ирнк образуют вторичную структуру по форме напоминающую лист клевера

Ирнк образуют вторичную структуру по форме напоминающую лист клевера

Назовите не менее четырёх функций воды в организме человека.

1. Вода — растворитель. Все химические реакции протекают в растворах.

2. Вода — терморегулятор.

3. Вода выполняет транспортную функцию.

4. От содержания воды в тканях зависит упругость клеток и их объём

Сколько водородных связей связывают аденин с тимином в молекуле ДНК?

Водородные связи между нуклеотидами двух цепочек ДНК: аденин-тимин (А-Т) — двойная; гуанин-цитозин (Г-Ц) — тройная.

может я что-то пропустил в школе или прогулял,но никогда в учебнике не видел,чтобы давалась информация о количестве водородных связей между азотистыми основаниями.или это углубленка?

Учебник Каменский, Криксунов, Пасечник Общая биология 10-11 класс. Стр 50 3 абзац, и посмотрите на любой рисунок ДНК — между А и Т две линии нарисованы, между Г и Ц — три.

Причем эта информация дается еще в 9 классе. Учебник 9 класса (тоже линия Пасечника) стр 30

Какие функции выполняют углеводы в организме животных?

ФУНКЦИИ УГЛЕВОДОВ (у животных):

1) Структурная и опорная функции — хитин обеспечивает жёсткость экзоскелета членистоногих.

2) Защитная роль. У животных гепарин препятствует свертыванию крови.

3) Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК).

4) Энергетическая функция. Глюкоза — основной источник энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания. При расщеплении 1 г углеводов выделяется 17,6 кДж. Гликоген составляет энергетический запас в клетках.

5) Запасающая функция — гликоген.

6) Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100−110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.

7) Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов (гликокаликс).

(1) каталитическую — функция белков;

(2) структурную — функция углеводов, белков, липидов;

(3) запасающую — функция углеводов, белков, липидов;

(4) гормональную — функция белков (инсулин), липидов (стероидные гормоны);

(5) сократительную — функция белков (актин, миозин);

(6) энергетическую — функция углеводов, липидов, белков.

Источник

Ирнк образуют вторичную структуру по форме напоминающую лист клевера

Нуклеиновые кислоты

Нуклеиновые кислоты – высокомолекулярные органические соединения живых организмов, которые осуществляют хранение, передачу и воспроизведение наследственной информации. В ДНК любой клетки закодирована информация о том, какие белки и в какой последовательности будут синтезироваться, а значит, какие признаки и в какой момент жизни будут развиваться.

Нуклеиновые кислоты хорошо растворимы в воде, практически не растворимы в органических растворителях, очень чувствительны к действию температуры и критическим значениям уровня pH.

Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Фридрихом МИшером между 1869 и 1871 годами. Впоследствии было установлено, что в природе существуют два вида нуклеиновых кислот – дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Различие в названиях объясняется тем, что молекула ДНК содержит пятиуглеродный сахар дезоксирибозу, а молекула РНК – рибозу. В настоящее время известно большое число разновидностей ДНК и РНК, отличающихся друг от друга по строению и значению в метаболизме клеток.

Структура молекулы ДНК была установлена в 1953 году Морисом Уилкинсом, Джеймсом Уотсоном и Френсисом Криком в Англии. Это фундаментальное открытие позволило понять механизм удвоения (репликации) нуклеиновых кислот.

Современной науке известно, что нуклеиновые кислоты — самые крупные из молекул, образуемых живыми организмами. Их молекулярная масса может быть от 10 000 до нескольких миллионов углеродных единиц.

Так как наиболее высокое содержание нуклеиновых кислот обнаружено в ядрах клеток, то они и получили свое название от латинского «нуклеус» — ядро. Нуклеиновые кислоты есть и в цитоплазме, и в целом ряде органоидов — митохондриях, пластидах.

Молекула каждого нуклеотида состоит из фосфатной группы, пятиуглеродного сахара (пентозы) и азотистого основания.

В 1953 году американским биохимиком Джеймсом Уотсоном и английским физиком Френсисом Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, молекула ДНК имеет форму спирали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Дальнейшее изучение детальной структуры ДНК показало, что молекула обладает значительной конформационной свободой, в результате были открыты несколько различных конформаций двухцепочечной молекулы ДНК.

Молекула ДНК имеет сложное строение. Она состоит из двух цепей, которые закручены спирально и соединены водородными связями друг с другом по всей длине. Такая структура свойственна только молекулам ДНК и называется двойной спиралью. Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч и даже миллионов нуклеотидов. Дезоксирибоза одного нуклеотида соединяется с остатком фосфорной кислоты другого нуклеотида ковалентными связями. Азотистые основания, которые располагаются по одну сторону от образовавшегося остова одной цепи ДНК, формируют водородные связи с азотистыми основаниями второй цепи. В спиральной молекуле двухцепочечной ДНК азотистые основания находятся внутри спирали. Полинуклеотидные цепи молекулы ДНК могут быть разделены только после раскручивания спирали.

В двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. Между аденином и тимином всегда возникают две, а между гуанином и цитозином — три водородные связи. Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Пары нуклеотидов аденин и тимин, а также гуанин и цитозин строго соответствуют друг другу и являются дополнительными или комплементарными (от лат. complementum — дополнение).

С помощью четырех типов нуклеотидов в ДНК записана вся важная информация об организме, передающаяся по наследству последующим поколениям. Структура каждой молекулы ДНК строго индивидуальна и специфична, так как представляет собой кодовую форму записи биологической информации (генетический код).

Диаметр молекулы ДНК – 2 нм (нанометра), шаг спирали – 3,4 нм; каждый виток спирали содержит 10 пар нуклеотидов.

В основном молекулы ДНК располагаются в ядрах клеток, незначительное количество их содержится в митохондриях и пластидах.

Строение молекул РНК во многом сходно со строением молекул ДНК. Однако имеется и ряд существенных отличий: молекулы РНК значительно короче ДНК, в молекуле РНК вместо дезоксирибозы в состав нуклеотидов входит рибоза. Азотистое основание тимин (Т) в составе РНК заменяется на урацил (У). Главное отличие от ДНК состоит в том, что молекула РНК представляет собой одну цепь. Однако ее нуклеотиды способны образовывать водородные связи между собой (например, в молекулах тРНК, рРНК), благодаря чему каждая молекула РНК имеет уникальную природную структуру. Молекула РНК может содержать от 75 до 10 000 нуклеотидов.

В зависимости от величины молекул, локализации в клетке, функции различают 3 вида РНК: матричные РНК, или информационные РНК (и-РНК), транспортные – т-РНК, рибосомные –р-РНК.

Матричная, или информационная РНК

Это вид РНК открыт в 1961 году французскими генетиками Франсуа Жакобом и Жаком Моно. Она составляет всего 2-5% от общего количества РНК клетки. Эта РНК не имеет жесткой специфической структуры, и ее полинуклеотидная цепь образует изогнутые петли. В нерабочем состоянии м-РНК собрана в складки, свернута в клубок, связана с белком; а во время функционирования цепь расправляется. Матричные РНК синтезируются на матрице ДНК в ядре, передают информацию о структуре белка из ядра клеток рибосомам, где происходит процесс реализации этой информации.

Рибосомные РНК.

На долю этого вида РНК приходится более 80% от всей массы РНК клетки. Она входит в состав рибосом. Роль р-РНК состоит в формировании активного центра рибосомы, в котором происходит синтез белка.

Транспортные РНК

Транспортные РНК являются самыми небольшими по размеру РНК, состоящими из 70-100 нуклеотидов.

Этот вид РНК синтезируется в ядре на матрице ДНК, а затем сквозь поры в ядерной оболочке выходит в цитоплазму. Он составляет около 10% всей клеточной РНК. Основная функция т-РНК – транспорт и установка аминокислот при биосинтезе белка. Каждая т-РНК присоединяет только определенную аминокислоту и транспортирует ее к месту сборки полипептида в рибосоме.

Все известные т-РНК за счет комплементарного взаимодействия образуют вторичную структуру, по форме напоминающую лист клевера. В молекуле т-РНК различают несколько участков: 1) акцепторный стебель с последовательностью нуклеотидов АЦЦ (читается аденин-цитозин-цитозин), к нему присоединяется аминокислота; 2) участок для присоединения к рибосоме; 3) антикодон – участок, комплиментарный кодону м-РНК, который кодирует аминокислоту, присоединенную к данной т-РНК.
Каждой аминокислоте соответствует комбинация из трех нуклеотидов — триплет. Кодирующие аминокислоты триплеты — кодоны ДНК — передаются в виде информации триплетов (кодонов) и-РНК. У верхушки клеверного листа располагается триплет нуклеотидов, который комплементарен соответствующему кодону и-РНК. Этот триплет различен для т-РНК, переносящих разные аминокислоты, и кодирует именно ту аминокислоту, которая переносится данной т-РНК. Он получил название антикодон.

Акцепторный конец является «посадочной площадкой» для аминокислоты.

Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Все типы РНК, за исключением генетической РНК вирусов, не способны к самоудвоению и самосборке. Так как у вирусов, в отличие от остальных организмов, одноцепочечные ДНК и двухцепочечные РНК.

Остались вопросы по теме? Наши репетиторы готовы помочь!

Подготовиться к ЕГЭ, ОГЭ и другим экзаменам

Подготовиться к поступлению в любой ВУЗ страны

Источник

Генетический код. Биосинтез белка

теория по биологии 🌿 основы генетики

Генетическая информация и генетический код

Каждый вид имеет свой собственный, отличный от других видов, набор белков. Интересно то, что белки, выполняющие идентичные функции у разных видов могут быть похожими или даже абсолютно идентичными.

У белков есть несколько состояний их структур:

ирнк образуют вторичную структуру по форме напоминающую лист клевера

Именно первичная структура является определяющей свойства белка. Эта структура – цепь из аминокислот. Аминокислоты, в свою очередь, представляют собой ряд триплетов из нуклеотидов. Решая генетические задачи, обращаются как раз-таки к знакомой таблице:

ирнк образуют вторичную структуру по форме напоминающую лист клевера

Каждая аминокислота кодируется тремя нуклеотидами, которые составляют триплет или иначе кодон. Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген.

Нуклеотиды, составляющие ДНК и РНК различаются:

В состав ДНК входят:

В состав РНК входят:

Кроме того, в составе РНК (рибонуклеиновой кислоты) сахар рибоза, а ДНК (дезоксирибонуклеиновой кислоты) — дезоксирибоза. РНК — одноцепочечная, а ДНК — двухцепочечная.

Между нуклеотидами есть водородные связи. Они могут быть как двойные, так и тройные. Нуклеотиды не могу быть связаны в случайном порядке. Для этого существует принцип комплементарности ДНК, по которому аденин одной цепи ДНК соединяется с тимином другой цепи ДНК, другая пара в ДНК – гуанин – цитозин. В РНК все аналогично, за исключением того, что вместо тимина там урацил. Между парами А-Т/А-У две водородных связи, а между парами Ц-Г – три. На письме это обозначается чёрточками: двойная связь как знак «равно», а тройная – три горизонтальные черты.

ирнк образуют вторичную структуру по форме напоминающую лист клевера

Свойства генетического кода

Транскрипция и трансляция

Из цитологии известно, что генетическая информация у эукариотических клеток заключена в ядре в виде ДНК. Однако процесс биосинтеза белка происходит в цитоплазме на рибосомах.

Спиральная цепь ДНК при раскручивается, в это время по одной из цепочек ДНК строится комплементарная цепь. Из ядра в цитоплазму информация выходит в виде информационной РНК (иРНК). иРНК комплементарная одной из цепей ДНК. Этот процесс переписывания называется транскрипцией. Полученная цепь практически идентичная другой цепи ДНК, за исключением того, что вместо тимина там урацил.В процессе участвует специальный фермент РНК-полимераза.

ирнк образуют вторичную структуру по форме напоминающую лист клевера

Теперь в ядре есть цепочка, которая уже начала процесс биосинтеза. Как говорилось выше, процесс ассимиляции идет на рибосомах. иРНК выходит в цитоплазму через поры ядерной мембраны

тРНК по форме напоминает лист клевера, а по принципу работы – штамп. На него, прямо как чернила, наслаиваются кодоны.

В цитоплазме начинается процесс трансляции, то есть перевод последовательности нуклеотидов информационной РНК в последовательность аминокислот белка.

ирнк образуют вторичную структуру по форме напоминающую лист клевера

Рибосома захватывает стартовый конец цепи иРНК. Затем она начинает двигаться по цепи, одна остановка рибосомы происходит на 6-ти нуклеотидах. В это время молекула тРНК, на которых есть триплет аминокислоты «подлетает» к цепи, в месте, где находится рибосома. За время остановки рибосомы транспортная РНК успевает распознать свою пару на цепи иРНК, которая называется антикодоном. Тогда тРНК «ставит свой штамп», оставляя на цепи свой кодон. Между нуклеотидами образуются водородные связи. Так нарастает новая цепь. На одной информационной РНК работает сразу много рибосом, поэтому работа идет очень быстро. Совокупность рибосом, синтезирующих на одной иРНК, называется полисомой.

По окончанию процесса биосинтеза, цепочка отсоединяется от рибосомы и принимает свою природную структуру: вторичную, третичную или четвертичную.

pазбирался: Надежда | обсудить разбор | оценить

В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Один из примеров – система CRE-Lox P. Lox P – это последовательность нуклеотидов в ДНК фага Р1. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов (показана серой стрелкой на рисунке). По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов (выделены на рисунке как пунктирные блоки). Они симметричны (чтобы в этом убедиться, достаточно прочитать обе последовательность от 5´- конца к 3´- концу). Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно друг другу. Рекомбиназа CRE узнает эти сайты, внесет в ДНК разрезы в определённых местах, а затем ирнк образуют вторичную структуру по форме напоминающую лист клеверасоединит по-новому две нити ДНК (т.е. произойдет рекомбинация). Аналогично работает и другая система гомологичной рекомбинации – Flp-FRT, обнаруженная у пекарских дрожжей. Сайт FRT – это последовательность ДНК, которую узнает свой фермент гомологичной рекомбинации – флиппаза (Flp). ирнк образуют вторичную структуру по форме напоминающую лист клевераПри рекомбинации две молекулы ДНК должны ориентироваться параллельно друг другу сайтами FRT, и только в этом случае произойдёт рекомбинация. Заметим, что флиппаза Flp узнает только свою последовательность FRT, но не может работать с сайтами Lox P, а рекомбиназа CRE узнает только свои сайты Lox P, но не работает с сайтами FRT. Предварительное доказательство (лемма) к задаче 9 (5 баллов). 1. Докажем, что при гомологичной рекомбинаци по «перевёрнутым» (инвертированным) повторам происходит «переворот» последовательности ДНК, находящейся между повторами. Для этого нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. ирнк образуют вторичную структуру по форме напоминающую лист клевераЗатем «изогнём» молекулу так, чтобы повторы, обозначенные стрелками, встали параллельно друг другу. После обмена участками и «распрамления» окажется, что центральная часть между повторами «перевернулась». ирнк образуют вторичную структуру по форме напоминающую лист клевера2. Докажем, что при гомологичной рекомбинаци по прямым повторам происходит образование кольцевой ДНК, при этом из линейной последовательности ДНК «удаляется» участок, находящейся между повторами. Для этого используем тот же приём: нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. Только в этом случае для того, чтобы прямые повторы встали параллельно друг другу, придётся хитроумно изогнуть молекулу так, чтобы от конца одного из повторов (точка С) шли точки D, E, F, а потом начинался новый повтор (в точке G). После рекомбинации точки С и G поменяются местами, и в результате получится кольцевая ДНК (C, D, E, F, G) и линейный участок (A, B, H, J). Будем считать, что кольцевая ДНК как бы «исчезает» (не может реплицироваться в клетке). ирнк образуют вторичную структуру по форме напоминающую лист клевераА. Поскольку после 35S-промотора на той же цепи ДНК располагается кодирующая часть гена DsRed, клетки должна светиться красным светом. Б. Рекомбиаза CRE узнаёт последовательнсоти LoxP. Если повторы расположены инвертированно, то произойдёт «переворот» последовательности ДНК, расположенной между повторами. Таким образом, после рекомбинации конструкция будет выглядеть следущим образом: ирнк образуют вторичную структуру по форме напоминающую лист клевераСвечение клеток изменится, поскольку после промотора на той же цепи ДНК окажется гена BFP, обестпечивающий синее свечение клеток. В. При рекомбинации по прямым повторам происходит потеря участка ДНК, расположенного между ними. Из двух повторов остаётся только один. Таким образом, после рекомбинации по сайтам FRT конструкция будет выглядеть следующим образом: ирнк образуют вторичную структуру по форме напоминающую лист клевераКлетки будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP. Г. После действия рекомбиназы CRE те последовательности, на которые может действовать флип паза Flp, «перевернулись», и вместо прямых стали инвертрованными. После рекомбинации участок между ними также должен «перевернуться»: ирнк образуют вторичную структуру по форме напоминающую лист клевераВ этом случае клетки также будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

pазбирался: Надежда | обсудить разбор | оценить

pазбирался: Надежда | обсудить разбор | оценить

Сначала найдём место расщепления плазмиды рестриктазой BglII: ирнк образуют вторичную структуру по форме напоминающую лист клевераТаких участков оказывается два. В результате расщепления из плазмиды выщепляется короткий фрагмент: ирнк образуют вторичную структуру по форме напоминающую лист клевераОстаётся укороченная линейная ДНК, содержащая интактный ген устойчивости к ампицилину и расщеплённый ген устойчивости к эритромицину. ирнк образуют вторичную структуру по форме напоминающую лист клевераПри сшивании липких концов ДНК-лигазой наиболее часто будут соединяться концы этой молекулы и образовываться кольцо длиной 4163 нуклеотида. Такая ДНК будет сообщать клеткам устойчивость к ампицилину и не даст устойчивости к эритромицину. Второй фрагмент из-за небольшой длины не может замкнуться в кольцо. Второй вариант лигирования приводит к сшиванию липких концов двух фрагментов. Он происходит примерно в 10 раз реже, а после сшивки вторая пара липких концов скорее всего также, как и исходный фрагмент замкнётся в кольцо. Таких колец из пары фрагментов может образоваться 4 вида: димеры большого фрагмента в двух разных ориентациях (правый конец с левым концом второго фрагмента и левый конец с правым концом второго фрагмента или правый с правым и левый с левым) и соединения большого и малого фрагмента в двух разных ориентациях (вариант исходной плазмиды и инверсия малого фрагмента). Из них только в варианте исходной плазмиды восстанавливается устойчивость к эритромицину. Линейная молекула, образованная сшиванием двух фрагментов, может присоединить ещё один фрагмент с ещё в 10 раз меньшей частотой. Такие фрагменты в дальнейшем будут циклизоваться в плазмиды трёх размеров: из трёх больших фрагментов, из двух больших и одного малого и одного большого и двух малых. Три малых фрагмента дадут короткую последовательность, которая не сможет замкнуться в кольцо и существовать в клетке. В каждом размерном классе будет несколько вариантов с разной ориентацией фрагментов. Только в одном из них восстановится ген устойчивости к эритромицину: правый конец большого фрагмента соединяется с левым концом малого фрагмента, а правый конец малого фрагмента – с левым концом второго большого фрагмента, а оставшиеся концы двух больших фрагментов соединяются с образованием кольцевой плазмиды длиной 8363 пары нуклеотидов. Доля таких молекул будет менее 1% всех плазмид. Вероятность образования плазмид из 4 и более фрагментов ещё на порядок ниже и их обнаружение при данном числе полученных трансформированных клеток нереально. А. Так как расщепление рестриктазой не затрагивает ген устойчивости к ампицилину, все клетки, в результате трансформации получившие любую плазмиду, будут устойчивы к ампицилину и вырастут на среде с этим антибиотиком. Таким образом из 33506 выросших колоний плазмиду получили 578, выросших на ампицилине. Эффективность трансформации представляет долю трансформированных клеток от общего их числа, т.е. 573 : 51366 × 100% = 1.12% Б. На эритромицине могут вырасти только те клетки, в которые попали плазмиды, в которых в результате лигирования восстановится последовательность нуклеотидов в гене устойчивости к этому антибиотику, расщеплённому рестриктазой. Остальные плазмиды, полученные по приведённой методике, будут содержать либо ген с выщепленным коротким фрагментом, что приведёт либо к утрате стартового кодона (если обозначенный зелёным цветом кодон является стартовым), либо к сдвигу рамки считывания (т.к. число удалённых нуклеотидов не кратно трём), либо, при инверсии короткого фрагмента, к появлению стоп-кодонов т.е. прекращению синтеза белка. Таким образом большинство полученных плазмид не обеспечат устойчивости к эритромицину. В. Рост на эритромицине могут обеспечить только плазмиды, несущие восстановленную последовательность гена устойчивости. Такие плазмиды могли образоваться из одного большого и одного малого фрагмента (4200 пар, исходная плазмида)) или из двух больших и одного малого (8363 пары, начало и конец гена из разных копий большого фрагмента). Г. Получается 1 размер из одного большого фрагмента, два размерных класса из двух фрагментов и три размерных класса из трёх фрагментов, то есть 6 размерных классов. (В реальности различить по длине плазмиды, отличающиеся на длину малого фрагмента, т.е. менее чем на 0,5%, невозможно. Поэтому в эксперименте, например на электрофореграмме, будут видны лишь три размерных класса, соответствующие 1, 2 или 3 копиям большого фрагмента.)

pазбирался: Надежда | обсудить разбор | оценить

По принципу комплементарности строим

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *