имеют ли газы собственную форму и объем
Модель строения газа в молекулярно-кинетической теории.
Французское слово gaz (газ) произошло от греческого слова «хаос», что означает «полный беспорядок», «неразбериха» (в древнегреческой мифологии хаос — зияющая бездна, наполненная туманом и мраком, якобы существовавшая до сотворения мира).
Термин «газ» был введен в начале XVII в. Я. В. ван Гельмонтом. Действительно, модель молекулярного хаоса оказалась весьма плодотворной и сохранила свое значение для современных исследований.
Газ — это агрегатное состояние вещества, в котором составляющие его атомы и молекулы почти свободно и хаотически движутся в промежутках между столкновениями. Во время столкновения молекулы резко меняют скорость и направление своего движения. Время столкновения молекул намного меньше промежутка времени между двумя столкновениями.
Объем, занимаемый газом, значительно сильнее зависит от давления и температуры, чем объем жидкостей и твердых тел.
Газ можно сжать так, что его объем уменьшится в несколько раз. Это значит, что расстояние между молекулами l намного больше размеров самих молекул: l ≫ d. На таких расстояниях молекулы очень слабо притягиваются друг к другу. По этой причине газы не имеют собственной формы и постоянного объема. Нельзя заполнить газом, например, половину бутылки или стакана.
В отличие от жидкостей и твердых тел газы не образуют свободной поверхности и заполняют весь доступный им объем.
Газообразное состояние — самое распространенное состояние вещества Вселенной (межзвездное вещество, туманности, звезды, атмосферы планет). По химическим свойствам газы и их смеси очень разнообразны — от малоактивных инертных газов до взрывчатых смесей.
Давление газа. Беспрерывно и хаотически двигаясь, молекулы газа сталкиваются не только друг с другом, но и со стенками сосуда, в котором находится газ. Молекул в газе много, потому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью 1 см 2 за 1 с, выражается двадцатитрехзначным числом. Хотя сила удара одной молекулы мала, но действие всех молекул на стенки сосуда значительно, оно и составляет давление газа.
Итак, давление газа на стенки сосуда и на помещенное в газ тело вызывается ударами молекул газа.
Идеальный газ
Газ: агрегатное состояние
У веществ есть три агрегатных состояния — твердое, жидкое и газообразное.
Их характеристики — в таблице:
Агрегатные состояния
Свойства
Расположение молекул
Расстояние между молекулами
Движение молекулы
Твердое
сохраняет форму и объем
в кристаллической решетке
соотносится с размером молекул
колеблется около положения в кристаллической решетке
Жидкое
близко друг к другу
молекулы малоподвижны, при нагревании скорость движения увеличивается
Газообразное
занимает предоставленный объем
больше размеров молекул
хаотичное и непрерывное
В жизни мы встречаем вещества в газообразном состоянии, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (занимает весь предоставленный объем) и состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.
Агрегатных состояний точно три?
На самом деле есть еще четвертое — плазма. Звучит как что-то из научной фантастики, но это просто ионизированный газ — газ, в котором, помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.
Модель идеального газа
В физике есть такое понятие, как модель. Модель — это что-то идеализированное, она нужна в случаях, когда можно пренебречь некоторыми параметрами объекта или процесса.
Идеальный газ — это модель реального газа. Молекулы идеального газа представляют собой материальные точки, которые не взаимодействуют друг с другом на расстоянии, но взаимодействуют при столкновениях друг с другом или со стенками сосуда. При работе с идеальным газом можно пренебречь потенциальной энергией молекул (но не кинетической).
В повседневной жизни идеальный газ, конечно, не встречается. Но реальный газ может вести себя почти как идеальный. Такое случается, если среднее расстояние между молекулами во много раз больше их размеров, то есть если газ очень разреженный.
Свойства идеального газа
Среднеквадратичная скорость
Потенциальной энергией молекул газа пренебречь можно, а вот кинетической — никак нельзя. Потому что кинетическая энергия — это энергия движения, а мы не можем пренебрегать скоростью движения молекул.
На графике показано распределение Максвелла — то, как молекулы распределяются по скоростям. Судя по графику, большинство молекул движутся со средним значением скорости. Хотя есть и быстрые, и медленные молекулы, просто их значительно меньше.
Но наш газ идеальный, а в идеальном газе случаются чудеса. Одно из таких чудес — то, что все молекулы идеального газа двигаются с одинаковой скоростью. Эта скорость называется средней квадратичной.
Средняя квадратичная скорость
v1, v2, vn — скорости разных молекул [м/с]
N — количество молекул [-]
Давление идеального газа
Молекулы газа беспорядочно движутся. Во время движения они сталкиваются друг с другом, а также со стенками сосуда, в котором этот газ находится. Поскольку молекул много, ударов тоже много.
Например, в комнате, в которой вы сейчас находитесь, за одну секунду на каждый квадратный сантиметр молекулы воздуха наносят столько ударов, что их количество выражается двадцатитрехзначным числом.
Хотя сила удара отдельной молекулы мала, действие всех молекул на стенки сосуда приводит к значительному давлению. Представьте, что комар пытается толкать машину — она не сдвинется с места. Но если за работу возьмется пара сотен миллионов комаров, то машину получится сдвинуть.
Эксперимент
Чтобы смоделировать давление газа, возьмите песок и лист бумаги, зажатый между двумя книгами. Песчинки будут выступать в роли молекул газа, а лист — в роли сосуда, в котором этот газ находится. Когда вы начинаете сыпать песок на лист бумаги, бумага отклоняется под воздействием множества песчинок. Так же и молекулы газа оказывают давление на стенки сосуда, в котором находятся.
Зависимость давления от других величин
Зависимость давления от объема
В механике есть формула давления, которая показывает, что давление прямо пропорционально силе и обратно пропорционально площади, на которую эта сила оказывается.
Давление
p = F/S
F — сила [Н]
S — площадь [м2]
То есть если наши двести миллионов комаров будут толкать легковую машину, они распределятся по меньшей площади, чем если бы толкали грузовой автомобиль, — просто потому, что легковушка меньше грузовика. Из формулы давления следует, что давление на легковой автомобиль будет больше из-за его меньшей площади.
Рассмотрим аналогичный пример с двумя сосудами разной площади.
Давление в левом сосуде будет больше, чем во втором, потому что его площадь меньше. А раз меньше площадь сосуда, то меньше и его объем. Значит, давление зависит от объема следующим образом: чем больше объем, тем меньше давление, и наоборот.
При этом зависимость будет не линейная, а примет вот такой вид (при условии, что температура постоянна):
Зависимость давления от объема называется законом Бойля-Мариотта. Она экспериментально проверяется с помощью такой установки:
Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается.
Зависимость давления от температуры
Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Исследования в этой области впервые провел французский изобретатель Жак Шарль в XVIII веке.
В ходе эксперимента газ нагревали в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Незначительным увеличением объема колбы при нагревании можно пренебречь, как и столь же незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, объем газа можно считать неизменным.
Подогревая воду в сосуде, окружающем колбу, ученый измерял температуру газа термометром, а давление — манометром.
Эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда.
С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейной:
Эта зависимость называется законом Шарля в честь ученого, открывшего ее.
Основное уравнение МКТ
Основная задача молекулярно-кинетической теории газа заключается в том, чтобы установить соотношение между давлением газа и его микроскопическими параметрами: массой молекул, их средней скоростью и концентрацией. Это соотношение называется основным уравнением молекулярно-кинетической теории газа или кратко — основным уравнением МКТ.
В основе молекулярно-кинетической теории лежат три положения.
Молекулы химического вещества могут быть простыми и сложными, то есть состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.
Мы уже выяснили, что причина давления газа на стенки — это удары молекул. Давление напрямую зависит от количества молекул — чем их больше, тем больше ударов о стенки и тем больше давление. А количество молекул в единице объема — это концентрация. Значит, давление газа зависит от концентрации.
Также давление пропорционально квадрату скорости, так как чем больше скорость молекулы, тем чаще она бьется о стенку сосуда. Расчеты показывают, что основное уравнение молекулярно-кинетической теории для идеального газа имеет следующий вид.
Основное уравнение МКТ
p = nkT
p — давление газа [Па]
T — температура газа [К]
m 0 — масса одной молекулы [кг]
v — средняя квадратичная скорость [м/с]
Коэффициент 1/3 обусловлен трехмерностью пространства: во время хаотического движения молекул все три направления равноправны.
Важный нюанс: средняя квадратичная скорость сама по себе не в квадрате! Ее формула указана выше, а в основном уравнении МКТ (да и не только в нем) она возведена в квадрат. Это значит, что формулу средней квадратичной скорости нужно подставлять не вместо v2, а вместо v— и потом уже возводить эту формулу в квадрат. Это часто провоцирует путаницу.
Мы знаем, что кинетическая энергия вычисляется по следующей формуле:
Кинетическая энергия
Ек = mv 2 /2
Ек — кинетическая энергия [Дж]
m — масса тела [кг]
v — скорость [м/с]
Для молекулы газа формула примет вид:
Средняя кинетическая энергия поступательного движения молекулы
Ек — средняя кинетическая энергия поступательного движения молекулы [Дж]
m0 — масса молекулы [кг]
v — скорость молекулы [м/с]
Из этой формулы можно выразить m0v 2 и подставить в основное уравнение МКТ. Подставим и получим, что давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.
Основное уравнение МКТ
p — давление газа [Па]
n — концентрация [м-3]
E — средняя кинетическая энергия поступательного движения молекулы [Дж]
Хранение и транспортировка газов
Если нужно перевезти значительное количество газа из одного места в другое или если газ необходимо длительно хранить, его помещают в специальные прочные металлические сосуды. Из-за того, что при уменьшении объема увеличивается давление, газ можно закачать в небольшой баллон, но он должен быть очень прочным.
Сосуды, предназначенные для транспортировки газов, выдерживают высокие давления. Поэтому с помощью специальных насосов (компрессоров) туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем.
Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать. Например, держать под прямыми лучами солнца или пытаться сделать в них отверстие — даже после использования.
Конспект лекций
по общей химии
Продолжение.
Начало см. в № 8, 12, 13, 20, 23, 25-26, 40/2004;
1, 11, 15/2005;
7/2006
Глава 8. Строение вещества
8.1. Агрегатные состояния вещества
Химики изучают превращения веществ, находящихся в трех агрегатных состояниях – газообразном (газы), жидком (жидкости) и твердом (твердые аморфные тела либо кристаллы) (табл. 8.1).
Свойства газов, жидкостей, твердых веществ
Совпадает с объемом сосуда, сильно зависит от температуры и давления
Заполняет сосуд, принимая его форму
Нефиксированная, полностью или частично заполняет сосуд
От умеренной до большой
Практически отсутствует
Газы. Наиболее характерным свойством является сжимаемость и способность расширяться. Газы не имеют собственной формы, они расширяются до тех пор, пока равномерно не заполнят весь сосуд, куда их поместили. Это означает, что газы не имеют собственного объема, т.е. объем газа определяется объемом сосуда, в котором он находится. Газ оказывает на стенки сосуда давление, одинаковое во всех направлениях. Еще одним свойством газов является их способность смешиваться друг с другом в любых соотношениях.
Жидкости. Подобно газам, жидкости не имеют определенной формы. Жидкость принимает форму того сосуда, в котором она находится, при установившемся под влиянием силы тяжести некотором ее уровне. Однако в отличие от газа жидкость имеет собственный объем. Сжимаемость жидкостей очень мала. Для того чтобы заметно сжать жидкость, требуется очень высокое давление.
Твердые вещества. Твердые тела отличаются от жидкостей и газов наличием собственной формы и определенного объема. Сжимаемость твердых тел чрезвычайно мала даже при очень высоких давлениях.
Газообразному состоянию присущи две особенности:
1) расстояние между молекулами обычно в несколько раз превышает их размеры;
2) газы способны занимать весь объем предоставленного им пространства.
Газы в отличие от жидкостей и твердых тел могут сравнительно легко сжиматься. Для того чтобы хорошо понимать особенности строения газообразного вещества, нужно знать, чему равен молярный объем газа, какова взаимосвязь между занимаемым газом объемом и количеством вещества, температурой и давлением, как определить среднее расстояние между молекулами газа и как оно зависит от его давления, с какой скоростью двигаются молекулы газообразного вещества и от чего эта скорость зависит.
Молярный объем газа – постоянная величина, поскольку она мало зависит от природы вещества. Молярный объем при давлении 1 атм (101,3 кПа) и температуре 0 °С (273 K) по закону Авогадро равен 22,4 л. Газ, строго подчиняющийся закону Авогадро, принято называть идеальным.
Выбранные условия (1 атм, 0 °С) названы нормальными (н.у.). В школьных курсах химии и физики незначительными отклонениями свойств реальных газов от вытекающих из закона Авогадро для идеального газа пренебрегают. Естественно, что молярный объем газа зависит от температуры и давления. При 25 °С и давлении 1 атм (эти условия названы стандартными) молярный объем идеального газа равен уже 24,4 л.
Молярные объемы реальных газов при одних и тех же условиях несколько отличаются от молярного объема идеального газа (табл. 8.2).
Газы не имеют собственной формы и постоянного объема. Они принимают форму сосуда и полностью заполняют предоставленный им объем
Твердое тело имеет собственную форму и объем.
В отличие от твердых тел жидкости легко меняют свою форму. Они принимают форму сосуда, в котором находятся.
Газы не имеют собственной формы и постоянного объема. Они принимают форму сосуда и полностью заполняют предоставленный им объем.
2. Задача на выяснение условий плавания тела в жидкости.
1. Механическое движение. Скорость. Путь.
Механическое движение – это изменение положения тела в пространстве относительно других тел.
Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется относительность механического движения. Далее кратко рассмотрим основные виды механического движения.
2. Задача на расчет давления твердого тела
ДАНО : СИ: РЕШЕНИЕ:
m= 35 кг F= mg
g= 10 Н/кг F= 35*10= 350 H
S= 200см 2= 0,02 м^2 p= F/ S
НАЙТИ : р р= 350Н / 0,02 м ^2= 17500 Па
ОТВЕТ: Футбольный мяч лежит на поле. Ударом ноги футболист приводит его в движение. Но сам мяч не изменит свою скорость и не начнёт двигаться, пока на него не подействуют другие тела.
Пуля, вложенная в ружьё, не вылетит до тех пор, пока её не вытолкнут пороховые газы.
Таким образом, и мяч, и пуля не меняют свою скорость, пока на них не подействуют другие тела.
2. Задача на определение КПД при подъеме тела по наклонной плоскости.
Согласно «Золотому правилу» механики при отсутствии трения имеем:
1. Взаимодействие тел. Масса тел.
2. Задача на расчет давления в жидкостях. (стр. 117)
1. Плотность вещества.
ОТВЕТ: Тела, окружающие нас, состоят из различных веществ: дерева, железа, резины и т.д. Масса любого тела зависит не только от его размеров, но и от того, из какого вещества это тело состоит. При этом тела, имеющие равные объемы, но изготовленные из разных веществ, имеют разные массы.
m = ρV.
Из двух тел равного объема большую массу имеет то тело, у которого плотность вещества больше.
Реальные и идеальные газы
Газ — это состояние вещества, в котором оно не имеет собственной формы и заполняет весь предоставленный ему объем; его молекулы находятся в постоянном хаотическом движении и взаимодействуют лишь при столкновениях между собой и стенками сосуда, в котором они находятся.
По молекулярным представлениям, газы состоят из атомов или молекул, расстояние между которыми значительно превышает их размеры. Именно поэтому силы взаимодействия между молекулами газов практически отсутствуют, а следовательно, молекулы газов не удерживаются друг возле друга, а постоянно хаотически перемещаются. Взаимодействие между ними фактически происходит лишь при кратковременных столкновениях.
При обычных условиях собственный объем молекул газа значительно меньше объема сосуда, в котором он находится. В связи с этим газы легко сжимаются. Они не имеют собственной формы и заполняют весь объем сосуда, в котором находятся.
Большинство уравнений и законов справедливы для идеального газа — упрощенной модели реальных газов. Прежде всего, это касается взаимодействия между молекулами — оно должно быть настолько малым, что им можно пренебречь. При таких условиях учитывается лишь кинетическая энергия молекул, поскольку потенциальная энергия их взаимодействия практически равна нулю.
Следующее ограничение касается размера молекул. Поскольку взаимодействие молекул идеального газа сводится лишь к кратковременным столкновениям, то размер молекул не влияет на давление и температуру газа. Поэтому молекулы идеального газа можно считать материальными точками.
Идеальный газ — это модель газа, которая предусматривает пренебрежение размерами молекул и их взаимодействием; молекулы такого газа находятся в свободном беспорядочном движении, иногда сталкиваясь с другими молекулами или стенками сосуда, в котором они находятся. Материал с сайта http://worldofschool.ru
Реальные газы приобретают такие свойства при значительном разрежении, когда среднее расстояние между молекулами намного больше их размера. При таких условиях практически отсутствуют силы притяжения, а силы отталкивания действуют лишь при кратковременных столкновениях молекул между собой.
Молекулярно-кинетическая теория накладывает ряд ограничений на реальный газ, благодаря которым его можно считать идеальным. Это газ, размерами и взаимодействием молекул которого можно пренебречь.
- имеют ли врачи право отказать в аборте
- имеют ли гаишники право осматривать личные вещи