Как найти экстремум функции
Как найти экстремум функции
Возрастание, убывание и экстремумы функции
А сегодня в воздухе витает дух редкого единодушия, и я прямо чувствую, что все присутствующие горят желанием научиться исследовать функцию с помощью производной. Поэтому на экранах ваших мониторов незамедлительно появляется разумная добрая вечная терминология.
Зачем? Одна из причин самая что ни на есть практическая: чтобы было понятно, что от вас вообще требуется в той или иной задаче!
Монотонность функции. Точки экстремума и экстремумы функции
Рассмотрим некоторую функцию . Упрощённо полагаем, что она непрерывна на всей числовой прямой:
На всякий случай сразу избавимся от возможных иллюзий, особенно это касается тех читателей, кто недавно ознакомился с интервалами знакопостоянства функции. Сейчас нас НЕ ИНТЕРЕСУЕТ, как расположен график функции относительно оси (выше, ниже, где пересекает ось). Для убедительности мысленно сотрите оси и оставьте один график. Потому что интерес именно в нём.
Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство
. То есть, бОльшему значению аргумента соответствует бОльшее значение функции, и её график идёт «снизу вверх». Демонстрационная функция
растёт на интервале
.
Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство
. То есть, бОльшему значению аргумента соответствует мЕньшее значение функции, и её график идёт «сверху вниз». Наша функция
убывает на интервалах
.
Если функция возрастает или убывает на интервале, то её называют строго монотонной на данном интервале. Что такое монотонность? Понимайте в буквальном смысле – однообразие.
Также можно определить неубывающую функцию (смягчённое условие в первом определении) и невозрастающую функцию (смягчённое условие
во 2-м определении). Неубывающую или невозрастающую функцию на интервале называют монотонной функцией на данном интервале (строгая монотонность – частный случай «просто» монотонности).
Теория рассматривает и другие подходы к определению возрастания/убывания функции, в том числе на полуинтервалах, отрезках, но чтобы не выливать на вашу голову масло-масло-масляное, договоримся оперировать открытыми интервалами с категоричными определениями – это чётче, и для решения многих практических задач вполне достаточно.
Таким образом, в моих статьях за формулировкой «монотонность функции» почти всегда будут скрываться интервалы строгой монотонности (строгого возрастания или строгого убывания функции).
Окрестность точки. Слова, после которых студенты разбегаются, кто куда может, и в ужасе прячутся по углам. …Хотя после поста Пределы по Коши уже, наверное, не прячутся, а лишь слегка вздрагивают =) Не беспокойтесь, сейчас не будет доказательств теорем математического анализа – окрестности мне потребовались, чтобы строже сформулировать определения точек экстремума. Вспоминаем:
Окрестностью точки называют интервал, который содержит данную точку, при этом для удобства интервал часто полагают симметричным. Например, точка и её стандартная
— окрестность:
Собственно, определения:
Точка называется точкой строгого максимума, если существует её
-окрестность, для всех значений
которой за исключением самой точки
выполнено неравенство
. В нашем конкретном примере это точка
.
Точка называется точкой строгого минимума, если существует её
-окрестность, для всех значений
которой за исключением самой точки
выполнено неравенство
. На чертеже – точка «а».
Примечание: требование симметричности окрестности вовсе не обязательно. Кроме того, важен сам факт существования окрестности (хоть малюсенькой, хоть микроскопической), удовлетворяющей указанным условиям
Точки называют точками строго экстремума или просто точками экстремума функции. То есть это обобщенный термин точек максимума и точек минимума.
Как понимать слово «экстремум»? Да так же непосредственно, как и монотонность. Экстремальные точки американских горок.
Как и в случае с монотонностью, в теории имеют место и даже больше распространены нестрогие постулаты (под которые, естественно, подпадают рассмотренные строгие случаи!):
Точка называется точкой максимума, если существует её окрестность, такая, что для всех значений
данной окрестности выполнено неравенство
.
Точка называется точкой минимума, если существует её окрестность, такая, что для всех значений
данной окрестности выполнено неравенство
.
Заметьте, что согласно последним двум определениям, любая точка функции-константы (либо «ровного участка» какой-нибудь функции) считается как точкой максимума, так и точкой минимума! Функция , к слову, одновременно является и невозрастающей и неубывающей, то есть монотонной. Однако оставим сии рассуждения теоретикам, поскольку на практике мы почти всегда созерцаем традиционные «холмы» и «впадины» (см. чертёж) с уникальным «царём горы»
или «принцессой болота»
. Как разновидность, встречается остриё, направленное вверх либо вниз, например, минимум функции
в точке
.
Да, кстати, о королевских особах:
– значение называют максимумом функции;
– значение называют минимумом функции.
Общее название – экстремумы функции.
Пожалуйста, будьте аккуратны в словах!
Точки экстремума – это «иксовые» значения.
Экстремумы – «игрековые» значения.
! Примечание: иногда перечисленными терминами называют точки «икс-игрек», лежащие непосредственно на САМОМ ГРАФИКЕ функции.
Сколько может быть экстремумов у функции?
Ни одного, 1, 2, 3, … и т.д. до бесконечности. Например, у синуса бесконечно много минимумов и максимумов.
ВАЖНО! Термин «максимум функции» не тождественен термину «максимальное значение функции». Легко заметить, что значение максимально лишь в локальной окрестности, а слева вверху есть и «покруче товарищи». Аналогично, «минимум функции» – не то же самое, что «минимальное значение функции», и на чертеже мы видим, что значение
минимально только на определённом участке. В этой связи точки экстремума также называют точками локального экстремума, а экстремумы – локальными экстремумами. Ходят-бродят неподалёку и глобальные собратья. Так, любая парабола имеет в своей вершине глобальный минимум или глобальный максимум. Далее я не буду различать типы экстремумов, и пояснение озвучено больше в общеобразовательных целях – добавочные прилагательные «локальный»/«глобальный» не должны заставать врасплох.
Чайникам на первых порах рекомендую создать и осмыслить небольшой терминологический конспект, чтобы не путать Иран с Ираком.
Подытожим наш небольшой экскурс в теорию контрольным выстрелом: что подразумевает задание «найдите промежутки монотонности и точки экстремума функции»?
Формулировка побуждает найти:
– интервалы возрастания/убывания функции (намного реже фигурирует неубывание, невозрастание);
– точки максимума и/или точки минимума (если таковые существуют). Ну и от незачёта подальше лучше найти сами минимумы/максимумы 😉
Как всё это определить? С помощью производной функции!
Как найти интервалы возрастания, убывания,
точки экстремума и экстремумы функции?
Многие правила, по сути, уже известны и понятны из урока о смысле производной.
Рассмотрим дифференцируемую на некотором интервале функцию . Тогда:
– если производная на интервале, то функция
возрастает на данном интервале;
– если производная на интервале, то функция
убывает на данном интервале.
Примечание: справедливы и обратные утверждения.
Пусть точка принадлежит области определения функции
. Данная точка называется критической, если в ней производная равна нулю:
либо значения
не существует. Критическая точка может быть точкой экстремума. А может и не быть. Очень скоро мы рассмотрим необходимые и достаточные условия существования экстремума.
Но сначала потренируемся на кошках разделаемся с простейшими примерами. Почин положен в конце теоретической статьи о производной, и на очереди другие жертвы анализа. Заодно есть возможность провести маленькое самотестирование – насколько хорошо вы запомнили, как выглядят графики жизненно важных функций? В тяжелом случае, конечно же, следует открыть первый урок на соседней вкладке и щёлкать туда-сюда по мере комментариев.
Производная кубической функции неотрицательна:
для любого «икс».
Действительно, кубическая парабола идёт «снизу вверх». Бесконечно близко около точки скорость изменения функции равна нулю, о чём в рупор кричит производная:
. И вот вам, кстати, сразу пример, когда в критической точке нет максимума или минимума функции.
Функция обитает на промежутке
, а её производная неравенством
однозначно показывает, что «корень из икс» строго растёт на интервале
В критической точке
функция определена, но не дифференцируема.
С геометрических позиций тут нет общей касательной. Однако в теории рассматриваются так называемые односторонние производные, и в указанной точке существует правосторонняя производная с правосторонней касательной. Желающие разобраться в этом подробнее могут покурить первый том матана.
Примечание: согласно информации первого параграфа, точка не является точкой минимума функции
(хотя «по понятиям» это вроде бы так). Дело в том, что определения точек максимума и минимума предполагают существование функции
и слева и справа от данных точек. Так же не считаются точками экстремума крайние значения области определения арксинуса и арккосинуса (см. ниже).
Стандартная гипербола идёт «сверху вниз», то есть данная функция убывает на всей области определения. Что и показывает её производная:
для любого «икс» кроме нуля.
Здесь, к слову, точка вообще не считается критической, так как функция
банально в ней не определена.
Экспоненциальная функция растёт на всей числовой прямой (для любого значения «икс» справедливо строгое неравенство
). Исследуя же производную
, легко сделать вывод, что функция
наоборот – убывает на
.
Что делает натуральный логарифм сегодня вечером?
Растёт:
на интервале
.
Начертите/распечатайте на соседних либо одном чертеже (иль просто представьте в уме) графики функции и её производной
. Там, где график косинуса находится над осью
, синус растёт. Обратно – где график
расположен ниже оси абсцисс, синус убывает. А в тех точках, где косинус пересекает ось (
), синусоида
достигает минимума или максимума.
Аналогичная история с косинусом и его производной
(второй кадр запечатлён в статье Геометрические преобразования графиков).
Производная тангенса несёт бодрую весть о том, что функция
возрастает на всей области определения.
С котангенсом и его производной ситуация ровно противоположная.
Арксинус на интервале растёт – производная здесь положительна:
.
При функция
определена, но не дифференцируема. Однако в критической точке
существует правосторонняя производная и правостороння касательная, а на другом краю – их левосторонние визави.
Думаю, вам не составит особого труда провести похожие рассуждения для арккосинуса и его производной.
Все перечисленные случаи, многие из которых представляют собой табличные производные, напоминаю, следуют непосредственно из определения производной.
Зачем исследовать функцию с помощью производной?
Чтобы лучше узнать, как выглядит график этой функции: где он идёт «снизу вверх», где «сверху вниз», где достигает минимумов максимумов (если вообще достигает). Не все функции такие простые – в большинстве случаев у нас вообще нет ни малейшего представления о графике той или иной функции.
Настала пора перейти к более содержательным примерам и рассмотреть алгоритм нахождения интервалов монотонности и экстремумов функции:
Найти интервалы возрастания/убывания и экстремумы функции
Решение:
1) На первом шаге нужно найти область определения функции, а также взять на заметку точки разрыва (если они существуют). В данном случае функция непрерывна на всей числовой прямой, и данное действие в известной степени формально. Но в ряде случаев здесь разгораются нешуточные страсти, поэтому отнесёмся к абзацу без пренебрежения.
2) Второй пункт алгоритма обусловлен
необходимым условием экстремума:
Если в точке есть экстремум, то
либо значения
не существует.
Смущает концовка? Экстремум функции «модуль икс».
Условие необходимо, но не достаточно, и обратное утверждение справедливо далеко не всегда. Так, из равенства ещё не следует, что функция достигает максимума или минимума в точке
. Классический пример уже засветился выше – это кубическая парабола
и её критическая точка
.
Но как бы там ни было, необходимое условие экстремума диктует надобность в отыскании подозрительных точек. Для этого следует найти производную и решить уравнение :
Получилось обычное квадратное уравнение:
Положительный дискриминант доставляет две критические точки:
Примечание: корни можно традиционно обозначить через , однако в ходе полного исследования функции удобнее обойтись без подстрочных индексов, так как они вносят лишние оговорки и путаницу
Итак, – критические точки
Но экстремумов в них может и не оказаться, поэтому нужно продолжить решение.
первое достаточное условие экстремума,
которое вкратце формулируется следующим образом: пусть функция дифференцируема в некоторой окрестности критической точки . Тогда:
– если при переходе через точку производная меняет знак с «плюса» на «минус», то в данной точке функция достигает максимума;
– если при переходе через точку производная меняет знак с «минуса» на «плюс», то в данной точке функция достигает минимума.
Тут всё очень и очень наглядно, представьте – функция росла-росла-росла, и после прохождения некоторого рубежа вдруг стала убывать. Максимум. Во втором случае график шёл-шёл-шёл «сверху вниз», а при переходе через точку развернулся в противоположную сторону. Минимум.
Исходя из вышесказанного, вытекает логичное решение: на числовой прямой нужно отложить точки разрыва функции, критические точки и определить знаки производной на интервалах, которые входят в область определения функции.
В рассматриваемом примере с непрерывностью на всё тип-топ, поэтому работаем только с найдёнными критическими точками.
Напрашивается метод интервалов, который уже применялся для определения интервалов знакопостоянства функции. Так почему бы его не использовать для производной? Ведь производная тоже простая смертная функция, найдёшь её – и делай всё, что хочешь.
Внимание! Сейчас мы работаем с ПРОИЗВОДНОЙ, а не с самой функцией!
Перед нами парабола , ветви которой направлены вниз, и многим читателям уже понятны знаки производной, но ради повторения снова пройдёмся по всем этапам метода интервалов. Отложим на числовой прямой найденные критические точки:
I) Берём какую-нибудь точку интервала и находим значение производной в данной точке. Удобнее всего выбрать
:
, значит, производная отрицательна на всём интервале
.
II) Выбираем точку , принадлежащую интервалу
, и проводим аналогичное действие:
, следовательно,
на всём интервале
.
III) Вычислим значение производной в наиболее удобной точке последнего интервала:
, поэтому
в любой точке интервала
.
В результате получены следующие знаки производной:
Время собирать урожай!
На интервалах производная отрицательна, значит, САМА ФУНКЦИЯ
на данных интервалах убывает, и её график идёт «сверху вниз». На среднем интервале
, значит, функция возрастает на
, и её график идёт «снизу вверх».
При переходе через точку производная меняет знак с «–» на «+», следовательно, в этой точке функция достигает минимума:
При переходе же через точку производная меняет знак с «+» на «–», и функция достигает максимума в данной точке:
Ответ: функции возрастает на интервале и убывает на интервалах
. В точке
функция достигает минимума:
, а в точке
– максимума:
Остерегайтесь сокращенной записи . Под значками
обычно понимают минимальное и максимальное значение, а это, как пояснялось выше, далеко не то же самое, что минимум и максимум.
Пример так тщательно провёрнут через мясорубку, что грех не привести графическое изображение всех событий. Незнакомец теоретической части статьи снимает шляпу:
Что произошло? На первом этапе мы нашли производную и критические точки
(в которых парабола пересекает ось абсцисс). Затем методом интервалов было установлено, где
(парабола ниже оси) и
(парабола выше оси). Таким образом, с помощью производной мы узнали интервалы возрастания/убывания и экстремумы «синей» функции.
Помимо 1-го достаточного условия экстремума существует и 2-е достаточное условие, однако для исследования функций оно малоинформативно и больше используется в экстремальных задачах.
В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю:
…Итак, решение нашего уравнения:
– именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции. Поэтому повысим степень:
Найти промежутки монотонности и экстремумы функции
Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.
Наступил долгожданный момент встречи с дробно-рациональными функциями:
Исследовать функцию с помощью первой производной
Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.
Решение:
1) Функция терпит бесконечные разрывы в точках .
2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:
Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:
Таким образом, получаем три критические точки:
3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:
Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку
, принадлежащую интервалу
, и выполним подстановку:
.
Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале
.
Действие, как вы понимаете, нужно провести для каждого из шести интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель
строго положительны для любой точки любого интервала, что существенно облегчает задачу.
Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на
и убывает на
. Однотипные интервалы удобно скреплять значком объединения
.
В точке функция достигает максимума:
В точке функция достигает минимума:
Подумайте, почему можно заново не пересчитывать второе значение 😉
При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.
! Повторим важный момент: точки не считаются критическими – в них функция не определена. Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).
Ответ: функция возрастает на и убывает на
В точке
достигается максимум функции:
, а в точке
– минимум:
.
Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты
и наклонная асимптота
. Вот наш герой:
Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).
Найти экстремумы функции
Найти интервалы монотонности, максимумы и минимумы функции
…прямо какой-то Праздник «икса в кубе» сегодня получается.
Тааак, кто там на галёрке предложил за это выпить? =)
В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.
Как отмечалось, в ходе выполнения задания всегда нужно внимательно следить за точками разрыва и интервалами, которые не входят в область определения функции. Казус состоит в том, что иногда производная может существовать на таких участках! Простейший пример: производная натурального логарифма определена на интервале
, но сам логарифм – нет. Интервалы, которые не входят в область определения функции, НЕЛЬЗЯ рассматривать и у производной!
Типичный барьерный риф:
Найти интервалы монотонности и экстремумы функции
Приближаю оформление к боевым условиям и прекращаю нумерацию пунктов алгоритма.
Решение: в Примере 11 статьи об интервалах знакопостоянства была найдена область определения данной функции: , знание которой КРИТИЧЕСКИ ВАЖНО учитывать в нашей задаче:
Вроде бы всё хорошо: у нас есть корень и крайние точки области определения:
.
Но производная проявила своеволие – она в отличие от свого родителя определена и на интервале . Более того, точка
(не критическая. ;)) вошла в этот нехороший интервал! Что делать? Мама всегда права, поэтому определяем знаки производной только на интервалах области определения функции:
Функция убывает на интервале и возрастает на интервале
. Точки экстремума (и, понятно, экстремумы) ОТСУТСТВУЮТ. Значение
осталось не при делах, так как на интервале
попросту нет графика функции
.
Ответ: функция убывает на интервале и возрастает на
, экстремумы отсутствуют.
Будьте очень внимательны, если вам встретится логарифм или корень – в подобных примерах просто необходимо увАжить область определения функции!
Найти интервалы монотонности и экстремумы функции
Это приятный разгрузочный пример для самостоятельного решения.
И заключительный пример посвящен другому приключению непослушной дочери:
Найти точки экстремума функции
Решение: функция определена и непрерывна на всей числовой прямой.
Найдём критические точки:
На всякий случай детализирую преобразования знаменателя: , затем сокращаем числитель и знаменатель на «икс».
Таким образом, – критические точки. Почему значения
, обращающие знаменатель производной в ноль, следует отнести к критическим точкам? А дело в том, что САМА-ТО ФУНКЦИЯ в них определена! Ситуация необычна, но клубок распутывается по стандартной схеме.
Определим знаки производной на полученных интервалах:
Функция возрастает на интервале и убывает на
.
В точке функция достигает минимума:
.
В точке функция достигает максимума:
.
В точке нет экстремума.
Ответ: – точка минимума,
– точка максимума
По условию требовалось найти точки экстремума и что-то добавлять излишне. Но в решении как бы невзначай вычислены и сами экстремумы 😉
Давайте посмотрим на на эту оригинальную картину:
В точке – классическое остриё, направленное вниз, при
– «нормальный» максимум. В точках
функция не дифференцируема, однако в них существуют бесконечные производные и вертикальные касательные (см. теорию производной).
. да, родители и дети бывают разными. Но мама права в 95% случаев с погрешностью . Я проводил статистическое исследование.
Решения и ответы:
Пример 2: Решение:
1) Функция определена и непрерывна на всей числовой прямой.
2) Найдём критические точки:
– критическая точка.
3) Методом интервалов определим знаки производной:
Ответ: функция убывает на интервале и возрастает на интервале
. В точке
функция достигает минимума:
Пример 4: Решение:
1) Функция терпит бесконечный разрыв в точке .
2) Найдём критические точки:
,
– критические точки.
3) Методом интервалов определим знаки производной:
В точке функция достигает минимума:
.
В точке экстремум отсутствует.
Ответ: в точке функция достигает минимума:
Примечание: обратите внимание, что информацию об интервалах монотонности раскрывать не обязательно, так как по условию требовалось найти только экстремумы функции
Пример 5: Решение:
1) Функция определена и непрерывна на всей числовой прямой кроме точки .
2) Найдём критические точки:
Примечание: в данном случае перед дифференцированием выгодно почленно разделить числитель на знаменатель
– критическая точка.
3) Определим знаки производной:
Ответ: функция возрастает на и убывает на
. В точке
она достигает максимума:
Пример 7: Решение:
Область определения: .
Найдём критические точки:
– критическая точка.
Определим знаки производной:
Ответ: функция убывает на интервале и возрастает на интервале
В точке
функция достигает минимума:
Автор: Емелин Александр
(Переход на главную страницу)
«Всё сдал!» — онлайн-сервис помощи студентам
Zaochnik.com – профессиональная помощь студентам,
cкидкa 17% на первый зaкaз, при оформлении введите прoмoкoд: 5530-xr4ys
Точки экстремума, наибольшее и наименьшее значение на промежутке
Вы будете перенаправлены на Автор24
Экстремумы функции
Для того чтобы ввести понятие наибольшего и наименьшего значения функций, вначале познакомимся с таким понятием, как экстремумы функций. Это понятие нам будет необходимо не для самого определения значений таких функций, а для построения схемы нахождения таких промежутков для конкретно заданных функций.
Чтобы полностью разобраться в данном понятии, далее введем понятие критической точки функции.
Сформулируем без доказательства теоремы о необходимом (теорема 1) и достаточном (теорема 2) условии для существования точки экстремума.
Готовые работы на аналогичную тему
На рисунке 1 мы можем наглядно увидеть смысл теоремы 2.
Примеры точек экстремумов вы можете видеть на рисунке 2.
Правило исследования на экстремум
Понятие наибольшего и наименьшего значений
Чтобы найти наименьшее и наибольшее значение заданной функции на каком либо отрезке необходимо произвести следующие действия:
Примеры задач
\[f\left(0\right)=225\] \[f\left(5\right)=50\] \[f\left(6\right)=63\]
Найти наибольшее и наименьшее значения на [-1,1]:$f\left(x\right)=\frac
Точек экстремума нет.
Нужны еще материалы по теме статьи?
Воспользуйся новым поиском!
Найди больше статей и в один клик создай свой список литературы по ГОСТу
Автор этой статьи Дата последнего обновления статьи: 13.07.2022
Экстремумы функции
Крайности (максимумы и минимумы) функции называются значениями функции в точках максимума и минимума.
Экстремумные функциональные точки
Точки максимума и минимума называются точками экстремума.
Точки области, в которой производная функции равна нулю или не существует, называются критическими точками.
Достаточное условие существования экстремума функции. Если производная функции \(\ f(x) \) равна нулю в точке \(\ x_ <0>\) и при перемещении по этой точке в направлении возрастания x меняет знак с «+» («-») на «-» («+»), то в точке \(\ x_ <0>\) функция имеет максимум (минимум). Если при прохождении через точку \(\ \boldsymbol
Для изучения функции экстремума необходимо:
найти критические точки функции;
проверить, меняет ли знак производную функции при прохождении через критическую точку;
Примеры функции исследования экстремума
Найти экстремум функции \(\ y=x^<3>-3 x+1 \)
Найти критические точки функции, для этого вычислим производную данной функции
приведем его в нуль и найдем корни полученного квадратичного уравнения
\(\ 3 x^<2>-3=0 \Rightarrow x^<2>-1=0 \Rightarrow(x-1)(x+1)=0 \Rightarrow x_<1>=-1, \quad x_<2>=1 \)
Пример функции исследования экстремума
В точке \(\ x_<1>=-1 \) производная изменяет знак с «+» на «-», что означает, что в этой точке есть максимум. Вычислить максимальное значение
В точке \(\ x_<2>=1 \) производная изменяет знак от «-» до «+», что означает, что \(\ x_ <2>\) является точкой минимума. Значение минимума равно
Найти экстремум функции
Вычислим производную данной функции и найдем критические точки
Приравнивая производную нулю
\(\ 2 x+\frac<2>
Мы получаем одну критическую точку \(\ x=-1 \). Обозначим область определения функции и найденную критическую точку на числовой оси и определим знак производной на полученных интервалах
Экстремумы функции, максимум и минимум
Что будем изучать:
1. Введение.
2. Точки минимума и максимума.
3. Экстремум функции.
4. Как вычислять экстремумы?
5. Примеры.
Введение в экстремумы функций
Ребята, давайте посмотрим на график некоторой функции:
Заметит, что поведение нашей функции y=f (x) во многом определяется двумя точками x1 и x2. Давайте внимательно посмотрим на график функции в этих точках и около них.
До точки x2 функция возрастает, в точке x2 происходит перегиб, и сразу после этой точки функция убывает до точки x1. В точке x1
функция опять перегибается, и после этого — опять возрастает.
Точки x1 и x2 пока так и будем называть точками перегиба. Давайте проведем касательные в этих точках:
Касательные в наших точках параллельны оси абсцисс, а значит, угловой коэффициент касательной равен нулю. Это значит, что и производная нашей функции в этих точках равна нулю.
Посмотрим на график вот такой функции:
Касательные в точках x2 и x1 провести невозможно. Значит, производной в этих точках не существует. Теперь посмотрим опять на наши точки на двух графиках. Точка x2 — это точка, в которой функция достигает наибольшего значения в некоторой области (рядом с точкой x2). Точка x1 — это точка, в
которой функция достигает своего наименьшего значения в некоторой области (рядом с точкой x1).
Точки минимума и максимума
Окрестность мы можем задавать сами. Например, для точки x=2, мы можем определить окрестность в виде точек 1 и 3.
Вернемся к нашим графикам, посмотрим на точку x2, она больше всех других точек из некоторой окрестности, тогда по определению — это точка максимума. Теперь посмотрим на точку x1, она меньше всех других точек из некоторой окрестности, тогда по определению — это точка минимума.
Ребята, давайте введем обозначения:
ymin — точка минимума,
ymax — точка максимума.
Важно! Ребята, не путайте точки максимума и минимума с наименьшим и наибольшим значение функции. Наименьшее и наибольшее значения ищутся на всей области определения заданной функции, а точки минимума и максимума в некоторой окрестности.
Экстремумы функции
Для точек минимума и максимума есть общей термин – точки экстремума.
Экстремум (лат. extremum – крайний) – максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума.
Соответственно, если достигается минимум – точка экстремума называется точкой минимума, а если максимум – точкой максимума.
Как же искать экстремумы функции?
Давайте вернемся к нашим графикам. В наших точках производная либо обращается в нуль (на первом графике), либо не существует (на втором графике).
Как вычислять экстремумы?
Ребята, давайте опять вернемся к первому графику функции:
Анализируя этот график, мы говорили: до точки x2 функция возрастает, в точке x2 происходит перегиб, и после этой точки функция убывает до точки x1. В точке x1 у функции опять перегибается, и после этого
функция опять возрастает.
На основании таких рассуждений, можно сделать вывод, что функция в точках экстремума меняет характер монотонности, а значит и производная функция меняет знак. Вспомним: если функция убывает, то производная меньше либо равно нулю, а если функция возрастает, то производная больше либо равна нулю.
Обобщим полученные знания утверждением:
Теорема: Достаточное условие экстремума: пусть функция y=f(x) непрерывна на некотором промежутке Х и имеет внутри промежутка стационарную или критическую точку x= x0. Тогда:
Для решении задач запомните такие правила: Если знаки производных определены то:
Алгоритм исследования непрерывной функции y= f(x) на монотонность и экстремумы:
Примеры нахождения точки экстремумов
1) Найти точки экстремума функции и определить их характер: y= 7+ 12*x — x3
2) Найти точки экстремума функции и определить их характер.
Решение: Наша функция непрерывна. Воспользуемся нашим алгоритмом:
а)
б) в точке x= 2 производная не существует, т.к. на нуль делить нельзя,
Область определения функции: [2; +∞], в этой точки экстремума нет, т.к. окрестность точки не определена. Найдем значения, в которой производная равна нулю:
в) Отметим стационарные точки на числовой прямой и определим знаки производной:
г) посмотрим на наш рисунок, где изображены правила определения экстремумов. Точка x= 3 — точка минимума функции.
Ответ: x= 3 — точка минимума функции.
Задачи для самостоятельного решения
а) Найти точки экстремума функции и определить их характер: y= 5×3 — 15x — 5.
б) Найти точки экстремума функции и определить их характер:
в) Найти точки экстремума функции и определить их характер: y= 2sin(x) — x при π ≤ x ≤ 3π.
г) Найти точки экстремума функции и определить их характер:
Значения функции и точки максимума и минимума
Как говорил крестный отец: «Ничего личного». Только производные!
Статью Как посчитать производные? надеюсь, ты изучил, без этого дальше будет проблематично.
12 задание по статистике считается достаточно трудным, а все потому, что ребята не прочитали эту статью (joke). В большинстве случаев виной всему невнимательность.
12 задание бывает двух видов:
Как же действовать в этих случаях?
Найти точку максимума / минимума
Найдите точку максимума функции
Все верно, сначала функция возрастает, затем убывает — это точка максимума!
Найдите точку минимума функции
Найти наибольшее / наименьшее значение функции
Будь в курсе новых статеек, видео и легкого математического юмора.
Максимумы, минимумы и экстремумы функций
Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках
Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках
Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.
Минимумы и максимумы вместе именуют экстремумами функции
Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.
В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю
Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.
Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).
Давайте вместе найдем количество точек экстремума функции по графику производной на примере:
У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).
Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).
Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:
— Производная положительна там, где функция возрастает. — Производная отрицательна там, где функция убывает.
С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.
Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).
Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.
Начнем с (-13): до (-13) производная положительна т.е. функция растет, после — производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.
(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.
— Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус. — Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.
Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:
— если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.
Всё! Точки максимумов и минимумов найдены.
Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.
Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54). Решение: 1. Найдем производную функции: (y’=15x^4-60x^2).
3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:
Теперь очевидно, что точкой максимума является (-2).
Урок алгебры в 11 классе Максимум и минимум функции
Урок №33. Алгебра и НМА в 11 классе. Дата 06.11.18 г.
Учитель математики Абкелямова З.Н.
Тема урока: Анализ контрольной работы.Максимум и минимум функции.
Подготовка к изучению новой темы.
При исследовании поведения функции вблизи точки удобно пользоваться понятием окрестности.
Определение. Точка х0 называется точкой максимума функции f(х), если существует такая окрестность точки х, что для всех х≠х0 из этой окрестности выполняется неравенство f(x) f(x0).
Пусть график некоторой функции имеет вот такой вид.
а) Если рассмотреть значение функции в точкех на этом графике то оно будет наибольшим (максимальным), чем в любой другой точке из близлежащей окрестности. В этом случае говорят, чтох0 — точка максимума (max).
Точках из области определения функции называется точкой максимума, если длялюбого из окрестноститочки х выполняется неравенство f(x).
Максимум и минимум функции объединяют словом экстремум( с латинского — крайний), а точки максимума и минимума называют точками экстремума (экстремальными точками)Изучая график можно прийти к выводу, что наиболее «заметными» точками области определения являются какие точки Х, в которых возрастание функции сменяется убыванием (х=-6; х=2; х=7), или, наоборот убывание сменяется возрастанием (х=-7,5; х=-1,5; х=4). Эти точки называются соответственно точками максимума хmax=-6 хmax=2 хmax=7 и минимума хmin=-7,5; хmin=2; хmin=7.
На рисунке изображён график непрерывной функции на отрезке [а;в]
Значения функции в этих точках называют соответственно максимума и минимума функции уmax, ymin.
Найти критические точки функции
Найти производную функции.
Решить уравнение f ´(х)=0, и найти тем самым стационарные точки или критические точки
Найти критические точки функции на интервале (а,в);
Вычислить значения функции в найденных точках, принадлежащих интервалу (а,в);
Вычислить значения функции на концах отрезка, т.е. в точках х=а, х=в;
Среди всех вычисленных значений функции выбрать наибольшее и наименьшее.
Домашнее задание №5.10 (в,г) 5.14 стр 120.
дополнительное задание.Найти наибольшее значение функции у= 12 cosх+6х-2+6 на отрезке [0;].
Проверка домашнего задания.
№5.6 б) f(х) =5х3-15х на отрезке [-2;2]
(Два ученика на обратной стороне доски)
Работа с классом.
Найдите наибольшее значение функции у=-х2 +10х на отрезке [0;7].
Найдите наименьшее значение функции у=(х-21)ех-20 на отрезке
Экстремумы функции
Точка х0 называется точкой максимума (минимума) функции f(х), если в некоторой окрестности точки х0 выполняется неравенство f(х) ≤ f(х0) (f(х) ≥ f(х0)).
Значение функции в этой точке называется соответственно максимумом или минимумом функции. Максимум и минимум функции объединяются общим названием экстремума функции.
Экстремум функции в этом смысле часто называют локальным экстремумом, подчеркивая тот факт, что это понятие связано лишь с достаточно малой окрестностью точки х0. На одном и том же промежутке функция может иметь несколько локальных максимумов и минимумов, которые не обязательно совпадают с глобальным максимумом или минимумом (т.е. наибольшим или наименьшим значением функции на всем промежутке).
Необходимое условие экстремума. Для того, чтобы функция имела экстремум в точке, необходимо, чтобы ее производная в этой точке равнялась нулю или не существовала.
Для дифференцируемых функций это условие вытекает из теоремы Ферма. Кроме того, оно предусматривает и случай, когда функция имеет экстремум в точке, в которой она не дифференцируема.
Точки, в которых выполнено необходимое условие экстремума, называются критическими (или стационарными для дифференцируемой функции). Эти точки должны входить в область определения функции.
Таким образом, если в какой-либо точке имеется экстремум, то эта точка критическая (необходимость условия). Заметим, что обратное утверждение неверно. Критическая точка вовсе не обязательно является точкой экстремума, т.е. сформулированное условие не является достаточным.
Доказательство этого условия вытекает из достаточного условия монотонности (при изменении знака производной происходит переход либо от возрастания функции к убыванию, либо от убывания к возрастанию).
Второе достаточное условие экстремума. Если первая производная дважды дифференцируемой функции в некоторой точке равна нулю, а вторая производная в этой точке положительна, то это точка минимума функции; а если вторая производная отрицательна, то это точка максимума.
Доказательство этого условия также основано на достаточном условии монотонности. В самом деле, если вторая производная положительна, то первая производная является возрастающей функцией. Поскольку в рассматриваемой точке она равна нулю, следовательно, при переходе через нее она меняет знак с минуса на плюс, что возвращает нас к первому достаточному условию локального минимума. Аналогично если вторая производная отрицательна, то первая убывает и меняет знак с плюса на минус, что является достаточным условием локального максимума.
Исследование функции на экстремум в соответствии со сформулированными теоремами включает следующие этапы:
1. Найти первую производную функции f `(x).
2. Проверить выполнение необходимого условия экстремума, т.е. найти критические точки функции f(x), в которых производная f `(x) = 0 или не существует.
3. Проверить выполнение достаточного условия экстремума, т.е. либо исследовать знак производной слева и справа от каждой критической точки, либо найти вторую производную f «(x) и определить ее знак в каждой критической точке. Сделать вывод о наличии экстремумов функции.
4. Найти экстремумы (экстремальные значения) функции.
Нахождение глобального максимума и минимума функции на некотором промежутке также имеет большое прикладное значение. Решение этой задачи на отрезке основано на теореме Вейерштрасса, в соответствии с которой непрерывная функция принимает на отрезке свои наибольшее и наименьшее значения. Они могут достигаться как в точках локального экстремума, так и на концах отрезка. Поэтому решение включает следующие этапы:
1. Найти производную функции f `(x).
2. Найти критические точки функции f(x), в которых производная
f `(x) = 0 или не существует.
3. Найти значения функции в критических точках и на концах отрезка и выбрать из них наибольшее и наименьшее.
Возрастание и убывание функций, экстремумы
Вы будете перенаправлены на Автор24
Экстремумы функции
Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.
Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.
Необходимое условие экстремума
Достаточное условие экстремума
Данная теорема проиллюстрирована на рисунке 1.
Рисунок 1. Достаточное условие существования экстремумов
Примеры экстремумов (Рис. 2).
Рисунок 2. Примеры точек экстремумов
Готовые работы на аналогичную тему
Правило исследования функции на экстремум
5) Отметить на координатной прямой все найденные точки и область определения данной функции;
7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.
Возрастание и убывание функции
Введем, для начала, определения возрастающей и убывающей функций.
Исследование функции на возрастание и убывание
Исследовать функции на возрастание и убывание можно с помощью производной.
Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:
5) Отметить на координатной прямой все найденные точки и область определения данной функции;
Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов
Так как первые 6 пунктов совпадают, проведем для начала их.
5) Координатная прямая:
Нужны еще материалы по теме статьи?
Воспользуйся новым поиском!
Найди больше статей и в один клик создай свой список литературы по ГОСТу
Автор этой статьи Дата последнего обновления статьи: 10.03.2022
Экстремумы функции
Необходимые условия экстремума.
Мы уже рассматривали понятие локального экстремума ранее. Необходимые условия экстремума легко получить из теоремы Ферма. Согласно этой теореме точки локального экстремума функции \(f(x)\) следует искать среди тех точек области ее определения, в которых производная этой функции либо равна нулю, либо не существует.
В дальнейшем будем часто опускать слово «локальный» при формулировке утверждений, связанных с понятием локального экстремума.
Точки, в которых производная данной функции равна нулю, называют стационарными точками этой функции, а точки, в которых функция непрерывна, а ее производная либо равна нулю либо не существует, — ее критическими точками. Поэтому все точки экстремума функции содержатся среди ее критических точек.
Точка \(x=0\) является критической точкой для каждой из функций \(y=x^2\), \(y=x^<3>\), \(y=|x|\), \(y=|x|^<1/2>\), \(у=\sqrt[3]
Таким образом, не всякая критическая точка является точкой экстремума функции.
Достаточные условия экстремума.
Введем понятие строгого экстремума.
Точка \(x_0\) называется точкой строгого максимума функции \(f(x)\), если
$$
\exists\delta > 0:\ \forall x\in\dot_<\delta>(x_0)\rightarrow f(x) 0:\ \forall x\in\dot_<\delta>(x_0)\rightarrow f(x) > f(x_0).\label
$$
Отметим, что если функция \(f(x)\), определенная в \(\delta\)-окрестности точки \(x_0\), строго возрастает на промежутке \((x_0-\delta,x_0]\) и строго убывает на промежутке \([x_0,x_0+\delta)\), то выполняется условие \eqref
Аналогично формулируется достаточное условие строгого минимума.
Обратимся к достаточным условиям экстремума дифференцируемых функций. Для формулировки первого достаточного условия и в дальнейшем нам потребуется понятие смены знака функции.
Если функция \(g(x)\) определена в проколотой \(\delta\)-окрестности точки \(x_<0>\) и для всех \(х\in (x_0-\delta,x_0)\) выполняется неравенство \(g(x) 0\), то говорят, что функция \(g(x)\) меняет знак с минуса на плюс при переходе через точку \(x_0\).
Аналогично вводится понятие смены знака с плюса на минус при переходе через точку \(x_0\).
Если \(x_<0>\) — точка строгого экстремума функции \(f(x)\), то есть выполняется одно из условий \eqref
Обратно: если разность \(f(x)-f(x_0)\) сохраняет знак в \(\dot_<\delta>(x_<0>)\), то \(x_<0>\) — точка строгого экстремума функции \(f(x)\). Если же эта разность меняет знак при переходе через точку \(x_0\), то функция \(f(x)\) не имеет экстремума в точке \(x_<0>\).
(Первое достаточное условие строгого экстремума).
Пусть функция \(f(x)\) дифференцируема в некоторой окрестности точки \(x_0\), кроме, быть может, самой точки \(x_0\) и непрерывна в точке \(x_0\). Тогда:
\(\circ\) Пусть функция \(f'(x)\) меняет знак с минуса на плюс при переходе через точку \(x_0\), тогда выполняется условие \eqref
Если \(x\) — произвольная точка интервала \((x_0-\delta,x_0)\), то функция \(f\) дифференцируема на интервале \((x,x_0)\) и непрерывна на отрезке \([x,x_<0>]\). По теореме Лагранжа
$$
f(x)-f(x_<0>)=f'(\xi)(x-x_<0>),\nonumber
$$
где \(f'(\xi) f(x_0).\label
$$
Аналогично, применяя теорему Лагранжа к функции \(f(x)\) на отрезке \([x_0,x]\), где \(x_ <0>f(x_0).\label
$$
Из условий \eqref
Аналогично рассматривается случай строгого максимума. \(\bullet\)
Если \(x_0\) — точка строгого экстремума функции \(f(x)\), то из этого не следует, что функция \(f'(x)\) меняет знак при переходе через точку \(x_0\).
(Второе достаточное условие строгого экстремума).
Пусть \(x_<0>\) — стационарная точка функции \(f(x)\), то есть
$$
f'(x_0)=0,\label
$$
И пусть существует \(f″(x_0)\).
\(\circ\) Если \(f″(x_0) > 0\), то функция \(f'(x)\) является возрастающей в точке \(x_0\) (мы это уже доказывали), то есть существует \(\delta > 0\) такое, что
$$
\forall x\in (x_0-\delta,x_0)\rightarrow f'(x) f'(x_0)=0,\nonumber
$$
откуда следует, что \(f'(x)\) меняет знак с минуса на плюс при переходе через точку \(x_0\). Согласно предыдущей теореме точка \(x_0\) — точка строгого минимума функции \(f(x)\). Аналогично рассматривается случай \(f″(x_<0>) Замечание 3.
Если \(f'(x_0)=0\) и \(f″(x_0)=0\), то в точке \(x_0\) функция \(f\) может иметь экстремум (\(f(x)=x^4,\ x_0=0\)), а может и не иметь (\(f(x)=x^3,\ x=0\)). Следующая теорема дает достаточные условия экстремума для случая \(f″(x)=0\).
(Третье достаточное условие строгого экстремума).
Пусть существует \(f^<(n)>(x_0)\), где \(n > 2\), и выполняются условия
$$
f'(x_0)=f″(x_0)=\ldots = f^<(n-1)>(x_0)=0,\label
$$
$$
f^<(n)>(x_0)\neq 0.\label
$$
\(\circ\) Используя локальную формулу Тейлора для функции \(f(x)\) в окрестности точки \(x_0\) и условия \eqref
$$
f(x)-f(x_0)=\frac
$$
Из условия \eqref
$$
f(x)-f(x_0)=\frac
$$
где \(\alpha(x)=o(1)\rightarrow 0\) при \(x\rightarrow x_0\), так как \(Co((x-x_0)^n)=o((x-x_0)^n)\) при \(C\neq 0\ (C=\operatorname
$$
Из равенства \eqref
$$
\operatorname
$$
Найти точки экстремума функции \(f(x)\), если:
Уравнение \(g'(x)=(-x^2+2x+4)e^<-x>=0\) имеет на промежутке \((0,+\infty)\) единственный корень \(x_1=1+\sqrt<5>\), причем \(g'(x)=f'(x)\) при \(x > 2\) и \(g'(x)\) меняет знак с плюса на минус при переходе через точку \(x_1\). Поэтому \(x_1\) — точка строгого максимума функции \(f(x)\).
При переходе через точку \(x_2=2\) функция \(f'(x)\) меняет знак с минуса на плюс, так как \(f'(x)=-g'(x)\) при \(x\in(0,2)\) и \(f'(x)=g'(x)\) при \(x > 2\). Поэтому \(x_2\) — точка строгого минимума функции \(f(x)\).
Учитывая, что функция \(f(x)\) строго убывает на интервале \((0,2)\) и четная, заключаем отсюда, что \(x=0\) — точка строгого максимума функции \(f(x)\).
Используя полученные результаты и четность функции \(f(x)\), получаем: \(x=-2\) и \(x=2\) — точки строгого минимума функции \(f(x):\ x=-(1+\sqrt<5>),\ x=0\) и \(x=1+\sqrt<5>\) — точки строгого максимума этой функции. \(\blacktriangle\)
Лекция. «Возрастание и убывание функций. Экстремум функции»
Тема курса Применение производной при исследовании и построении графиков функций
Возрастание и убывание функции.
Возрастание и убывание функции.
Приведем формулировки теорем, используемых при исследовании функций.
Достаточное условие строгого возрастания (убывания) функции.
Промежутки, в которых функция возрастает (убывает), называются промежутками монотонности функции. Чтобы найти промежутки монотонности функции необходимо:
1. найти область определения функции;
2. найти производную функции;
3. приравнять производную к нулю и определить ее корни (стационарные точки), а также найти точки, в которых производная не существует, а функция определена;
4. определить знак производной в каждом из промежутков, на которые разбивается полученными точками область определения функции.
Необходимое условие экстремума функции
Точками экстремума могут быть только те точки, в которых производная равна нулю, либо не существует. Точки, в которых производная равна нулю или не существует, называют точками, подозрительными на экстремум, или критическими точками.
Достаточные условия экстремума функции
Найдем производную заданной функции
Определим критические точки . Производная не существует при х2= 0. Следовательно, критические точки: 0 и 2/5. Нанесем их на числовую ось и определим знак производной на каждом из полученных промежутков.
Критическая точка функции x =3. Точка x= –1 не входит в область определения функции.