словами интерференцию можно назвать наложением волн. Для сотовых сетей GSM это паразитное явление, поэтому на помощь приходят технологии разделения множественного доступа.

Потребность в разделении множественного доступа возникла давно и применяется как в проводных коммуникациях (I2C, USB, Ethernet), так и в беспроводных. В сотовых сетях чаще всего используются технологии FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access) и CDMA (Code Division Multiple Access). Первые две в совокупности используются в сетях второго поколения — GSM. CDMA является основой современных сотовых сетей, которые превосходят GSM как в плане безопасности, так и максимальной скорости передачи данных. Что же это за магия?

Для радиосистем существует два основных ресурса — частота и время. Разделение множественного доступа по частотам, когда каждому приемнику и передатчику выделяется определенная частота, называется FDMA. Разделение по времени, когда каждой паре приёмник-передатчик выделяется весь спектр или большая его часть на выделенный отрезок времени, называют TDMA. В CDMA нет ограничений на частоту и время. Вместо этого каждый передатчик модулирует сигнал с применением присвоенного в данный момент каждому пользователю отдельного числового кода, а приемник вычисляет нужную часть сигнала, используя аналогичный код. Кроме того, существует еще несколько технологий: PAMA (Pulse-Address Multiple Access), PDMA (Polarization Division Multiple Access), SDMA (Space Division Multiple Access), однако, их описание выходит за рамки данной статьи.

FDMA
Принцип данного метода заключается в том, что доступный частотный спектр разделяется между приемниками и передатчиками на равные или неравные частотные полосы, часть из которых выделяется под Downlink (трафик от BTS к MS), часть под Uplink (трафик от MS к BTS). Об этом мы уже говорили.

TDMA
Вместе с разделением по частоте (FDMA), в GSM применяется метод разделения по времени — TDMA. Согласно TDMA, весь поток данных делится на фреймы, а фреймы в свою очередь делятся на несколько таймслотов, которые распределяются между приемопередающими устройствами. Следовательно, телефон может выполнять обмен информацией с сетью только в определенные, выделенные ему промежутки времени.

Gsm что это

Фреймы объединяются в мультифреймы, которые бывают двух видов:

Control Multiframe (содержит 51 фрейм)

Gsm что это

Traffic Multiframe (содержит 26 фреймов)

Gsm что это

Мультифреймы образуют суперфреймы, а уже суперфреймы образуют гиперфреймы. Подробнее о структуре фреймов и их организации можно узнать тут (источник изображений) и здесь.

В результате, физический канал между приемником и передатчиком определяется частотой, выделенными фреймами и номерами таймслотов в них. Обычно базовые станции используют один или несколько каналов ARFCN, один из которых используется для идентификации присутствия BTS в эфире. Первый таймслот (индекс 0) фреймов этого канала используется в качестве базового служебного канала (base-control channel или beacon-канал). Оставшаяся часть ARFCN распределяется оператором для CCH и TCH каналов на свое усмотрение.

2.3 Логические каналы

На основе физических каналов формируются логические. Um-интерфейс подразумевает обмен как пользовательской информацией, так и служебной. Согласно спецификации GSM, каждому виду информации соответствует специальный вид логических каналов, реализуемых посредством физических:

Gsm что это

Каналы служебной информации делятся на:

2.4 Что такое burst?

Данные в эфире передаются в виде последовательностей битов, чаще всего называемых «burst», внутри таймслотов. Термин «burst», наиболее подходящим аналогом которому является слово «всплеск», должен быть знаком многим радиолюбителям, и появился, скорее всего, при составлении графических моделей для анализа радиоэфира, где любая активность похожа на водопады и всплески воды. Подробнее о них можно почитать в этой замечательной статье (источник изображений), мы остановимся на самом главном. Схематичное представление burst может выглядеть так:

Gsm что это

Guard Period
Во избежание возникновения интерференции (т.е. наложения двух busrt друг на друга), продолжительность burst всегда меньше продолжительности таймслота на определенное значение (0,577 — 0,546 = 0,031 мс), называемое «Guard Period». Данный период представляет собой своего рода запас времени для компенсации возможных задержек по времени при передаче сигнала.

Tail Bits
Данные маркеры определяют начало и конец burst.

Info
Полезная нагрузка burst, например, данные абонентов, либо служебный трафик. Состоит из двух частей.

Stealing Flags
Эти два бита устанавливаются когда обе части данных burst канала TCH переданы по каналу FACCH. Один переданный бит вместо двух означает, что только одна часть burst передана по FACCH.

Training Sequence
Эта часть burst используется приемником для определения физических характеристик канала между телефоном и базовой станцией.

2.5 Виды burst

Каждому логическому каналу соответствуют определенные виды burst:

Gsm что это

Normal Burst
Последовательности этого типа реализуют каналы трафика (TCH) между сетью и абонентами, а также все виды каналов управления (CCH): CCCH, BCCH и DCCH.

Frequency Correction Burst
Название говорит само за себя. Реализует односторонний downlink-канал FCCH, позволяющий мобильным телефонам более точно настраиваться на частоту BTS.

Synchronization Burst
Burst данного типа, так же как и Frequency Correction Burst, реализует downlink-канал, только уже SCH, который предназначен для идентификации присутствия базовых станций в эфире. По аналогии с beacon-пакетами в WiFi-сетях, каждый такой burst передается на полной мощности, а также содержит информацию о BTS, необходимую для синхронизации с ней: частота кадров, идентификационные данные (BSIC), и прочие.

Dummy Burst
Фиктивный burst, передаваемый базовой станцией для заполнения неиспользуемых таймслотов. Дело в том, что если на канале нет никакой активности, мощность сигнала текущего ARFCN будет значительно меньше. В этом случае мобильному телефону может показаться, что он далеко от базовой станции. Чтобы этого избежать, BTS заполняет неиспользуемые таймслоты бессмысленным трафиком.

Access Burst
При установлении соединения с BTS мобильный телефон посылает запрос выделенного канала SDCCH на канале RACH. Базовая станция, получив такой burst, назначает абоненту его тайминги системы FDMA и отвечает на канале AGCH, после чего мобильный телефон может получать и отправлять Normal Bursts. Стоит отметить увеличенную продолжительность Guard time, так как изначально ни телефону, ни базовой станции не известна информация о временных задержках. В случае, если RACH-запрос не попал в таймслот, мобильный телефон спустя псевдослучайный промежуток времени посылает его снова.

2.6 Frequency Hopping

Псевдослучайная перестройка рабочей частоты (FHSS — англ. frequency-hopping spread spectrum) — метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.

Gsm что это

Frequency Hopping (FHSS) является одним из методов расширения спектра. Кроме сетей GSM, разновидность данного метода применяется в Bluetooth. Зачем?

2.7 Основные принципы взаимодействия MS и BTS

Начнем с того, что происходит при включении мобильного телефона. Чаще всего, даже если телефон выключен со вставленной батареей, он продолжает работать. В это время работает небольшая программа, называемая «загрузчиком». Загрузчик ожидает нажатия клавиши включения, запускает процесс зарядки при подключении зарядного устройства, а иногда и будильник. Все зависит от конкретной модели телефона. Как только нажимается клавиша включения, начинается процесс загрузки операционной системы, которая сначала проверяет наличие SIM-карты, а затем запускает сканирование эфира в поисках сети оператора. Даже если SIM-карты нет, телефон все-равно подключается к ближайшей базовой станции, предоставляя возможность экстренного вызова. Если SIM-карта на месте, выполняется запрос Location Update, уведомляющий сеть о текущем LAС абонента. Затем, базовая станция запрашивает IMEI телефона и IMSI SIM-карты, чтобы идентифицировать абонента (Identity Request). Если предоставленный IMEI отличается от того, с которым абонент подключался раньше, оператор может выслать настройки интернета. Кстати, так можно даже найти украденный телефон. Затем выполняется авторизация, после чего телефон может находиться в одном из двух состояний:

Как только телефон находит разрешенный BCCH, посылается RACH-запрос, базовая станция выделяет определенный физический канал, выполняет аутентификацию абонента, а также регистрирует его прибывание в VLR и HLR. После этого телефон находится в режиме IDLE. При входящем звонке или SMS-сообщении, все базовые станции текущего LAC начинают рассылать Paging Requests, чтобы уведомить абонента о каком-либо событии. Если телефон его «услышал», он отвечает, сеть высылает пакет Immediate Assignment, описывающий выделенные абоненту ресурсы (частота, номер таймслота и т.д.). Очень похоже на Ping в Интернете. С этого момента телефон находится в режиме DEDICATED до момента разрыва соединения.

В случае, если абонент сам выступает в роли инициатора соединения, ему необходимо сначала выслать запрос CM Service Request, а затем дождаться Immediate Assignment от сети.

2.8 Handover

Handover (американский вариант — handoff) — в сотовой связи процесс передачи абонента от одной базовой станции к другой во время телефонного разговора или сессии передачи данных. Данный процесс происходит, когда абонент покидает зону действия одной базовой станции и входит в зону действия другой. Также handover может выполняться в случае, если текущая базовая станция перегружена, либо ее физические каналы слишком зашумлены.

Handover бывает двух типов:

2.9 Кодирование речи

Как уже говорилось, речь абонентов передается на канале TCH, который бывает двух видов: Full Rate (FR) и Half Rate (HR). Для кодирования аудиопотока в сетях мобильной связи GSM (и не только) применяются следующие стандарты:

3. Безопасность и конфиденциальность

Пришло время рассмотреть основные алгоритмы обеспечения конфиденциальности и безопасности данных абонентов. На фоне громких скандалов и разоблачений в области информационной безопасности, данная тема довольно актуальна. GSM, как и любая другая сложная система, имеет свои механизмы защиты, а также уязвимости, которые мы рассмотрим в данной главе. Я не стану вдаваться в дебри, описывая низкоуровневые процессы преобразования битов при шифровании и т.д., иначе статья превратится в огромную пузатую книгу. Кому интересно, можно почитать эти материалы:

3.1 Основные векторы атак

Посколько Um-интерфейс является радиоинтерфейсом, весь его трафик «виден» любому желающему, находящемуся в радиусе действия BTS. Причем анализировать данные, передаваемые через радиоэфир, можно даже не выходя из дома, используя специальное оборудование (например, старый мобильный телефон, поддерживаемый проектом OsmocomBB, или небольшой донгл RTL-SDR) и прямые руки самый обычный компьютер.

Выделяют два вида атаки: пассивная и активная. В первом случае атакующий никак не взаимодействует ни с сетью, ни с атакуемым абонентом — исключительно прием и обработка информации. Не трудно догадаться, что обнаружить такую атаку почти не возможно, но и перспектив у нее не так много, как у активной. Активная атака подразумевает взаимодействие атакующего с атакуемым абонентом и/или сотовой сетью.

Можно выделить наиболее опасные виды атак, которым подвержены абоненты сотовых сетей:

3.2 Идентификация абонентов

Как уже упоминалось в начале статьи, идентификация абонентов выполняется по IMSI, который записан в SIM-карте абонента и HLR оператора. Идентификация мобильных телефонов выполняется по серийному номеру — IMEI. Однако, после аутентификации ни IMSI, ни IMEI в открытом виде по эфиру не летают. После процедуры Location Update абоненту присваивается временный идентификатор — TMSI (Temporary Mobile Subscriber Identity), и дальнейшее взаимодействие осуществляется именно с его помощью.

Способы атаки
В идеале, TMSI абонента известен только мобильному телефону и сотовой сети. Однако, существуют и способы обхода данной защиты. Если циклически звонить абоненту или отправлять SMS-сообщения (а лучше Silent SMS), наблюдая за каналом PCH и выполняя корреляцию, можно с определенной точностью выделить TMSI атакуемого абонента.

Кроме того, имея доступ к сети межоператорного взаимодействия SS7, по номеру телефона можно узнать IMSI и LAC его владельца. Проблема в том, что в сети SS7 все операторы «доверяют» друг другу, тем самым снижая уровень конфиденциальности данных своих абонентов.

3.3 Аутентификация

Для защиты от спуфинга, сеть выполняет аутентификацию абонента перед тем, как начать его обслуживание. Кроме IMSI, в SIM-карте хранится случайно сгенерированная последовательность, называемая Ki, которую она возвращает только в хэшированном виде. Также Ki хранится в HLR оператора и никогда не передается в открытом виде. Вцелом, процесс аутентификации основан на принципе четырехстороннего рукопожатия:

Gsm что это

Gsm что это

Способы атаки
Перебор Ki, имея значения RAND и SRAND, может занять довольно много времени. Кроме того, операторы могут использовать свои алгоритмы хэширования. В сети довольно мало информации о попытках перебора. Однако, не все SIM-карты идеально защищены. Некоторым исследователям удавалось получить прямой доступ к файловой системе SIM-карты, а затем извлечь Ki.

3.4 Шифрование трафика

Согласно спецификации, существует три алгоритма шифрования пользовательского трафика:

Заключение

Мой длинный рассказ подошел к концу. Более подробно и с практической стороны с принципами работы сотовых сетей можно будет познакомиться в цикле статей Знакомство с OsmocomBB, как только я допишу оставшиеся части. Надеюсь, у меня получилось рассказать Вам что-нибудь новое и интересное. Жду Ваших отзывов и замечаний!

Источник

Gsm что это

Gsm что это

GSM (от названия группы Groupe Spécial Mobile, позже переименован в Global System for Mobile Communications) (русск. СПС-900) — глобальный цифровой стандарт для мобильной сотовой связи, с разделением частотного канала по принципу TDMA и средней степенью безопасности. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 1980-х годов.

Содержание

Общие сведения

GSM относится к сетям второго поколения (2 Generation), хотя на 2010 год условно находится в фазе 2,75G благодаря многочисленным расширениям (1G — аналоговая сотовая связь, 2G — цифровая сотовая связь, 3G — широкополосная цифровая сотовая связь, коммутируемая многоцелевыми компьютерными сетями, в том числе Интернет).

Сотовые телефоны выпускаются для 4 диапазонов частот: 850 МГц, 900 МГц, 1800 МГц, 1900 МГц.

В зависимости от количества диапазонов, телефоны подразделяются на классы и вариацию частот в зависимости от региона использования.

В стандарте GSM применяется GMSK модуляция с величиной нормированной полосы ВТ — 0,3, где В — ширина полосы фильтра по уровню минус 3 дБ, Т — длительность одного бита цифрового сообщения.

GSM на сегодняшний день является наиболее распространённым стандартом связи. По данным ассоциации GSM (GSMA) на данный стандарт приходится 82 % мирового рынка мобильной связи, 29 % населения земного шара использует глобальные технологии GSM. В GSMA в настоящее время входят операторы более чем 210 стран и территорий.

Этапы развития

GSM сначала означало Groupe Special Mobile, по названию группы анализа, которая создавала стандарт. Теперь он известен как Global System for Mobile Communications (Глобальная Система для Мобильной Связи), хотя слово «Cвязь» не включается в сокращение. Разработка GSM началась в 1982 году группой из 26 Европейских национальных телефонных компаний. Европейская конференция почтовых и телекоммуникационных администраций (CEPT), стремились построить единую для всех европейских стран сотовую систему диапазона 900 MГц. Редкое торжество Европейского союза, достижения GSM стали «одними из наиболее убедительных демонстраций какое сотрудничество в Европейской промышленности может быть достигнуто на глобальном рынке».

В 1989 году Европейский Телекоммуникационный Институт Стандартов (ETSI) взял ответственность за дальнейшее развитие GSM. В 1990 году были опубликованы первые рекомендации. Спецификация была опубликована в 1991 году.

Коммерческие сети GSM начали действовать в Европейских странах в середине 1991 г. GSM разработан позже, чем обычная сотовая связь и во многих отношениях лучше был сконструирован. Северо-Американский аналог — PCS, вырастил из своих корней стандарты включая TDMA и CDMA цифровые технологии, но для CDMA реально возросшая возможность обслуживания так и не была никогда подтверждена.

GSM Phase 1

1982 (Groupe Special Mobile) — 1990 г. Global System for Mobile Communications. Первая коммерческая сеть в январе 1992 г. Цифровой стандарт, поддерживает скорость передачи данных до 9.6 кбит/с. Полностью устарел, производство оборудования под него прекращено.

В 1991 году были введены услуги стандарта GSM «ФАЗА 1».

GSM Phase 2

1993 г. Включает диапазон 1900 МГц в 1995 г. Цифровой стандарт, поддерживает скорость передачи данных до 9.6 кбит/с. Устарел. Второй этап развития GSM «ФАЗА 2», который завершился в 1997 г., предусматривает такие услуги:

GSM Phase 2+

Следующий этап развития сетей стандарта GSM «ФАЗА 2+» не связан с конкретным годом внедрения. Новые услуги и функции стандартизируются и внедряются после подготовки и утверждения их технических описаний. Все работы по этапу «Фаза 2+» проводились Европейским институтом стандартизации электросвязи (ETSI). Количество уже внедрённых и находящихся в стадии утверждения услуг превышает 50. Среди них можно выделить следующие:

Предоставляемые услуги

GSM обеспечивает поддержку следующих услуг:

Дополнительные (необязательные к предоставлению) услуги:

и многие другие услуги.

Преимущества и недостатки

Преимущества стандарта GSM:

Недостатки стандарта GSM:

Стандарты и радиоинтерфейс

В стандарте GSM определены 4 диапазона работы (ещё есть пятый):

900/1800 МГц (используется в Европе, Азии)

GSM-900

Цифровой стандарт мобильной связи в диапазоне частот от 890 до 915 МГц (от телефона к базовой станции) и от 935 до 960 МГц (от базовой станции к телефону). Количество реальных каналов связи гораздо больше чем написанно выше в таблице, т.к присутствует еще и временное разделение каналов TDMA, т.е на одной и той же частоте могут работать несколько абонентов с разделением во времени.

Модификация стандарта GSM-900, цифровой стандарт мобильной связи в диапазоне частот от 1710 до 1880 МГц.

Проблема состоит в том, что зона охвата для каждой базовой станции значительно меньше, чем в стандартах GSM-900, AMPS/DAMPS-800, NMT-450. Необходимо большее число базовых станций. Чем выше частота излучения, тем больше проникающая способность (характеризуется т. н. глубиной скин-слоя) радиоволн и тем меньше способность отражаться и огибать преграды.

850/1900 МГц (используется в США, Канаде, отдельных странах Латинской Америки и Африки)

Структура GSM

Система GSM состоит из трёх основных подсистем:

В отдельный класс оборудования GSM выделены терминальные устройства — подвижные станции (MS — Mobile Station), также известные как мобильные (сотовые) телефоны.

Подсистема базовых станций

Базовая станция (BTS) обеспечивает приём/передачу сигнала между MS и контроллером базовых станций. BTS является автономной и строится по модульному принципу. Направленные антенны базовых станций могут располагаться на вышках, крышах зданий и т. д.

Контроллер базовых станций (BSC) контролирует соединения между BTS и подсистемой коммутации. В его полномочия также входит управление очерёдностью соединений, скоростью передачи данных, распределение радиоканалов, сбор статистики, контроль различных радиоизмерений, назначение и управление процедурой Handover.

Подсистема коммутации

NSS построена из следующих компонентов:

Центр коммутации (MSC — Mobile Switching Centre)

MSC контролирует определённую географическую зону с расположенными на ней BTS и BSC. Осуществляет установку соединения к абоненту и от него внутри сети GSM, обеспечивает интерфейс между GSM и ТфОП, другими сетями радиосвязи, сетями передачи данных. Также выполняет функции маршрутизации вызовов, управление вызовами, эстафетной передачи обслуживания при перемещении MS из одной ячейки в другую. После завершения вызова MSC обрабатывает данные по нему и передаёт их в центр расчётов для формирования счета за предоставленные услуги, собирает статистические данные. MSC также постоянно следит за положением MS, используя данные из HLR и VLR, что необходимо для быстрого нахождения и установления соединения с MS в случае её вызова.

Домашний реестр местоположения (HLR — Home Location Registry)

Содержит базу данных абонентов, приписанных к нему. Здесь содержится информация о предоставляемых данному абоненту услугах, информация о состоянии каждого абонента, необходимая в случае его вызова, а также Международный Идентификатор Мобильного Абонента (IMSI — International Mobile Subscriber Identity), который используется для аутентификации абонента (при помощи AUC). Каждый абонент приписан к одному HLR. К данным HLR имеют доступ все MSC и VLR в данной GSM-сети, а в случае межсетевого роуминга — и MSC других сетей.

Гостевой реестр местоположения (VLR — Visitor Location Registry)

VLR обеспечивает мониторинг передвижения MS из одной зоны в другую и содержит базу данных о перемещающихся абонентах, находящихся в данный момент в этой зоне, в том числе абонентах других систем GSM — так называемых роумерах. Данные об абоненте удаляются из VLR в том случае, если абонент переместился в другую зону. Такая схема позволяет сократить количество запросов на HLR данного абонента и, следовательно, время обслуживания вызова.

Реестр идентификации оборудования (EIR — Equipment Identification Registry)

Содержит базу данных, необходимую для установления подлинности MS по IMEI (International Mobile Equipment Identity). Формирует три списка: белый (допущен к использованию), серый (некоторые проблемы с идентификацией MS) и чёрный (MS, запрещённые к применению). У российских операторов (и большей части операторов стран СНГ) используются только белые списки, что не позволяет раз и навсегда решить проблему кражи мобильных телефонов. В случае занесения владельцем своего, но уже украденного у него, телефона в чёрный список — он [телефон] перестаёт работать и, следовательно, не представляет для воров никакого коммерческого интереса.

Центр аутентификации (AUC — Authentication Centre)

Здесь производится аутентификация абонента, а точнее — SIM (Subscriber Identity Module). Доступ к сети разрешается только после прохождения SIM процедуры проверки подлинности, в процессе которой с AUC на MS приходит случайное число RAND, после чего на AUC и MS параллельно происходит шифрование числа RAND ключом Ki для данной SIM при помощи специального алгоритма. Затем с MS и AUC на MSC возвращаются «подписанные отклики» — SRES (Signed Response), являющиеся результатом данного шифрования. На MSC отклики сравниваются, и в случае их совпадения аутентификация считается успешной.

Подсистема OMC (Operations and Maintenance Centre)

Соединена с остальными компонентами сети и обеспечивает контроль качества работы и управление всей сетью. Обрабатывает аварийные сигналы, при которых требуется вмешательство персонала. Обеспечивает проверку состояния сети, возможность прохождения вызова. Производит обновление программного обеспечения на всех элементах сети и ряд других функций.

Источники угроз в системе GSM

Основные источники угроз:

Gsm что это

2. Поставщик услуги (Оператор Сотовой Связи)

Gsm что это

3. Производители мобильных устройств и систем управления (Операционная Система).

Gsm что это

4. Перехват трафика в радиоканале (комплексы перехвата: активные, полуактивные, пассивные и др. средства перехвата).

Gsm что это

Gsm что это

Чтобы установить технический контроль за мобильным телефоном или SIM-картой, необходимо знать их идентификаторы. Все сети коммуникации во всём мире контролируются государственными регуляторами и технически подключены к СОРМ (вся информация по данной системе доступна в интернете).

Для мобильного устройства основным идентификатором является IMEI (International Mobile Equipment Identity — международный идентификатор мобильного оборудования). Данный параметр передаётся в сети.

Для абонента идентификатором является IMSI (International Mobile Subscriber Identity — международный идентификатор мобильного абонента (индивидуальный номер абонента). Данный параметр передаётся в сети.

Эти параметры достаточны для получения необходимой оперативной информации и использования этих данных для аналитических выводов. Имея эти идентификаторы по средствам СОРМ, комплексов перехвата и других мероприятий, можно получить следующую информацию по абоненту:

SECURE SIM не имеет биллинга ни у одного из операторов, так как не является их собственностью. SECURE SIM не имеет MSISDN в публичном доступе.

Алгоритм работы SECURE SIM и обычной SIM в сети GSM

Процедура регистрации телефона в сети и выбора соты

После каждого включения телефона происходит процедура выбора сети и регистрация абонента в этой сети.

Gsm что это

Gsm что это

Шифрование в сети GSM

Шифрование сессии обеспечивает алгоритм шифрования А5, который использует в своих вычислениях Кс(сессионный ключ). Кс в свою очередь вычисляется алгоритмом А8, который использует параметры Ki и RAND. В обычной SIM карте параметр Ki является неизменным, как и IMSI. SECURE SIM использует несколько профилей со своими парами IMSI+Ki.

Чтобы понизить уровень криптования A5/1 до A5/2 или A5/0, оператор со своей стороны или комплекс перехвата отправляет служебную команду на номер мобильного абонента MSISDN. У обычной SIM карты мобильный номер MSISDN привязан к конкретной паре IMSI+Ki и хранится у оператора эмитента. SECURE SIM не принадлежит ни одному из операторов и не имеет жёстко привязанного MSISDN так как имеет несколько профилей. Даже если SECURE SIM попадает в зону подсистемы базовых станций BSS и команда о снятии криптования производится по средствам широковещательного сообщения PagingRequest, он не сможет выполнить данную команду, так как данный исполнительный механизм в алгоритме SECURE SIM отсутствует.

Абонент обычной SIM-карты после набора номер нажимает кнопку вызова. В этот момент телефон посредством высокоскоростного канала управления FACCH отправляет сигнал ALERT на BSS (подсистему базовых станций), а оттуда на MSC (центр коммутации). Далее коммутатор отправляет сообщение AddressComplete на вызывающего абонента. Абонент сделавший вызов слышит гудки, а второй абонент звонок вызова.

Зная мобильный номер абонента А или Б (MSIDIN) можно получить от биллинга оператора все детали звонка и саму сессию. Так же можно перехватить эту сессию по воздуху посредством комплекса перехвата.

Абонент Tottoli GSM после набора номера нажимает кнопку «Вызов». Апплет SIM-карты перехватывает вызов и перенаправляет его на наш сервисный номер. Мы используем несколько сервисных номеров, которые привязаны к разным серверам в разных странах. Сервисные номера доставляются на SIM-карту по технологии ОТА (On The Air), без участия абонента. Таким образом, каждый звонок от абонента производится на уникальный сервисный номер. Далее звонок пробрасывается на АТС Tottoli GSM. Данный способ связи устойчив и безопасен для абонента, так как используется несколько точек входа в сеть. К сожалению, подобный механизм поддерживается не во всех странах и не всеми операторами, в этом случае необходимо использовать CallBack, который по свойствам безопасности не отличается от прямого вызова (CallThru).

При данной логике совершения звонка невозможно получить информацию с биллинга оператора, так как неизвестно, у какого оператора зарегистрирована в данный момент SIM-карта Tottoli GSM, нет публичного идентификатора MSISDN, по которому можно было бы получить IMSI, Ki и IMEI. Даже если абонент Б находится на контроле, невозможно понять, с кем был разговор, так как сессия состоит из двух плечей, в разрыве которой стоит серверная АТС. Таким образом, невозможно определить круг Вашего общения.

Звонок на обычную SIM-карту происходит в соответствии со стандартными процедурами. После выполнения процедуры вызова и назначении TMSI (временного идентификатора мобильной станции) в зоне действия VLR, происходит приземление трафика, и сессия считается установленной. При этом биллинг оператора фиксирует, с какого устройства инициирован звонок, местоположение принимающего устройства в момент сессии (локация), длительность разговора и т.д.

Звонок на Tottoli GSM осуществляется следующим образом. SIM-карте Tottoli GSM присваивается виртуальный номер (DID), который, принимая звонок из сети, преобразовывает его в SIP протокол и маршрутизирует на АТС. В свою очередь АТС определяет конкретного абонента, которому присвоен данный DID запускает процедуру вызова, описанную выше. Таким образом, невозможно определить местоположение Tottoli GSM и взаимосвязи между обоими абонентами, ведь в разрыве всегда находится АТС.

Учитывая тот факт, что операторы активно внедряют в свои сети механизмы поиска абонента по фонетическим признакам (отпечатку голоса) SECURE SIM даёт возможность искажать акустические характеристики для входящих и исходящих звонков. Данный механизм особенно полезен, если звонок с AYSIM производится на обычную SIM.

SECURE SIM, не имея биллинга у операторов делает невозможным получение необходимой информации для аналитической работы (круг общения (детализации), местоположения (локации), реальных идентификаторов, голоса).

Всегда надо помнить, что телефон – проприетарное устройство, чёрный ящик, какие в нём закладки, никто не знает кроме производителя, а часто и сам производитель может не знать о каких – то багах. Так же необходимо понимать, что операторские инструменты постоянно совершенствуются. Постоянно модернизируются аналитические инструменты, выявляющие одноразовые телефоны по паттернам в биллинге: фиксируется дата первого и последнего звонка с телефона, общее количество звонков и пропорциональный состав уникальных абонентов, с которыми связывались с данной сим карты/аппарата. Имея доступ к биллинговым системам всех национальных операторов, можно определять, когда избавились от одного телефона и начали звонить со следующего, а подключив сюда данные геолокации можно выявить ареал обитания подозрительного абонента.

Источник

GSM: История стандарта

Некоторые идеи, высказанные ниже, являются чистой воды спекуляцией на тему истории технологии. При написании данной статьи использовались различные источники, часть из которых указана в разделе «Ссылки». Автор с удовольствием примет указания на неточности и ошибки.

В начале 80-х годов в Европе существовало несколько конкурирующих стандартов аналоговой сотовой связи. Я неоднократно встречал утверждения, что к 1982 году (год создания Groupe Speciale Mobile, см. ниже) стали очевидны недостатки аналоговой связи, в том числе недостаточная ёмкость, высокая стоимость, незащищённость информации (собственно звонков) и возможность клонирования аппаратов, т.е. создания их нелегальных двойников.

Некоторые авторы пишут также, что важную роль сыграл тот факт, что государственные и частные компании понимали, как сложно окупить исследования и разработку без международного распространения созданного стандарта. Частично такая точка зрения подтверждается распространенностью аналоговых систем мобильной связи первого поколения.

Аналоговые стандартны (системы первого поколения)
Название СистемыДатаСтрана
AMPS1983США, другие страны
C-Netz1981, 1988Германия, Австрия, Португалия
Comvik1981Швеция
ETACS1987Великобритания, другие страны
NMT450 (Nordic Mobile Telephone)1981Швеция, Норвегия, Дания, Финляндия
NMT9001986Швеция, Норвегия, Дания, Финляндия
RadioCom1985Франция
RTMS (Radio Telephone Mobile System)1985Италия
TACS (Total Acess Communications System)1985Великобритания, Италия, Испания, Австрия, Ирландия

Как можно было увидеть эти недостатки столь рано, до введения в эксплуатацию доброй половины сетей первого поколения и до приобретения хоть какого-то опыта, я не совсем понимаю. Вероятно, сведения о прозорливости тогдашних правительств и лидеров промышленности несколько преувеличены, а вот году эдак к 1986 эти недостатки стали проявляться. Именно в это время и была создана Ассоциация MoU GSM, да и вообще 1986-1987 гг. очень богаты на события, породившие современный стандарт GSM.

Трудно себе представить, что созданная в 1982 году группа была изначально направлена на создание некоего специфического стандарта сотовой мобильной связи. Вероятно, некая идея общеевропейского цифрового стандарта витала в воздухе, и Groupe Speciale Mobile была призвана исследовать эту проблему.

Зачастую среди изначальных спецификаций GSM называют совместимость с ISDN, хотя первые рекомендации по ISDN появились в 1984 году (CCITT Recommendation I.120). Понятно, что к 1982 году дебаты по поводу ISDN уже шли, и мне представляется, что второй отправной точкой могла быть идея создания беспроводного аналога ISDN. Может быть, свою роль сыграла и идея объединённой Европы. Не будучи очевидцем, трудно представить, какие политические интриги и страсти кипели вокруг новой системы сотовой связи. Современные дебаты о третьем поколении – это даже не тень, а тень тени разгоревшейся в середине восьмидесятых битвы.

Вернёмся ещё раз в 1982-ой год. Не будем забывать, что ни о каком GSM в современном понимании речь пока не идёт, существует просто идея всеевропейской системы сотовой связи, и проталкивают её государственные монополии при полной поддержке соответствующих правительств.

В Европе к тому времени уже двадцать лет как существовал вполне подходящий инструмент для решения подобных вопросов – CEPT. Конференция CEPT (Conference Europeenne des Administration des postes et des telecommunications, The European Conference of Postal and Telecommunications Administrations) была основана в 1959. Её деятельность в основном сводилась к урегулированию международных коммерческих и операционных вопросов и стандартизации в области связи.

В 1982 этом году CEPT создала Groupe Speciale Mobile для изучения будущей европейской системы сотовой связи. Встречаются упоминания о том, что эта группа была создана по предложению Nordic Telecom и Netherlands PTT.

В 1985 году Франция и Германия подписывают в Ницце соглашение о поддержке GSM, т.е. общеевропейского цифрового стандарта.

Система должна была отвечать следующим критериям:

Я отнёс чёткую формулировку этих критериев к 1986 году исключительно потому, что мне это кажется более логичным, чем общепринятая датировка 1982 годом.

В 1987 году были проведены полевые испытания нескольких систем на соответствие некоторым из этих условий, так, они включили в себя проверки спектральной эффективности, качества речи и радиоинтерфейса (т.е. модуляции радиосигнала и системы множественного доступа). В том же году на совещании в Мадейре было подписано соглашение о том, что новая система будет узкополосной цифровой с временным разделением каналов. На встрече министров в мае, все страны-участницы согласились со стандартом и датой введения новых сетей в эксплуатацию – июль 1991 года. Операторам связи было указано на необходимость подписания протокола о намерениях (Memorandum of Understanding, MoU). Этот протокол был разработан чиновником британского департамента торговли и промышленности. Седьмого сентября в Копенгагене этот документ был подписан.

Аббревиатура GSM стала читаться как Global System for Mobile Communications. Здесь можно заподозрить происки англосаксов и тевтонов, так как произнести Groupe Speciale Mobile с правильным французским прононсом может не каждый, а конфузиться никому не хотелось. Таким образом, организация, объединяющая операторов и производителей оборудования, называется GSM MoU Association, но обычно её называют просто Ассоциация GSM.

К 1988 году было доказано, что система будет работать, и в 1989 году работало несколько тестовых сетей.

В 1989 году обязанности по развитию стандарта перешли от GSM Permanent Nucleus к недавно созданному ETSI (European Telecommunications Standards Institute), который и оформил GSM в качестве международного стандарта. В 1990 году спецификации GSM Phase 1 были закреплены, то есть стали неизменяемыми, что позволило начать разработку и производство сетевого, пользовательского и тестового оборудования.

После закрепления стандарта Фазы 1 прошло около двух лет до запуска в Финляндии первой сети GSM. И если в январе 1992-го года она была одна, то к концу 1992 существовало уже около четырнадцати сетей. Надо сказать, что международные бюрократы от технологии не теряли времени даром, и между 1990 и 1992 годами были созданы системы сертификации, а многозначительные взгляды сфокусировались на диапазоне 1800 МГц.

Не обошлось без съездов – Pan European Digital Cellular Conference состоялась в 1987 году в Лондоне. В 1995 в Мадриде это событие стало называться Всемирный Конгресс GSM. До 1996 года конференции и конгрессы проводились в европейских столицах, пока здравый смысл не победил, и постоянным местом для конференций стали Канны.

Из примечательных событий стоит отметить появление роуминга и присоединение первой неевропейской компании к Ассоциации в 1993 году, закрепление спецификации GSM Фазы 2, включающей диапазон 1900 МГц в 1995, удачную попытку взлома SIM-карты в 1998 и появления GPRS в 1999 году. 26 октября 1999 года Ассоциация GSM и ETSI заново подписали соглашение о сотрудничестве. С июня 2002-го года ответственность за поддержку стандарта взяла на себя 3GPP (3rd Generation Partnership Project).

[1] J. Scourias, «Overview of the Global System for Mobile Communications»

[2] Самуйлов К.Е. и Никитина М.В., «Сети сотовой подвижной связи в стандарте GSM». Примечание: данный труд является неплохим переводом работы Джона Скуриаса [1] почему-то опубликованным под другими именами.

[3] Громаков Ю.А., «Стандарты и системы подвижной связи»

[4] N.Gandal, D.Salant, L.Waverman, Standardization versus Coverage in Wireless Telephone Networks

[5]A.Selian, 3G Mobile Licensing Policy: From GSM to IMT-2000 – A Comparative Analysis

[6] GSM MoU Association, GSM – Historical Background

[7] P. L. Reilly, GSM Network Architecture Issues: Synergy With IMT2000

[8] TelecomWriting.com: Digital Wireless Basics: Mobile Phone History Page Nine

[9] C.Gibbons, C.Kelly, C.Field, S.O’Conchuir, History of the G.S.M. System

[10] GSM MoU Assosiation, History and Timeline of GSM

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *