Как посчитать логарифм
Как посчитать логарифм
Логарифмы и их свойства
Обычно определение логарифма дают очень сложно и запутанно. Мы постараемся сделать это очень просто и наглядно.
Для того, чтобы разобраться, что такое логарифм, давайте рассмотрим пример:
Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.
Теперь при помощи этой таблицы введем понятие логарифма.
Логарифм от числа 32 по основанию 2 (\(log_<2>(32)\)) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:
Аналогично, глядя в таблицу получим, что:
Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0 и неравных 1. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.
Теперь дадим определение логарифма в общем виде:
Логарифмом положительного числа \(b\) по основанию положительно числа \(a\) называется степень \(c\), в которую нужно возвести число \(a\), чтобы получить \(b\)
Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:
Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:
Или логарифм шести по основанию 4:
На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!
Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм \(log_<4>(6)\). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6-ке:
Значит \(log_<4>(6)\) принадлежите промежутку от 1 до 2:
Как посчитать логарифм
Почему так? Это следует из определения показательной функций. Показательная функция не может быть \(0\). А основание не равно \(1\), потому что тогда логарифм теряет смысл – ведь \(1\) в любой степени это будет \(1\).
При этих ограничениях логарифм существует.
В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.
Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.
Теперь давайте разберем общий алгоритм вычисления логарифмов:
Давайте разберем на примерах.
Пример 1. Посчитать логарифм \(9\) по основанию \(3\): \(log_<3>(9)\)
Пример 2. Вычислить логарифм \(\frac<1><125>\) по основанию \(5\): \(log_<5>(\frac<1><125>)\)
Пример 3. Вычислить логарифм \(4\) по основанию \(64\): \(log_<64>(4)\)
Пример 4. Вычислить логарифм \(1\) по основанию \(8\): \(log_<8>(1)\)
Пример 5. Вычислить логарифм \(15\) по основанию \(5\): \(log_<5>(15)\)
Как понять, что некоторое число \(a\) не будет являться степенью другого числа \(b\). Это довольно просто – нужно разложить \(a\) на простые множители.
\(16\) разложили, как произведение четырех двоек, значит \(16\) будет степенью двойки.
Разложив \(48\) на простые множители, видно, что у нас есть два множителя \(2\) и \(3\), значит \(48\) не будет степенью.
Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.
Десятичный логарифм
Натуральный логарифм
Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.
У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.
Свойства логарифмов
Давайте разберем несколько примеров на свойства логарифмов.
Пример 8. Воспользоваться формулой \(3\). Логарифм от произведения – это сумма логарифмов.
Пример 9. Воспользоваться формулой \(4\). Логарифм от частного – это разность логарифмов.
Пример 10. Формула \(5,6\). Свойства степени.
Логично, что будет выполняться и такое соотношение:
Пример 11. Формулы \(7,8\). Переход к другому основанию.
Логарифм. Как вычислить логарифм?
Логарифмом положительного числа \(c\) по основанию \(a\) \((a>0, a\neq1)\) называется показатель степени \(b\), в которую надо возвести основание \(a\), чтобы получить число \(c\) \((c>0)\), т.е.
Объясним проще. Например, \(\log_<2><8>\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_<2><8>=3\).
Аргумент и основание логарифма
Любой логарифм имеет следующую «анатомию»:
Как вычислить логарифм?
а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:
в) В какую степень надо возвести \(\sqrt<5>\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!
г) В какую степень надо возвести \(\sqrt<7>\), чтобы получить \(\sqrt<7>\)? В первую – любое число в первой степени равно самому себе.
В сложных случаях для вычисления логарифма удобно переводить его в показательное уравнение.
Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_
Слева воспользуемся свойствами степени: \(a^
Основания равны, переходим к равенству показателей
Умножим обе части уравнения на \(\frac<2><5>\)
Получившийся корень и есть значение логарифма
Зачем придумали логарифм?
Чтобы это понять, давайте решим уравнение: \(3^
А теперь решите уравнение: \(3^
Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_<3><8>\).
\(4^<5x-4>\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.
Воспользуемся определением логарифма:
\(a^=c\) \(\Leftrightarrow\) \(\log_
Зеркально перевернем уравнение, чтобы икс был слева
И не пугайтесь логарифма, относитесь к нему как к обычному числу.
Поделим уравнение на 5
Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.
Десятичный и натуральный логарифмы
Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:
Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg\).
Основное логарифмическое тождество
У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:
Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.
Вспомним краткую запись определения логарифма:
Пример: Найдите значение выражения \(36^<\log_<6><5>>\)
Вот теперь спокойно пользуемся основным логарифмическим тождеством.
Как число записать в виде логарифма?
Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_<2><4>\) равен двум. Тогда можно вместо двойки писать \(\log_<2><4>\).
Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.
Точно также и с тройкой – ее можно записать как \(\log_<2><8>\), или как \(\log_<3><27>\), или как \(\log_<4><64>\)… Здесь мы как аргумент пишем основание в кубе:
Что такое логарифм
Логарифмы всегда считались сложной темой в школьном курсе математики. Существует много разных определений логарифма, но большинство учебников почему-то используют самые сложные и неудачные из них.
Мы же определим логарифм просто и наглядно. Для этого составим таблицу:
2 1 | 2 2 | 2 3 | 2 4 | 2 5 | 2 6 |
2 | 4 | 8 | 16 | 32 | 64 |
Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.
А теперь — собственно, определение логарифма:
Например, 2 3 = 8 ⇒ log2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log2 64 = 6, поскольку 2 6 = 64.
2 1 | 2 2 | 2 3 | 2 4 | 2 5 | 2 6 |
2 | 4 | 8 | 16 | 32 | 64 |
log2 2 = 1 | log2 4 = 2 | log2 8 = 3 | log2 16 = 4 | log2 32 = 5 | log2 64 = 6 |
Если взять калькулятор и посчитать, чему равны такие логарифмы, то получатся очень длинные числа. Взгляните сами:
log2 5 = 2,32192809.
log3 8 = 1,89278926.
log5 100 = 2,86135311.
Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log2 5, log3 8, log5 100.
Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:
Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень, в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.
Как считать логарифмы
С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:
Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.
Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.
Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:
Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.
Посмотрим, как работает эта схема на конкретных примерах:
Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.
Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.
8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;
Заметим также, что сами простые числа всегда являются точными степенями самих себя.
Десятичный логарифм
Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.
Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.
Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log10 x
Все, что верно для обычных логарифмов, верно и для десятичных.
Натуральный логарифм
Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.
Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма:
ln x = log e x
Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.
Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.
Что такое логарифм. Как посчитать логарифм. Свойства логарифмов. Примеры решения логарифмов
Многие школьники считают логарифмы сложной темой в курсе математики. Но если разобрать, что такое логарифм подробно, от простого к сложному, то на ЕГЭ вы не станете их опасаться.
Часто у учеников возникает путаница, где аргумент, а где основание логарифма. И что же нужно возвести в степень, чтобы этот логарифм, наконец, посчитать.
В этой статье мы откроем секрет, как легче запомнить принцип решения логарифма.
Итак, давайте разбираться, что такое логарифм.
Что такое логарифм и как его посчитать
Логарифм имеет следующий вид:
где a – это основание логарифма,
b – это аргумент логарифма
Чтобы узнать значение логарифма приравняем его к X.и преобразовываем в
Запомните, что именно основание (оно выделено красным) возводится в степень.
Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!
Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:А в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:
Еще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.
Логарифмы со специальным обозначением
Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.
Десятичный логарифм
Десятичный логарифм обозначается lg и имеет основание 10, т.е.
Чтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.
Например, вычислим lg100
Натуральный логарифм
Натуральный логарифм обозначается ln и имеет основание e, то есть
Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…
Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что
И вычислить его можно таким образом:
Основные свойства логарифмов
Логарифмы можно преобразовывать, но для этого необходимо знать правила, которые называются основными свойствами логарифмов. Данные свойства обязательно нужно знать каждому ученику! Без знания этих свойств невозможно решить ни одну серьезную логарифмическую задачу. Вот эти свойства:
Совет – тренируйтесь применять эти свойства в обе стороны, то есть как слева направо, так и справа налево!
Рассмотрим свойства логарифмов на примерах.
Логарифмический ноль и логарифмическая единица
Это следствия из определения логарифма. И их нужно обязательно запомнить. Эти простейшие свойства нередко вводят учеников в ступор.
Запомните, что логарифм от a по основанию а всегда равен единице:
loga a = 1 – это логарифмическая единица.
Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a 0 = 1:
loga 1 = 0 – логарифмический ноль.
Основное логарифмическое тождество
В первой формуле число m становится степенью, которая стоит в аргументе. Данное число может быть любым. Некоторые выражения могут быть решены только с помощью этого тождества.
Вторая формула по сути является просто переформулированным определением логарифма
Разберем применение тождества на примере:
Необходимо найти значение выраженияСначала преобразуем логарифм
Вернемся к исходному выражению и применим правило умножения степеней с одинаковым основанием:
Теперь применим основное логарифмическое тождество и получим:
Сумма логарифмов. Разница логарифмов
Логарифмы с одинаковыми основаниями можно складывать:Логарифмы с одинаковыми основаниями можно вычитать:
Мы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!
Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!
Вынесение показателя степени из логарифма
Вынесение показателя степени из логарифма:
Переход к новому основанию
Когда мы разбирали формулы суммы и разности логарифмов, то обращали внимание на то, что основания логарифмов должны быть при этом одинаковыми. А что же делать, если основания логарифмов разные? Воспользоваться свойством перехода к новому основанию.
Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.
Разберем на примере.
Необходимо найти значение такого выраженияДля начала преобразуем каждый логарифм с помощью свойства вынесения показателя степени из логарифма:
Теперь применим переход к новому основанию для второго логарифма:Подставим полученные результаты в исходное выражение:
10 примеров логарифмов с решением
1. Найти значение выражения2. Найти значение выражения
3. Найти значение выражения
4. Найти значение выражения
5. Найти значение выражения
6. Найти значение выражения
Сначала найдем значение
Для этого приравняем его к Х:
Тогда изначальное выражение принимает вид:
7. Найти значение выражения
Преобразуем наше выражение:
Теперь воспользуемся свойством вынесения показателя степени из логарифма и получим:
8. Найти значение выражения
Так как основания логарифмов одинаковые, воспользуемся свойством разности логарифмов:
9. Найти значение выражения
Так как основания логарифмов разные, применять свойство суммы логарифмов нельзя. Поэтому решаем каждый логарифм по отдельности:
Подставляем полученные значения в исходное выражение:
10. Найти значение выраженияОбращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:
Надеюсь, теперь вы разобрались, что такое логарифм.
Логарифмы
10 класс, ЕГЭ/ОГЭ
Что такое логарифм?
Нагляднее всего понять это с помощью графического решения уравнений. Начертим график и с его помощью решим уравнения:
И в этом случае невозможно назвать точное значение, то есть мы понимаем, что корень больше одного и меньше двух, но более точных данных нет.
Вот такой корень и задается с помощью логарифма, а именно (читается как «логарифм пяти по основанию три» или «логарифм по основанию три от пяти»).
Мы определили смысл — теперь перейдем к общему определению логарифма.
Логарифмом числа b по основанию a называют показатель степени с основанием a, равной b. То есть, попросту говоря, логарифм — это степень, в которую нужно возвести a для получения b. Однако у логарифма есть условия или ограничения, что основание а больше нуля и не равно единице, а также показатель b больше нуля.
Как решать примеры с логарифмами?
Рассмотрим пример, как решить логарифм:
Задаем вопрос: в какую степень нужно возвести 7, чтобы получить 49?
Какие бывают виды логарифмов?
Свойства и формулы логарифмов
Эта формула называется основным логарифмическим тождеством.
Видно, что показатель степени выносим перед логарифмом.
Применение логарифмических свойств в примерах
Пример 1
Решение
У каждого логарифма в показателе стоит степень, значит, поможет 4-я формула:
Первый логарифм можно вычислить по определению. И обратите внимание на второй логарифм: у него в основании стоит а, а в условии задачи дан логарифм с основанием b, значит, нужно а как-то заменить на b. Возможно ли это? Конечно, 7-я формула в помощь!
Подставьте числовое значение из условия, и все готово:
Отличный пример! Мы использовали практически все свойства логарифмов. А теперь попрактикуйтесь еще, но помните, что задача с подвохом!
Пример 2
Получился ответ 27? Если да, то поздравляю: вы попались на удочку самых популярных ошибок! Какое бы задание вам ни встретилось, действия с логарифмами нужно производить только по определениям и правилам. В примере вы видите деление двух логарифмов. А есть ли какая-то формула, в которой записано деление двух логарифмов?
Конечно, это формула перехода к новому основанию, которую мы привели в пункте 6 выше. Применим ее к этому случаю и вычислим логарифм по определению, задав вопрос: в какую степень нужно возвести основание, чтобы получился показатель?
И получается ответ 4, а не 27.
Практическое применение логарифмов
Помните, выше мы говорили, что логарифм объединяет задания на ЕГЭ, галактики и рога горных козлов? И если с баллами на ЕГЭ все понятно, то про галактики и рога — интереснее.
Как видите, логарифмы имеют большое значение для нашей жизни — не только баллы на ЕГЭ!
Вопросы для самопроверки
Чтобы информация точно усвоилась, вспомните:
Что такое логарифм?
Какие ограничения есть у логарифма?
Какие логарифмические свойства вы знаете?
Какие бывают способы преобразования выражений с логарифмом?
В чем практическое применение логарифмов?
На курсах по математике в онлайн-школе Skysmart мы всегда показываем, зачем нужны математические правила и формулы в реальной жизни — ведь так учиться гораздо интереснее! И подтянуть знания перед ЕГЭ тоже поможем: приходите на бесплатный вводный урок и все увидите сами.
Что такое логарифм в математике и в жизни
И при чём здесь капуста, горные козлы и ракетостроение
Для многих логарифм — это самая странная часть в математике: непонятно, как их считать, где применять и как они могут пригодиться в жизни. Сегодня ответим на все эти вопросы.
Если интересно, как в математике работают остальные функции и символы, вот что у нас уже есть:
Что такое логарифм
Задача логарифма — ответить на такой вопрос:
В какую степень нужно возвести одно число, чтобы получилось другое?
На языке математики это будет выглядеть вот так:
Теперь сделаем то же самое, но уже с числами. Например, нам нужно узнать, в какую степень нужно возвести число 2, чтобы получить 8. Если вспомнить степени двойки, то будет ясно, что 2³ = 8, а значит, ответ будет «в третью степень». Мы только что нашли логарифм числа 8 по основанию 2.
Десятичный, натуральный и другие логарифмы
Число A, которое возводят в какую-то степень, называется основанием логарифма. Самые популярные у математиков логарифмы — десятичный и натуральный.
Десятичный логарифм — это когда в основании логарифма стоит число 10. Наша задача в этом случае — найти, в какую степень нужно возвести 10, чтобы получить желаемое число. Обозначается так — lg:
Натуральный логарифм устроен похоже, только вместо десятки в основании логарифма стоит число e, которое примерно равно 2,71828 и называется числом Эйлера. В математике число e играет такую же важную роль, как в геометрии — число пи, поэтому логарифм по основанию e часто встречается во многих математических выкладках и доказательствах.
Обозначается натуральный логарифм так — ln:
Логарифмическая шкала
Если мы возьмём линию и отметим на ней точки через каждый сантиметр, то мы получим арифметическую шкалу. Арифметическую — потому что каждая новая отметка считается арифметическим действием — сложением шага и предыдущего значения:
Но если мы вместо сложения возьмём логарифм, например, по основанию 10, то каждая новая отметка будет зависеть от значения десятичного логарифма:
Это выглядит странно, но логарифмическая шкала постоянно применяется в экономике и маркетинге, когда нужно оценить рост или падение стоимости товара. Если взять обычную арифметическую шкалу, то разница между парами (1, 2) и (9, 10) будет одной и той же — 1 пункт.
Но при этом в первом случае цена выросла в 2 раза, с 1 до 2, а во втором случае — всего лишь на 10%. С логарифмической шкалой рост цены будет выглядеть логичнее:
Зачем нужны логарифмы в жизни
Вокруг нас и в быту мы встречаем гораздо больше логарифмов, чем кажется. Вот несколько примеров.
Децибелы, в которых измеряется относительная громкость любых звуков, считаются по десятичному логарифму. Относительная — потому что она считается от минимального порога громкости, которую только может расслышать человек. Например, если громкость звука равна 20 децибел, то это значит, что это громче самого тихого в 100 раз, а если 30 децибел — то в 1000 раз.
В химии активность водородных ионов тоже считается по логарифмической шкале.
Выдержки и диафрагмы в фотографии тоже меняются логарифмически — каждое новое значение больше или меньше предыдущего в определённое число раз.
В ракетостроении для вычисления скорости ракеты используется уравнение Циолковского. В основе этого уравнения — логарифмическая зависимость от массы ракеты с топливом и без него.
Логарифмы в природе
Больше всего логарифмов можно встретить в природе в виде логарифмической спирали. Математическая формула спирали выглядит так:
Если мы захотим построить график этого уравнения, то он будет выглядеть так:
Логарифмическая спираль в математике.
А вот логарифмическая спираль в природе — в ракушках, подсолнечнике и капусте. С капустой ещё связана другая интересная тема — фракталы, но про них поговорим в другой раз.
Даже рога у горных козлов закручиваются по логарифмической спирали:
Что дальше
Теперь мы знаем про логарифмы достаточно, чтобы понять, как они работают. В следующей статье напишем простую программу из двух циклов, которая посчитает нам практически любой логарифм по любому основанию.
Свойства логарифмов и примеры их решений
Зачем в жизни нужны логарифмы?
Я уже говорил, что математики СУПЕРленивые люди? Это правда.
Вот представь себе, им лень умножать и они придумали логарифмы, которые позволяют заменить умножение сложением!
Им еще больше лень возводить в степень и они используют логарифмы, чтобы заменить возведение в степень умножением или делением!
То есть они используют логарифмы, чтобы быстро проделывать громоздкие вычисления.
Логарифм и его свойства. Вебинар (1 час 48 минут)
В этом видео мы разобрали свойства логарифмов на примере решения 35 задач.
Начиная от самых простых логарифмов и заканчивая сложными.
Если вам понравилось видео, подписывайтесь на канал, ставьте лайки — нам будет приятно и мы будем делать такие видео впредь.
Что такое логарифм?
Для начинающих объясним все человеческим языком. Логарифмы – очень простая тема.
Чтобы понять, как их решать, нужно всего лишь разобраться, что как называется, знать таблицу умножения и уметь возводить в число в степень.
Все. Больше ничего не нужно.
Начнем с простого. Как решить уравнение \(\displaystyle <<2>^
Очень легко – просто ответь на вопрос в какую степень нужно возвести число \(2\) чтобы получить \(8\)?
Решаем методом подбора: два в первой степени – нет, два во второй степени – нет, два в третей степени – ДА!
Двойку нужно возвести в ТРЕТЬЮ степень, чтобы получить восемь (\(\displaystyle <<2>^<3>>=8\)) и значит решением уравнения будет число три (\(x=3\)).
Следующий вопрос. Как решить уравнение \(\displaystyle <<2>^
Опять просто ответь на вопрос в какую степень нужно возвести число \(2\), чтобы получить число \(5\)?
Попытаемся подобрать: два во второй степени равно четыре – мало, два в третьей степени равно восемь – много.
Метод подбора сразу ответ не дает… Да и вообще, в этом случае подобрать решение не получится – ведь это не только нецелое число, это число даже не рациональное.
Для нахождения таких решений было придумано понятие логарифм:
В общем виде он записывается так:
То есть логарифм – это степень, в которую нужно возвести основание, чтобы получить аргумент.
Если ты посчитаешь на калькуляторе, то получишь \(2,321928\ldots \) и т.д. Это число иррациональное. Оно мало того, что не подбирается, оно еще и не кончается…
Ну и как с такими числами работать? Как их запоминать? Как их записывать?
В нашем случае решение уравнения можно записать как \(2,321928\ldots \) или как \(\displaystyle <<\log >_<2>>5\).
Согласись второе выражение гораздо удобнее, чем первое. И оно, кстати, абсолютно точное. Словами это произносится как:
Решением уравнения два в степени икс равно пяти является логарифм пяти по основанию два, или логарифм по основанию два от пяти.
Кстати, а ты заметил что и у степени числа и у логарифма основание всегда находится «ВНИЗУ». Легко запомнить правда? А вот «вверху», у степени находится ее показатель, а у логарифма – аргумент.
Выражение \(\displaystyle <<2>^<3>>=8\) можно также записать в виде \(\displaystyle <<\log >_<2>>8=3\). Читается так:
«Логарифм восьми по основанию два равен трем»
«Логарифм по основанию два от восьми равен трем»
Теперь более общая запись:
«Чтобы получить число \(b\), нужно число \(a\) возвести в степень \(c\)»:
8 примеров вычисления логарифмов
Пример 1
Чему равен \(\displaystyle <<\log >_<2>>4\)?
\(\displaystyle <<\log >_<2>>4=2\), так как число \(2\) нужно возвести во вторую степень, чтобы получить \(4\).
Пример 2
Чему равен \(\displaystyle <<\log >_<2>>\frac<1><8>\)?
Заметим, что \(\displaystyle 8=<<2>^<3>>\), тогда \(\displaystyle \frac<1><8>=\frac<1><<<2>^<3>>>=<<2>^<-3>>\), то есть \(2\) нужно возвести в степень \(-3\), чтобы получить \(\displaystyle \frac<1><8>\).
Пример 3
А чему равен \(\displaystyle <<\log >_<2>>0,25\)?
Обращать внимание нужно, в первую очередь, на основание. Возможно ли представить \(0,25\) как \(2\) в какой-то степени? Да, возможно: запишем это число в виде обычной дроби: \(\displaystyle 0,25=\frac<1><4>=\frac<1><<<2>^<2>>>=<<2>^<-2>>\).
Пример 4
Чему равен \(\displaystyle <<\log >_<7>>1\)?
В какую степень надо возвести \(7\), чтобы получить \(1\)? Вспоминаем, что любое число в нулевой степени равно \(1\) (подробнее читай в разделе «Степень и ее свойства»).
Значит, \(\displaystyle <<\log >_<7>>1=0\). Более того, логарифм с любым основанием от единицы равен \(0\).
Пример 5
\(\displaystyle <<\log >_<4>>2\). В этом случае аргумент \(2\) равен корню основания: \(\displaystyle 2=\sqrt<4>\).
Но мы помним, что корень тоже можно представить в виде степени (с дробным показателем): \(\displaystyle 2=\sqrt<4>=<<4>^<\frac<1><2>>>\text< >\Rightarrow \text< ><<\log >_<4>>2=\frac<1><2>\).
Попробуй найти следующие 4 логарифма самостоятельно
Десятичные логарифмы
Логарифм по основанию \(\displaystyle 10\) называется десятичным логарифмом и записывается упрощенно: \(\displaystyle \lg \) вместо \(\displaystyle <<\log >_<10>>\)
Когда нужная степень не подбирается
Как я уже говорил, далеко не всегда удается подобрать такую степень. Но это не значит, что такого числа не существует, просто его можно вычислить только на калькуляторе.
Например, \(\displaystyle <<\log >_<2>>5=2,321928…\).
Видим, что это число расположено между \(\displaystyle 2\) и \(\displaystyle 3\), и это понятно: ведь это значит, чтобы получить \(5\), нужно \(2\) возводить в степень больше \(2\), но меньше \(3\).
На ЕГЭ пользоваться калькулятором нельзя, но даже если бы было можно, нельзя записывать приближенные вычисления.
Поэтому, если перед нами задача первой части, ответ обязательно должен получиться «хороший», и его можно посчитать в уме.
В письменной части могут попасться и «плохие» числа; в этом случае пугаться не нужно, в ответе можно просто написать логарифм.
Например, ответ вполне может выглядеть так:
\(\displaystyle <<\log >_<3>>10\), или даже так: \(\displaystyle \frac<2+<<\log >_<3>>7><5>\).
Получается, что теперь мы можем мгновенно записать решение любого элементарного показательного уравнения:
Но увлекаться и халтурить тоже не стоит – если в ответе оставить \(\displaystyle x=<<\log >_<3>>81\), высший балл за задачу не поставят.
То есть, если ответ возможно упростить и представить в виде рационального числа, это обязательно нужно будет сделать.
Потренируйся на следующих простых примерах:
6 примеров для самостоятельной работы
Ответы:
Открыть ответы…
Чтобы открыть все задачи учебника, закрытые голубыми баннерами (как этот), зарегистрируйтесь один раз:
Область допустимых значений (ОДЗ)логарифма
Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:
То есть и аргумент, и основание должны быть больше нуля, а основание еще и не может равняться \( 1\).
Начнем с простого: допустим, что \( a=1\). Тогда, например, число не существует, так как в какую бы степень мы не возводили \( 1\), всегда получается \( 1\).
Более того, \( \displaystyle <<\log >_<1>>b\) не существует ни для какого \( \displaystyle b\ne 1\).
Но при этом \( \displaystyle <<\log >_<1>>1\) может равняться чему угодно (по той же причине – \( 1\) в любой степени равно \( 1\)).
Поэтому объект не представляет никакого интереса, и его просто выбросили из математики.
Похожая проблема у нас и в случае \( a=0\): \( 0\) в любой положительной степени – это \( 0\), а в отрицательную его вообще нельзя возводить, так как получится деление на ноль (напомню, что \( \displaystyle <^<-c>>=\frac<1><<^
При \( a 0\\x\ne 1\\x+2>0\end
Пример 1 (попробуй решить самостоятельно)
Найдите корень уравнения \( \displaystyle <<\log >_
Решение:
\( \displaystyle <<\log >_
Открыть ответы…
Чтобы открыть все задачи учебника, закрытые голубыми баннерами (как этот), зарегистрируйтесь один раз:
Основное логарифмическое тождество
Вспомним определение логарифма в общем виде:
Подставим во второе равенство вместо \( \displaystyle c\) логарифм:
Это равенство называется основным логарифмическим тождеством. Хотя по сути это равенство – просто по-другому записанное определение логарифма:
Реши еще следующие примеры:
Пример 2
Найдите значение выражения \( \displaystyle <<25>^<<<\log >_<5>>3>>\).
Пример 3
Решения примеров 2 и 3:
Открыть ответы…
Чтобы открыть все задачи учебника, закрытые голубыми баннерами (как этот), зарегистрируйтесь один раз:
Свойства логарифмов
К сожалению, задачи не всегда такие простые – зачастую сперва нужно упростить выражение, привести его к привычному виду, и только потом будет возможно посчитать значение.
Это проще всего сделать, зная свойства логарифмов.
Так что давай выучим основные свойства логарифмов. Каждое из них я буду доказывать, ведь любое правило проще запомнить, если знать, откуда оно берется.
Все эти свойства нужно обязательно запомнить, без них большинство задач с логарифмами решить не получится.
А теперь обо всех свойствах логарифмов подробнее.
Свойство 1 – степень аргумента
Доказательство:
Свойство 2 – сумма логарифмов
Сумма логарифмов с одинаковыми основаниями равна логарифму произведения: \( \displaystyle <<\log >_>b+<<\log >_>c=<<\log >_>\left( b\cdot c \right)\).
Доказательство:
Пример
Найдите значение выражения: \( \displaystyle <<\log >_<3>>5+<<\log >_<3>>0,6\).
Решение:
Открыть ответы…
Мы постоянно улучшаем этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)
А вот обещанное упрощение:
Зачем это нужно? Ну например: чему равно \( \displaystyle lo<
Теперь упрости сам:
Ответы:
Открыть ответы…
Мы постоянно улучшаем этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)
Свойство 3 – разность логарифмов
Разность логарифмов с одинаковыми основаниями равна логарифму частного:\( \displaystyle lo< |
Доказательство:
Все точно так же, как и в пункте 2:
Пример из прошлого пункта теперь становится еще проще:
Пример посложнее: \( \displaystyle \log _<2>^<2>2\sqrt<3>-\log _<2>^<2>\sqrt<3>—<<\log >_<2>>3\).
Догадаешься сам, как решить?
Здесь нужно заметить, что у нас нету ни одной формулы про логарифмы в квадрате. Это что-то сродни выражению \( \displaystyle <<2>^<<
Поэтому отвлечемся от формул про логарифмы, и подумаем, какие вообще формулы мы используем в математике чаще всего? Еще начиная с 7 класса!
Это – формулы сокращенного умножения. Нужно привыкнуть к тому, что они везде! И в показательных, и в тригонометрических, и в иррациональных задачах они встречаются. Поэтому их нужно обязательно помнить.
Нажми на ссылку «Формулы сокращенного умножения», и внимательно на них посмотри. Какую из них можно применить здесь?
Если присмотреться к первым двум слагаемым, становится ясно, что это разность квадратов:
Дальше все просто – применяем только что выученные правила 2 и 3. Что получилось?
Ответ для проверки:
Упрости сам:
Ответы:
Открыть ответы…
Мы постоянно улучшаем этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)
Свойство 4 – вынесение показателя степени из аргумента логарифма
Если в аргументе логарифма стоит степень, показатель этой степени можно вынести за знак логарифма: \( \displaystyle <<\log >_><^
>=n\cdot <<\log >_>b\)
Доказательство:
Можно понять это правило так:
То есть степень аргумента выносится вперед логарифма, как коэффициент.
Пример: Найдите значение выражения \( \displaystyle \frac<<<\log >_<2>>25><<<\log >_<2>>5>\).
Реши сам:
Ответы:
Открыть ответы…
Мы постоянно улучшаем этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)
Свойство 5 – вынесение показателя степени из основания логарифма
Доказательство:
Запоминаем: из основания степень выносится как обратное число, в отличии от предыдущего случая!
Свойство 6 – вынесение показателя степени из основания и аргумента логарифма
Если в основании и аргументе логарифма стоят степени, показатели этих степеней можно вынести за знак логарифма: \( \displaystyle <<\log >_<<^
>>><^ >=\frac \cdot <<\log >_>b\).
Свойство 7 – переход к новому основанию
Если основания логарифмов разные, то для того чтобы дальше работать с логарифмами нужно перейти к логарифмам с одним основанием: \( \displaystyle <<\log >_>b=\frac<<<\log >_
>b><<<\log >_ >a>\text< >\left( c>0;\text< >\ne \text <1>\right)\).
Доказательство:
Свойство 8 – замена местами основания и аргумента логарифма
Можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе: \( \displaystyle <<\log >_>b=\frac<1><<<\log >_>a>,\text< >\left( b\ne 1 \right)\).
Доказательство:
Рассмотрим еще несколько примеров.
Пример 1. Найдите значение выражения \( \displaystyle <<\log >_<5>>75+<<\log >_<5>>\frac<1><3>\).
Пример 2. Найдите значение выражения \( \displaystyle <<\log >_<3>>36-2<<\log >_<3>>2\).
Пример 3. Найдите значение выражения \( \displaystyle <<\log >_<8\sqrt[5]<4>>>\left( 32\sqrt[5] <2>\right)\).
Пример 4. Найдите значение выражения \( \displaystyle \frac<\log _<5>^<2>25\sqrt<10>-\log _<5>^<2>\sqrt<10>><<<\log >_<5>>250>.\).
Открыть ответы…
Мы постоянно улучшаем этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)
Самые бюджетные курсы по подготовке к ЕГЭ на 90+
Алексей Шевчук — ведущий курсов
Добавить комментарий Отменить ответ
21 комментарий
Отличный материал! Спасибо!
Спасибо, Саид. В каком вы классе?
Вы — это просто чу-до, и этот учебник тоже! Если бы я знала о вас в сентябре, я бы выбрала вашу онлайн школу
Спасибо большое, Бася! Очень приятно слышать. Желаем вам сдать ЕГЭ на 100 баллов! )
Как лайк поставить?
Будем считать этот коммент лайком. Спасибо!
хотела зарегистрироваться на вебинар 14 февраля, но не смогла: «сайт не может обеспечить безопасное соединение» может есть еще вариант?
Надежда, я зарегистрировал вас и отправил на почту доступы. Скажите, пожалуйста, где вы столкнулись с такой надписью? Можете написать или отправить ссылку?
Большое спасибо, все изложено четко и красиво!
Инна, очень рады, что понравилось! Заходите к нам еще! )
Это лучшее объяснение, что я встречала! Хорошая методика: простой язык, примеры и практика! Я благодарна Клеверу!
Спасибо, Ника! И за название тоже. «Клевер» — клёво! ))
Некоторые комментарии прошлых лет к этой статье:
Катерина
10 января 2018
Я получила очень хорошую для меня информацию.
Александр (Админ)
11 января 2018
Спасибо, Катерина. Нам очень приятно слышать, что наш учебник полезен.
Владимир
17 января 2018
Прекрасное объяснение! Просто великолепное! В примере после третьего свойства действительно есть опечатка. знак корня у третьего члена лишний. Есть также потерянный член в конце предпоследней строчки решения пятой задачи третьего свойства. В финальной строчке он нашелся 🙂
Алексей Шевчук
06 февраля 2018
Александр, примени свойство степени «произведение степеней с одинаковым основанием»: https://youclever.org/book/stepen-i-ee-svojstva
Дарья
10 декабря 2018
А как решать функцию логарифмическую, если логарифм под знаком модуля? Например y=[lgx]-lgx?
Шура
24 января 2019
Как сложить логарифмы если у обоих аргумент x, но у первого основание 2, а у второго 3?
Алексей Шевчук
04 февраля 2019
Шура, нужно воспользоваться формулой перехода к другому основанию Например, log_3 (x) = log_2 (x) / log_2 (3).
Олег
14 апреля 2019
Большое спасибо за очередную великолепную статью, все понятно.
Александр (админ)
14 апреля 2019
Олег, очень рады слышать! Удачи!
Олег
17 апреля 2019
Спасибо за статью, но СЛОЖНА
Александр (админ)
17 апреля 2019
Пожалуйста, Олег. Ну что поделать? Тяжело в ученье, легко на ЕГЭ )
Саня
06 сентября 2019
А что делать, если логарифмы с разными приколами? 0-0 Как их решать?
Алексей Шевчук
06 сентября 2019
Саня, посмотри статью про логарифмические уравнения, там некоторые приколы разобраны. https://youclever.org/book/logarifmicheskie-uravneniya-1
Алексей Шевчук
08 ноября 2019
Виталий, дело в том, что такие уравнения будут иметь действительные решения очень редко. Представим себе, что это уравнение (-2)^6x=-8. Тогда с одной стороны, x=0.5 является решением, но с другой стороны, когда мы решаем уравнение, у нас должна быть возможность воспользоваться свойствами степени: (-2)^6x = ((-2)^x)^6 — а теперь посмотрим, можем ли мы так делать? Подставим вместо x число 0.5: ((-2)^0.5)^6=-8. Вспомним, что такое степень 0.5? Это квадратный корень из числа. Но ведь мы не можем извлекать корень из отрицательного числа! Чтобы не возникало таких неприятностей, математики договорились не использовать отрицательные основания у показательной функции, а как следствие, и у логарифма. Но это касается только вычислений в действительных числах. Если мы рассматриваем также комплексные числа (это в которых можно извлекать корень из отрицательных чисел), то отрицательные основания возможны — но это уже не школьная математика.
Александр (админ)
08 ноября 2019
Отличное объяснение, Алексей! Снова вышли за пределы школьной математики. Это здорово! )
Виталий
12 ноября 2019
Спасибо за ответ. Понял, что это для облегчения начальной стадия обучения, с последующим переходом к более сложным вычислениям.
Антон
16 декабря 2019
Классное объяснение, спасибо!
Александр (админ)
16 декабря 2019
Антон, спасибо! Мы рады, что понравилось. Заходи еще! )
Света
07 января 2020
Спасибо очень понравилась то что не было не понятно все поняла
Александр (админ)
07 января 2020
Отлично, Света! Мы очень рады. Удачи тебе на экзаменах!
Александр (админ)
13 января 2020
То, что не нравится Полине Магаррамовой я переживу как-нибудь. Мне главное, чтобы вам нравилось 🙂
Евгений Вячеславович
06 февраля 2020
Классно… Если бы мне 19 лет назад так объясняли бы математику, я бы к егэ вообще не готовился бы, потому что все бы помнил и понимал. Так доходчиво и понятно я не встречал нигде. Спасибо вам.
Александр (админ)
06 февраля 2020
Спасибо, Евгений Вячеславович. Я вот тоже самое думаю, что, если бы мне объясняли также как здесь в свое время…. ))
Юлия Владимировна
13 мая 2020
Помогите решить: 2*log 1/2 (4x-5) — log1/2 *16x = log1/2(x-3)
Алексей Шевчук
14 мая 2020
Юлия Владимировна, двойку вносим в логарифм как степень аргумента: 2*log 1/2 (4x-5)=log 1/2 (4x-5)^2. Потом соединяем логарифмы по правилу вычитания: log 1/2 [(4x-5)^2 / 16x] = log1/2(x-3). Теперь можно от логарифмов избавиться: (4x-5)^2 /16x = (x-3) — получили обычное уравнение
Жахиян
27 мая 2020
В какую степень нужно возвести число 2 чтобы получить 8? как ответ может быть 3. По идей ответ дожен быть равно на 4 а не к 3.
Александр (админ)
27 мая 2020
Жахиян, вы говорите на какое число нужно УМНОЖИТЬ 2, чтобы получить 8. Это действительно 4. Но вопрос был В КАКУЮ СТЕПЕНЬ нужно возвести 2 чтобы получить 8. А это тройка: «два в третьей степени будет восемь» (2*2*2=8)
ООО,спасибо за последние слова,лучший сайт.
Определение логарифма
Графики логарифма
Свойства логарифма
Область определения, множество значений, возрастание, убывание
Логарифм является монотонной функцией, поэтому экстремумов не имеет. Основные свойства логарифма представлены в таблице.
Частные значения
Логарифм по основанию 10 называется десятичным логарифмом и обозначается так:
Логарифм по основанию e называется натуральным логарифмом:
Основные формулы логарифмов
Свойства логарифма, вытекающие из определения обратной функции:
Основное свойство логарифмов и его следствия
Формула замены основания
Логарифмирование – это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей преобразуются в суммы членов.
Потенцирование – это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов преобразуются в произведения сомножителей.
Доказательство основных формул логарифмов
Формулы, связанные с логарифмами вытекают из формул для показательных функций и из определения обратной функции.
Рассмотрим свойство показательной функции
.
Тогда
.
Применим свойство показательной функции
:
.
Обратная функция
Производная логарифма
Производная логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >
Для нахождения производной логарифма, его нужно привести к основанию e.
;
.
Интеграл
Выражения через комплексные числа
Поэтому логарифм, как функция от комплексного переменного, является не однозначной функцией.
Разложение в степенной ряд
При имеет место разложение:
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Вычисление логарифма числа онлайн
Знаков после запятой:
Онлайн калькулятор логарифмов
Калькулятор вычисляет логарифм числа онлайн. Можно вводить как десятичные дроби (в качестве разделителя для десятичных дробей можно использовать как точку, так и запятую), так и обычные (например, если нужно вычислить логарифм то в поле «число» можете смело писать 1/9).
Помните, что операция взятия логарифма определена только для положительных чисел, а основание логарифма должно быть положительным и не должно равняться единице.
Что такое логарифм числа?
Это равенство называют основным логарифмическим тождеством.
Примеры
Решение. По определению, равен показателю степени, в которую нужно возвести число
чтобы получить число
Так как
то эта степень равна двум. То есть
Видно, что для вычисления этого логарифма никакой калькулятор не нужен!
Так как то
Как видите, всё не так уж сложно!
На этом всё интересное о логарифмах не заканчивается, поэтому в продолжение этой статьи любознательным читателям рекомендуем прочитать о свойствах логарифмов.
Содержание:
Множеством (областью) значений показательной функции
Такое значение аргумента единственное, так как если и
то по следствию из п. 2.3 верно равенство c = d. Это единственное значение аргумента с называют логарифмом числа b по основанию a и обозначают
т. е.
Таким образом, равенство означает, что
Сформулируем определение логарифма еще раз.
Определение:
Пусть Логарифмом числа b по основанию а называется показатель степени, в которую нужно возвести число а, чтобы получить число b.
Приведем несколько примеров:
Нахождение логарифма числа называется логарифмированием.
Обозначим Тогда, согласно определению логарифма, верно равенство
т. е.
Это равенство называется основным логарифмическим тождеством.
Согласно этому тождеству, например, имеем: Основное логарифмическое тождество позволяет данное число b представить в виде степени с любым положительным основанием.
Например:
История логарифма
Логарифмы были изобретены в 1614 г. шотландским математиком Д. Непером (1550—1617) и независимо от него на 6 лет позднее швейцарским механиком и математиком И. Бюрги (1552—1632).
Оба исследователя хотели найти новое удобное средство арифметических вычислений, но их определения логарифма различны и у обоих не похожи на современные. Понимание логарифма как показателя степени с данным основанием впервые появилось в XVIII в. в работах английского математика В. Гардинера (1742). Широкому распространению этого определения логарифма более других содействовал Jl. Эйлер, который впервые применил в этой связи и термин «основание».
Термин «логарифм» принадлежит Неперу. Он возник из сочетания греческих слов логос — отношение и аритмос — число. Слово «логарифм», таким образом, означало «число отношения».
Пример:
а) Записать число в виде логарифмов по основанию
Решение:
а) По определению логарифма имеем:
б) По определению логарифма имеем:
Пример:
Между какими целыми числами находится число
Решение:
Пусть тогда верно равенство
Поскольку
По свойствам показательной функции с основанием 2 имеем
Значит,
находится между числами 4 и 5.
Ответ:
Пример:
Решение:
а) Поскольку то по определению логарифма имеем
б)
Ответ:
Логарифмы по основанию 10 имеют особое название — десятичные логарифмы. Десятичный логарифм числа b обозначается . Таким образом,
▲ Особое обозначение и название имеют не только десятичные логарифмы, но и логарифмы, основанием которых является число е:
Такие логарифмы называются натуральными.
Логарифмы по основанию е позволяют выражать математическую зависимость, которая характеризует многие биологические, химические, физические, социальные и другие процессы. По-видимому, этим объясняется и название «натуральные логарифмы», т. е. естественные (этот термин ввел в 1659 г. итальянский математик П. Менголи). Натуральные и десятичные логарифмы имели большое значение для облегчения вычислений в XVII—XX вв. до создания мощных современных вычислительных средств. Натуральные логарифмы имеют и большое теоретическое значение.▲
Основные свойства логарифмов
Теорема:
При любых положительных значениях b и с верно равенство:
Докажем утверждение (1).
По основному логарифмическому тождеству
по свойствам степени
Таким образом, имеем:
Отсюда по следствию из п. 2.3 получаем равенство (1).
Докажем утверждение (2). Преобразуем левую часть равенства (2):
I используя равенство (1), получим
Заметим, что равенство (2) можно доказать тем же способом, что и равенство (1), — сделайте это самостоятельно.
Равенство (1) означает, что логарифм произведения двух положительных чисел равен сумме логарифмов этих чисел.
Равенство (2) означает, что логарифм дроби с положительными. числителем и знаменателем равен разности логарифмов числителя и знаменателя.
Замечание. Равенства, доказанные в теореме 1 (как и другие равенства этого пункта), являются тождествами. Действительно, каждое из них превращается в верное числовое равенство при любых значениях a, b и с, для которых входящие в равенство выражения имеют смысл.
Теорема:
При любых значениях s и положительных значениях b верно равенство
По основному логарифмическому тождеству
по свойствам степени
Таким образом, имеем
Отсюда по следствию из п. 2.3 получаем равенство (3).
Следствие 1. Если числа одного знака, то имеет место равенство
Следствие 2. При любом целом имеет место равенство
Пример №1
Найти значение выражения:
Решение:
Ответ:
Теорема:
При любых значениях и
верно равенство
Способ 1. По основному логарифмическому тождеству имеем
Прологарифмировав левую и правую части этого тождества по основанию а, получим
Применив тождество (3), имеем
Так как Поэтому левую и правую части этого равенства можно разделить на
В результате получим тождество (6).
Способ 2. Пусть тогда
Логарифмируя обе части этого равенства по основанию а, получаем
Итак,
Тождество (6) называется формулой перехода от логарифма по одному основанию к логарифму по другому основанию.
Обычно в таблицах, калькуляторах даются значения логарифмов по основанию 10, а когда нужно найти значение логарифма по другому основанию, пользуются формулой перехода от логарифма по одному основанию к логарифму по другому основанию.
Следствием из тождества (6) при основании а = с является формула
(убедитесь в этом самостоятельно).
Пример №2
Найти значение выражения, если
Решение:
согласно тождеству (6) имеем
используя тождество (3), получим
используя тождество (1), имеем
с учетом условия
получим
6)
на основании тождеств (6) и (7) получим
по тождеству (3) и с учетом условия имеем
Ответ:
Следствие 3. Имеют место тождества:
Тождества (8) и (9) можно доказать, используя уже доказанные тождества из этого пункта.
Пример №3
Упростить выражение
Решение:
Используя определение логарифма, представим числа 1 и 3 в виде логарифмов по основанию 2:
по свойству (2) логарифмов имеем
воспользовавшись формулой (7), получим
Ответ:
Развитие науки, прежде всего астрономии, уже в XVI в. привело к необходимости громоздких вычислений при умножении и делении многозначных чисел. Эти вычислительные проблемы были в некоторой степени решены с открытием логарифмов и созданием таблиц логарифмов.
Логарифмическая функция
Рассмотрим выражение где х — переменная, а — постоянная,
Это выражение имеет смысл при любом значении х > 0 и не имеет смысла при любом значении
Таким образом, естественной областью определения выражения
является множество всех положительных действительных чисел, т. е. промежуток
Определение:
Логарифмической функцией называется функция вида где а — постоянная,
Область определения логарифмической функции — это естественная область определения выражения т.е. множество
Графики некоторых логарифмических функций изображены на рисунке 34. Эти изображения (как и для графиков других функций) можно было получить, строя их по точкам. Отметим некоторые особенности изображенных графиков.
График функции расположен справа от оси Оу и пересекает ось Ох в точке (1; 0).
Когда значения аргумента х уменьшаются, т. е. приближаются к нулю, то график этой функции «приближается» к оси Оу и при этом «круто» опускается вниз. А когда значения аргумента х увеличиваются, то график «медленно» поднимается вверх (ем. рис. 34). Аналогично для любой функции при а > 1 (рис. 35). График функции
расположен справа от оси Оу и пересекает ось Ох в точке (1; 0) (см. рис. 34).
Заметим, что когда значения аргумента х уменьшаются, т. е. приближаются к нулю, то график этой функции «приближается» к оси Оу и при этом «круто» поднимается вверх. А когда значения аргумента х увеличиваются, то график «медленно» опускается вниз. Аналогично для любой функции при 0 1 логарифмическая функция принимает отрицательные значения на интервале (0; 1) и принимает положительные значения на интервале
И при 0 1 логарифмическая функция возрастает на всей области определения. При 0 1 график логарифмической функции лежит в IV координатном угле, когда
и лежит в I координатном угле, когда
При 0 1 логарифмическая функция возрастает на области определения, а на рисунке 36 видно, что при 0
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Определение логарифма и его свойства
Что такое логарифм — понятие и определение
Благодаря логарифмам можно значительно упростить сложные алгебраические операции, к примеру, вместо умножения выполнить сложение, заменить возведение в степень умножением или делением. Таким образом, удобно решать громоздкие формулы. Для понимания метода применения логарифма можно рассмотреть практический пример. Предположим, что требуется найти решение следующего уравнения:
В начале следует определить степень, в которую можно возвести число 2, и в результате получить число 8. Решение подразумевает использование способа подбора чисел. Возводя 2 в степени, можно выяснить, что в третьей степени 2 равна 8. Вывод:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В результате ответом к задаче будет число 3.
Разберем второй пример:
Использовать главный метод подбора, как в предыдущем уравнении, не получится, так как работать предстоит не с целыми и даже не с рациональными числами. В данном случае целесообразно оперировать понятием логарифма. Запись будет иметь следующий вид:
В общем виде логарифм записывают, таким образом:
Логарифмом по основанию a от аргумента x является степень, в которую следует возвести число a, чтобы получить число x.
Основные свойства десятичных и натуральных логарифмов
Десятичным логарифмом называют какой-либо стандартный логарифм, основание которого равно 10.
Десятичный логарифм обозначают, как \(lg(a).\)
Примеры десятичных логарифмов:
Натуральным логарифмом называют логарифм по основанию е.
Натуральный логарифм обозначают, как ln(x). В обозначении е является экспонентой, числом-константой, которое приблизительно равно 2,718281828459…. Данное число нередко применяют при решении математических задач и доказательстве закономерностей.
Примеры натуральных логарифмов:
Свойства и правила, предусмотренные для обыкновенных логарифмов, распространяются также на натуральные и десятичные логарифмы. Все логарифмы обладают рядом свойств. Благодаря выведенным закономерностям, удается существенно упростить решение примеров и формул с помощью специальных преобразований и вычислений. Помимо рассматриваемых свойств, другие операции с логарифмами производить не представляется возможным. Свойства логарифмов:
Доказательства тождеств
Свойство 1: степень аргумента можно записать таким образом:
В процессе доказательства предположим, что:
Свойство 2: Сумма логарифмов, имеющих одинаковые основания, равна логарифму произведения:
При доказательстве следует предположить, что:
В таком случае, получим:
Доказательство представлено. Можно разобрать данное свойство на конкретном примере:
Решить уравнение можно так:
В процессе, применяя свойство логарифмов, была преобразована сумма логарифмов, но не разность, что мешает объединению данных логарифмов. Справедливо сделать наоборот, то есть «разбить» первый логарифм на пару. Упрощение будет иметь вид: \(\displaystyle <<\log >_<2>>80=<<\log >_<2>>\left( 16\cdot 5 \right)=<<\log >_<2>>\left( <<2>^<4>>\cdot 5 \right)=<<\log >_<2>><<2>^<4>>+<<\log >_<2>>5=4+<<\log >_<2>>5 \)
Подобнымм образом можно найти ответ на более сложные уравнения:
Решение будет следующим:
Приведемв качестве примера упрощение нескольких уравнений:
Свойство 3: Разность логарифмов, обладающих идентичными основаниями, равна логарифму частного:
Доказательство данного свойства схоже с подтверждением Свойства 2. Предположим, что:
Если рассмотреть в данном контексте задачу из предыдущего примера, то его решение существенно упрощается:
Можно найти решение более сложного уравнения:
В данном случае целесообразно воспользоваться формулами сокращенного умножения. В уравнении есть разность квадратов:
Далее можно воспользоваться Свойством 2 и 3:
В качестве примеров можно представить упрощение следующих уравнений:
\(\displaystyle \lg \sqrt<0,05>-\lg \sqrt<5>\)
Свойство 4: В том случае, когда аргумент логарифма содержит степень, ее показатель легко вынести за знак логарифма.
При доказательстве целесообразно воспользоваться определением логарифма. Предположим, что:
В итоге свойство доказано. Данную закономерность можно представить так:
Таким образом, степень аргумента переносят вперед логарифма в виде коэффициента.
Разобрать правило можно на примере поиска ответа на уравнение:
Решение будет иметь следующий вид:
Рассмотрим разные формы применения Свойства 4.
Свойство 5: В том случае, когда основание логарифма представляет собой степень, ее показатель представляется возможным убрать за знак логарифма:
В процессе доказательства свойства можно предположить, что:
При решении задач с помощью Свойства 5 необходимо обратить внимание на важный момент. Выносить степень из основания требуется в виде обратного числа. Это отличает данные манипуляции от предыдущего Свойства 4.
Свойство 6: В том случае. когда основание и аргумент логарифма содержат степени, показатели данных степеней можно вынести за знак логарифма:
Свойство справедливо и в том случае, когда степени одинаковые:
Свойство 7: В том случае, когда основания логарифмов неодинаковые, то для дальнейшего решения уравнения целесообразно привести логарифмы к одному основанию:
В результате свойство доказано.
Свойство 8: Основание и аргумент логарифма допустимо переставлять. В результате выражение будет «перевернутым», то есть логарифм встанет на место знаменателя:
Данная закономерность является частным случаем Свойства 7. При подстановке выражения:
В результате получим:
В качестве примера рассмотрим решение распространенных математических задач.
Найти значение выражения \(\displaystyle <<\log >_<5>>75+<<\log >_<5>>\frac<1><3>\)
В данном случае целесообразно применить Свойство 2:
Необходимо найти: \(\displaystyle <<\log >_<3>>36-2<<\log >_<3>>2\)
Благодаря упрощению выражения с использованием Свойства 3 и 4, получим:
Нужно вычислить: \(\displaystyle <<\log >_<8\sqrt[5]<4>>>\left( 32\sqrt[5] <2>\right)\)
В данном случае необходимо воспользоваться Свойством 7 и перейти к основанию 2:
Требуется решить уравнение: \(\displaystyle \frac<\log _<5>^<2>25\sqrt<10>-\log _<5>^<2>\sqrt<10>><<<\log >_<5>>250>\)
Как посчитать логарифм, операции, все формулы
Логарифм представляет собой степень, в которую необходимо возвести основание, чтобы получить аргумент. На калькуляторе расчет будет иметь следующий вид: \(2,321928\ldots\) и т.д. Данное число является иррациональным. По-другому выражение можно записать так:
Второй случай значительно удобнее, чем первое выражение. Произношение такого значения: «Решением уравнения два в степени икс равно пяти является логарифм по основанию два от пяти».
Степень числа и логарифма в любом случае имеет основание, которое расположено внизу. Вверху у степени есть показатель, а у логарифма – аргумент. Уравнение:
записывают в таком виде:
Прочитать полученное равенство можно так: «Логарифм по основанию два от восьми равен трем».
Читаться данное выражение будет так: «Логарифм по основанию a от b равен c»,
и означает: «Чтобы получить число b, нужно число a возвести в степень c»:
Необходимо решить: \(\displaystyle <<\log >_<2>>4\)
Нужно вычислить: \(\displaystyle <<\log >_<2>>\frac<1><8>\)
Исходя из того, что: \(\displaystyle 8=<<2>^<3>>\)
Требуется определить: \(\displaystyle <<\log >_<2>>0,25\)
В данном случае нужно рассмотреть основание. Есть ли при этом возможность представить 0,25 в виде 2 в определенной степени. Следует записать число, как обычную дробь:
Не во всех случаях представляется возможным подобрать нужную степень. Тогда целесообразно представить ответ в виде логарифма. Оставить такое решение без изменений не корректно. Следует выполнить ряд преобразований. Для этого выражение упрощают и записывают, как иррациональное число. При этом необходимо учитывать область допустимых значений переменных или ОДЗ. Существуют определенные ограничения:
Таким образом, согласно правилам, значение аргумента и основания должно быть больше нуля, а основание не должно быть равно 1. Данные положения достаточно просто доказать. Предположим, что a=1. В этом случае логарифм не будет существовать по причине того, что число 1, возведенное в любую степень, будет равно 1. Кроме того:
\(\displaystyle <<\log >_<1>>b\) не существует ни при каком \(\displaystyle b\ne 1\)
Однако: \( \displaystyle <<\log >_<1>>1\) может принимать любые значения.
В связи с этим, объект не интересен в плане решения уравнений и не применяется в математике. Аналогичная ситуация с a=0. При этом 0 в любой положительной степени равен 0. В отрицательную степень 0 возводить нельзя, так как недопустимо делить на ноль.
К примеру, выражение не будет существовать:
\(\displaystyle <<\log >_<4>>2=\frac<1> <2>(то \ есть \ \displaystyle <<4>^<\frac<1><2>>>=\sqrt<4>=2), а \ вот \ \displaystyle <<\log >_<-4>>2\)
В связи с этим, с отрицательными основаниями не принято работать при решении уравнений. Так как основание а является положительным, то при возведении его в любую степень получается также положительное число. Таким образом, аргумент должен соответствовать положительному значению. К примеру:
Начинать решение задач на логарифмы следует с записи ОДЗ. Например, дано уравнение:
\(\displaystyle <<\log >_
Согласно определению, логарифм \(\displaystyle <<\log >_
Согласно условию задачи, степень равна 2:
В результате можно записать стандартное квадратное уравнение в виде:
Данное равенство справедливо.
В этом случае запись неверна, так как основание не может быть отрицательным, то есть корень \(x=-1\) является «сторонним».
Исключить подобные ответы можно, если записывать ОДЗ на первом шаге решения уравнений:
Логарифмическим уравнением называют такое уравнение, неизвестные переменные которого расположены внутри логарифмов.
Наиболее простым логарифмическим уравнением является уравнение в виде:
Решить какое-либо логарифмическое уравнение можно с помощью приведения его к виду:
Далее выполняют преобразования полученного равенства для получения уравнения без логарифмов:
\(\displaystyle f\left( x \right)=g\left( x \right)\)
В процессе решения логарифмических уравнений используют несколько основных методов:
На основании определения логарифма: \( \displaystyle lo<
Применение свойств логарифма
Ввод новой переменной: при замещении \( \displaystyle lo<
t\) можно упростить логарифмическое уравнение относительно t
Логарифмирование: используется логарифм от правой и левой частей уравнения
Последний способ решения логарифмических уравнений, то есть мини-максный, можно доказать, таким образом:
\(\displaystyle \left\< \begin
Решать логарифмические уравнения можно разными методами, включая разделение выражения по множителям, потенциирование и замену. Однако алгоритм основан на одном правиле. Смысл упрощения заключается в сведении логарифмического уравнения к упрощенному варианту. К примеру:
Далее можно продолжать решение без логарифмов:
\(f\left( x \right)=g\left( x \right).\)
Правило можно сформулировать следующим образом: в том случае, когда уравнение имеет с левой и правой стороны от знака «равно» логарифмы, обладающие одним основанием, данные логарифмы допустимо исключить и решать уравнение без них.
После того, как найдены корни логарифмического уравнения, следует выполнить проверку.
Способ 1. Правило умножения на единицу разберемо с помощью примера:
\(\displaystyle 7\cdot 1\)
Но в этом случае логарифм не получен. Известно, что:
\(\displaystyle 7=7\cdot 1=7\cdot
Далее необходимо выражение \displaystyle 7 занести в логарифм. Такая операция возможна, если воспользоваться правилом:
Если применить данное правило к условиям задачи, получим:
В этом случае исходное логарифмическое уравнение примет следующий вид:
\(\displaystyle lo<
Далее можно исключить логарифмы и получить упрощенное уравнение:
В заключении необходимо выполнить проверку:
Способ 2. Правило «превращения единицы» можно рассмотреть на примере вычисления данного уравнения:
В данном случае целесообразно применить правило с названием «превращение единицы». Такая закономерность работает следующим образом:
Преобразованное исходное логарифмическое уравнение в виде многочлена можно записать следующим образом:
Можно отметить, что одна часть уравнения содержит сумму или разность логарифмов, которые обладают одним основанием. Тогда применима формула, рассмотренная ранее:
Если использовать данную закономерность в решении задачи, то начальное уравнение можно для сравнения записать в таком виде:
Получим, что в левой и правой частях уравнения есть логарифмы. Далее их можно исключить и записать линейное уравнение:
\(7-x=5\left( 3-x \right)\)
В конце требуется проверка:
Правильность решения доказана.
Следует учитывать, что наличие ноля в правой части выражения объясняется следующим равенством:
Способ 3. Использование свойств логарифма рассмотрим на примере задачи:
В данном случае есть два варианта решения:
Считать следует, начиная с правой стороны:
Далее необходимо разобраться с числом:
В данном случае потребуется применить свойство:
Исходя из того, что:
В таком случае левая часть примет вид:
\(\displaystyle \frac<1><3>\cdot \left( 8
\(\displaystyle 8
Далее необходимо проверить полученный результат:
Существует ряд обязательных формул, которые необходимы для решения логарифмических уравнений:
Примеры деления и умножения
В задачах на логарифмы нередко встречаются уравнения с операциями умножения и деления. Правила работы с такими примерами можно записать в виде справедливых равенств:
Если применять формулы, начиная с левой стороны, ОДЗ уменьшается. Переход от суммы или разности логарифмов к логарифму произведения или частного приводит к расширению ОДЗ.
Выражение \(loga(f(x)g(x))\) будет определяться только в двух ситуациях:
Требуется решить: \(lg2 + lg50\)
Следует применить формулу суммы логарифмов и воспользоваться определением десятичного логарифма:
\(lg2 + lg50 = lg100 = 2\)
Необходимо найти решение: \(lg125/lg5\)
С помощью формулы перехода к новому основанию запишем решение: