импульсивный ток какой формы используется для электроснабжения

Сегодня уже трудно в каком-нибудь бытовом приборе или блоке питания обнаружить трансформатор на железе. В 90-е годы они начали быстро уходить в прошлое, уступая место импульсным преобразователям или импульсным источникам питания (сокращенно ИИП).

импульсивный ток какой формы используется для электроснабжения

Импульсные источники питания превосходят трансформаторные по габаритам, качеству получаемого постоянного напряжения, они имеют широкие возможности регулировки выходного напряжения и тока, а также традиционно оснащены защитой от перегрузки по выходному току. И хотя считается, что импульсные блоки питания являются основными поставщиками помех в бытовую сеть, тем не менее широкое их распространение вспять уже точно не повернуть.

Трансформаторный источник питания:

импульсивный ток какой формы используется для электроснабжения

Импульсный источник питания: импульсивный ток какой формы используется для электроснабжения

импульсивный ток какой формы используется для электроснабжения

импульсивный ток какой формы используется для электроснабжения

Схема импульсного источника питания включает в себя несколько главных составных частей: сетевой выпрямитель, ключ (или ключи), трансформатор (или дроссель), выходной выпрямитель, блок управления, а также блок стабилизации и защиты. Выпрямитель, ключ и трансформатор (дроссель) — основа силовой части схемы ИИП, в то время как электронные блоки (включая ШИМ-контроллер) относятся к так называемому драйверу.

Итак, сетевое напряжение подается через выпрямитель на конденсатор сетевого фильтра, где таким образом получается постоянное напряжение, максимум которого составляет от 305 до 340 вольт, в зависимости от текущего среднего значения напряжения в сети (от 215 до 240 вольт).

Выпрямленное напряжение подается на первичную обмотку трансформатора (дросселя) в форме импульсов, частота следования которых определяется обычно схемой управления ключом, а длительность — средним током питаемой нагрузки.

Ключ с частотой от нескольких десятков до нескольких сотен килогерц подключает и отключает первичную обмотку трансформатора или дросселя к конденсатору фильтра, перемагничивая таким образом сердечник трансформатора или дросселя.

Ключ может быть одиночным (обратноходовый преобразователь, прямоходовый преобразователь, повышающий или понижающий преобразователь без гальванической развязки) или же силовая часть может включать в себя несколько ключей (полумост, мост, двухтактный).

Схема управления ключом (ключами) получает с выхода источника сигнал обратной связи по напряжению или по напряжению и току нагрузки, в соответствии с величиной этого сигнала автоматически осуществляется регулировка ширины (скважности) импульса, управляющего длительностью проводящего состояния ключа.

Здесь же находится делитель напряжения с которого берется сигнал обратной связи по напряжению, а также может присутствовать датчик тока. К конденсатору фильтра, через дополнительный выходной НЧ-фильтр или напрямую, присоединяется нагрузка.

Источник

Пульсирующий ток

Пульсирующие токи, которые имеют неизменное направление, но меняют свое значение, могут быть различными. Иногда значение тока изменяется от наибольшего значения до наименьшего, не равного нулю. В других случаях ток уменьшается до нуля. Если цепь постоянного тока прерывается с некоторой частотой, то в течение некоторых промежутков времени ток в цепи отсутствует.

На рис. 1 показаны графики различных пульсирующих токов. На рис. 1, а, б изменение токов происходит по синусоидальной кривой, но эти токи не следует считать синусоидальными переменными токами, поскольку направление (знак) тока не изменяется. На рис. 1, в представлен ток, состоящий из отдельных импульсов, т. е. кратковременных «толчков» тока, разделенных друг от друга паузами большей или меньшей длительности, и его часто называют импульсным током. Различные импульсные токи отличаются друг от друга формой и длительностью импульсов, а также частотой их следования.

Пульсирующий ток любого вида удобно рассматривать как сумму двух токов — постоянного и переменного, называемых слагающими, или составляющими, токами. Всякий пульсирующий ток имеет постоянную и переменную составляющие. Многим это кажется странным. Действительно, ведь пульсирующий ток является током, идущим все время в одном направлении и изменяющим свое значение.

импульсивный ток какой формы используется для электроснабжения

Рис. 1. Графики различных пульсирующих токов

Сложение постоянного и переменного токов можно показать графически. На рис. 2 изображены графики постоянного тока, равного 15 мА и переменного тока с амплитудой 10 мА. Если сложить значения этих токов для отдельных моментов времени, учитывая направления (знаки) токов, то получится график пульсирующего тока, показанный на рис. 2 жирной линией. Этот ток меняется от наименьшего значения 5 мА до наибольшего значения 25 мА.

Рассмотренное сложение токов подтверждает справедливость представления пульсирующего тока как суммы постоянного и переменного токов. Правильность такого представления подтверждается еще и тем, что с помощью некоторых приборов можно отделить друг от друга составляющие этого тока.

импульсивный ток какой формы используется для электроснабжения

Рис. 2. Получение пульсирующего тока путем сложения постоянного и переменного токов.

Следует подчеркнуть, что любой ток всегда можно представить в виде суммы нескольких токов. Например, ток 5 А можно считать суммой токов 2 и 3 А, протекающих в одном направлении, или суммой токов 8 и 3 А, протекающих в разных направлениях, т. е. иначе говоря, разностью токов 8 и 3 А. Нетрудно подобрать и другие комбинации двух или большего числа токов, дающих в сумме ток 5 А.

Здесь имеется полное сходство с принципом сложения и разложения сил. Если на какой-либо предмет действуют две одинаково направленные силы, то их можно заменить одной суммарной силой. Силы, действующие в противоположных направлениях, можно заменить одной разностной силой. И, наоборот, данную силу всегда можно считать суммой соответствующих одинаково направленных сил, или разностью противоположно направленных сил.

Постоянный или синусоидальный переменный ток нет необходимости разлагать на составные токи. Если же заменить пульсирующий ток суммой постоянного и переменного токов, то, применяя к этим составляющим токам известные законы постоянного и переменного токов, можно решать многие вопросы и делать необходимые расчеты, относящиеся к пульсирующему току.

Понятие о пульсирующем токе как о сумме постоянного и переменного токов является условным. Нельзя, конечно, считать, что в некоторые промежутки времени по проводу действительно протекают навстречу друг другу постоянный и переменный токи. Никаких двух встречных потоков электронов на самом деле нет.

В действительности пульсирующий ток представляет собой единый ток, изменяющий свое значение во времени. Более правильно говорить о том, что пульсирующее напряжение или пульсирующая ЭДС могут быть представлены в виде суммы постоянной и переменной составляющих.

Например, на рис. 2 показано как складываются алгебраически постоянная ЭДС одного генератора с переменной ЭДС другого генератора. В результате имеем пульсирующую ЭДС, вызывающую соответствующий пульсирующий ток. Однако, можно условно считать, что постоянная ЭДС создает в цепи постоянный ток, а переменная ЭДС — переменный ток, которые, складываясь, образуют пульсирующий ток.

Каждый пульсирующий ток можно характеризовать максимальным и минимальным значениями Iтах и Iтin, а также его постоянной и переменной составляющими. Постоянная составляющая обозначается I0. Если переменная составляющая является синусоидальным током, то ее амплитуду обозначают Iт (все эти величины показаны на рис. 2).

Не следует смешивать друг с другом Iт и Iтах. Также не следует называть амплитудой максимальное значение пульсирующего тока Iтах. Понятие амплитуды принято относить только к переменным токам. Применительно к пульсирующему току можно говорить лишь об амплитуде его переменной составляющей.

импульсивный ток какой формы используется для электроснабжения

Постоянная составляющая пульсирующего тока может быть названа его средним значением Iср, т. е. средним арифметическим. Действительно, если рассмотреть изменения за один период пульсирующего тока, показанного на рис. 2, то хорошо видно следующее: за первый полупериод к току 15 мА добавляется ряд значений переменкой составляющей тока, изменяющихся от 0 до 10 мА и опять до 0, а во время второго полупериода точно такие же значения тока вычитаются из тока 15 мА.

Следовательно, ток 15 мА действительно является средним значением. Поскольку ток представляет собой перенос электрических зарядов через поперечное сечение провода, то Iср есть значение такого постоянного тока, который за один период (или за целое число периодов) переносит такое же количество электричества, как и данный пульсирующий ток.

У синусоидального переменного тока значение Iср за период равно нулю, так как количество электричества, прошедшее, через поперечное сечение провода за один полупериод, равно количеству электричества, которое проходит в обратном направлении за другой полупериод. На графиках токов, показывающих зависимость тока i от времени t, количество электричества, переносимое током, выражается площадью фигуры, ограниченной кривой тока, так как количество электричества определяется произведением it.

Для синусоидального тока площади положительной и отрицательной полуволн равны. У пульсирующего тока, показанного на рис.2, в первый полупериод к количеству электричества, переносимому током Iср, добавляется количество электричества, переносимое переменной составляющей тока (заштрихованная площадь на рисунке). А во второй полупериод точно такое же количество электричества вычитается. В результате за целый период переносится такое же количество электричества, как при одном постоянном токе Iср, т. е. площадь прямоугольника Iср Т равна площади, ограниченной кривой пульсирующего тока.

Таким образом, постоянная составляющая, или среднее значение тока, определяется переносом электрических зарядов через поперечное сечение провода.

Уравнение тока, показанного на рис. 2, очевидно должно быть написано в следующем виде:

импульсивный ток какой формы используется для электроснабжения

Мощность пульсирующего тока следует вычислять как сумму мощностей составляющих его токов. Например, если ток, показанный на рис.2, проходит через резистор сопротивлением R, то его мощность

импульсивный ток какой формы используется для электроснабжения

где I = 0,7Im — действующее значение переменной составляющей.

Можно ввести понятие о действующем значении пульсирующего тока Iд. Мощность при этом вычисляется обычным способом:

импульсивный ток какой формы используется для электроснабжения

Приравнивая это выражение к предыдущему и сокращая на R, получим:

импульсивный ток какой формы используется для электроснабжения

Такие же соотношения могут быть получены и для напряжений.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Электрический импульс и импульсный ток

импульсивный ток какой формы используется для электроснабжения импульсивный ток какой формы используется для электроснабжения импульсивный ток какой формы используется для электроснабжения импульсивный ток какой формы используется для электроснабжения

импульсивный ток какой формы используется для электроснабжения

импульсивный ток какой формы используется для электроснабжения

Импульсы подразделяются на две группы:

Видеоимпульсы различной формы и пример радиоимпульса показаны на рис. 14.7.

импульсивный ток какой формы используется для электроснабженияРис. 14.7.Электрические импульсы

В физиологии термином «электрический импульс» обозначают именно видеоимпульсы, характеристики которых имеют существенное значение. Для уменьшения возможной погрешности при измерениях условились выделять моменты времени, при которых параметры имеют значение 0,1Umax и 0,9Umax (0,1Imax и 0,9Imax). Через эти моменты времени выражают характеристики импульсов.

импульсивный ток какой формы используется для электроснабженияРис.14.8.Характеристики импульса (а) и импульсного тока (б)

Характеристики отдельного импульса и импульсного тока указаны на рис. 14.8.

На рисунке указаны:

импульсивный ток какой формы используется для электроснабжения14.4. Импульсная электротерапия

Электросонтерапия— метод лечебного воздействия на структуры головного мозга. Для этой процедуры применяют прямоугольные

импульсы с частотой 5-160 имп/с и длительностью 0,2-0,5 мс. Сила импульсного тока составляет 1-8 мА.

Транскраниальнаяэлектроанальгезия— метод лечебного воздействия на кожные покровы головы импульсными токами, вызывающими обезболивание или снижение интенсивности болевых ощущений. Режимы воздействия показаны на рис. 14.9.

импульсивный ток какой формы используется для электроснабженияРис. 14.9.Основные виды импульсных токов, используемых при транскраниальнойэлектроанальгезии:

а) прямоугольные импульсы напряжением до 10 В, частотой 60-100 имп/с, длительностью 3,5-4 мс, следующие пачками по 20-50 импульсов;

б) прямоугольные импульсы постоянной (б) и переменной (в) скважности продолжительностью 0,15-0,5 мс, напряжением до 20 В, следующие с частотой

Выбор параметров (частоты, длительности, скважности, амплитуды) осуществляется индивидуально для каждого больного.

Диадинамотерапияиспользует полусинусоидальные импульсы

импульсивный ток какой формы используется для электроснабженияРис. 14.10.Основные виды диадинамических токов:

а) однополупериодный непрерывный ток с частотой 50 Гц;

б) двухполупериодный непрерывный ток с частотой 100 Гц;

г) ток, модулированный разными по длительности периодами

ма импульсы с высокой крутизной фронта. При этом происходит быстрый сдвиг ионов из установившегося положения, оказывающий на легковозбудимые ткани (нервную, мышечную) значительное раздражающее действие. Это раздражающее действие пропорционально скорости изменения силы тока, т.е. di/dt.

Основные виды импульсных токов, используемых в этом методе, показаны на рис. 14.11.

импульсивный ток какой формы используется для электроснабженияРис. 14.11.Основные виды импульсных токов, используемых для электростимуляции:

а) постоянный ток с прерыванием;

б) импульсный ток прямоугольной формы;

в) импульсный ток экспоненциальной формы;

г) импульсный ток треугольной остроконечной формы

На раздражающее действие импульсного тока особенно сильно влияет крутизна нарастания переднего фронта.

импульсивный ток какой формы используется для электроснабженияРис. 14.12.Прибор для электропунктуры

Рабочее напряжение измерительных приборов не превышает 2 В.

импульсивный ток какой формы используется для электроснабжения

Измерения проводятся следующим образом: нейтральный электрод пациент держит в руке, а оператор прикладывает к исследуемой БАТ измерительный электрод-щуп малой площади (точечные электроды). Экспериментально показано, что сила тока, протекающего в измерительной цепи, зависит от давления электрода-щупа на поверхность кожи (рис. 14.13).

Поэтому всегда имеется разброс в измеряемой величине. Кроме того, упругость, толщина, влажность кожи на различных участках тела и у различных людей разная, поэтому нельзя ввести единую норму. Следует особо отметить, что механизмы электрического раздражения

импульсивный ток какой формы используется для электроснабженияРис. 14.13.Зависимость силы тока от давления щупа на кожу

БАТ нуждаются в строгом научном обосновании. Необходимо корректное сравнение с концепциями нейрофизиологии.

Источник

Импульсный режим работы: формы импульсов, описание, параметры

импульсивный ток какой формы используется для электроснабженияИмпульсный режим работы электронного устройства характерен резкими изменениями токов и напряжений. При этом в промежутках времени между этими изменениями токи и напряжения меняются сравнительно мало. Импульсный режим широко используется в устройствах как силовой, так и информативной электроники.

Часто активные приборы (например, транзисторы) устройства электроники, работающего в импульсном режиме, используются как ключи, т. е. основную долю времени находятся или в открытом, или в закрытом состоянии, и только в течение очень коротких отрезков времени находятся в промежуточном состоянии. Это так называемый ключевой режим работы активных приборов.

импульсивный ток какой формы используется для электроснабжения

Дадим соответствующие пояснения. Пусть в устройстве используется силовой транзистор, работающий в режиме ключа. В открытом состоянии транзистор находится в режиме насыщения (напряжение на транзисторе мало), а в закрытом — в режиме отсечки (ток через транзистор мал). Тогда мощность, идущая на нагрев транзистора, мала как в его открытом, так и закрытом состояниях. Эта мощность возрастает в момент переключения транзистора из одного состояния в другое.

Но процесс переключения протекает достаточно быстро, и в среднем мощность оказывается малой.

Импульсные сигналы

Рассмотрим основные термины. Обратимся для примера к идеализированному импульсу, который называют трапецеидальным (рис. 3.1, а).

импульсивный ток какой формы используется для электроснабжения

Участок импульса АВ называют фронтом, участок BC— вершиной, участок CD — срезом; отрезок времени AD — основанием. Иногда участок АВ называют передним фронтом, а участок CD — задним фронтом.

На рис. 3.1, б приведены другие идеализированные импульсы характерных форм и даны их названия.

импульсивный ток какой формы используется для электроснабжения

Обратимся к идеализированному, но более сложному по форме импульсу (рис. 3.2, а).

импульсивный ток какой формы используется для электроснабжения

Участок импульса, соответствующий отрицательному напряжению, называется хвостом импульса, или обратным выбросом.

Для величин, указанных на рисунке, обычно используют следующие названия:

импульсивный ток какой формы используется для электроснабжения

импульсивный ток какой формы используется для электроснабжения

Обратимся к периодически повторяющимся импульсам (рис. 3.3).

импульсивный ток какой формы используется для электроснабжения

В этом случае используются следующие параметры: f = 1/T, Q = T/tn, Kз= 1/Q = tn/T

Источник

Импульсные блоки питания: принципы работы для новичков — обзор 7 правил построения схемы

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

импульсивный ток какой формы используется для электроснабжения

импульсивный ток какой формы используется для электроснабжения

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

импульсивный ток какой формы используется для электроснабжения

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

импульсивный ток какой формы используется для электроснабжения

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

импульсивный ток какой формы используется для электроснабжения

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Важно понимать, что импульсы высокой частоты играют двоякую роль:

Причины появления помех в бытовой сети:

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

импульсивный ток какой формы используется для электроснабжения

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

импульсивный ток какой формы используется для электроснабжения

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

импульсивный ток какой формы используется для электроснабжения

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

импульсивный ток какой формы используется для электроснабжения

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

импульсивный ток какой формы используется для электроснабжения

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

импульсивный ток какой формы используется для электроснабжения

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

импульсивный ток какой формы используется для электроснабжения

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

импульсивный ток какой формы используется для электроснабжения

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

импульсивный ток какой формы используется для электроснабжения

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

импульсивный ток какой формы используется для электроснабжения

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

импульсивный ток какой формы используется для электроснабжения

Сетевой выпрямитель напряжения: самая популярная конструкция

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

импульсивный ток какой формы используется для электроснабжения

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

импульсивный ток какой формы используется для электроснабжения

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

импульсивный ток какой формы используется для электроснабжения

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

импульсивный ток какой формы используется для электроснабжения

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

импульсивный ток какой формы используется для электроснабжения

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

импульсивный ток какой формы используется для электроснабжения

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

импульсивный ток какой формы используется для электроснабжения

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

импульсивный ток какой формы используется для электроснабжения

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

импульсивный ток какой формы используется для электроснабжения

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

импульсивный ток какой формы используется для электроснабжения

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

импульсивный ток какой формы используется для электроснабжения

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

импульсивный ток какой формы используется для электроснабжения

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

импульсивный ток какой формы используется для электроснабжения

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

импульсивный ток какой формы используется для электроснабжения

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

импульсивный ток какой формы используется для электроснабжения

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

импульсивный ток какой формы используется для электроснабжения

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

импульсивный ток какой формы используется для электроснабжения

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *