Как считать пропорцию

Как считать пропорцию

§ Задачи на пропорции. Как решить пропорцию

Как считать пропорцию

Решение задач на пропорции

Часто задачи на пропорции тесно связаны с процентами. Свои знания о процентах, вы можете освежить в разделе «Проценты».

Разбор примера

По традиции подчёркнем важные и числовые данные в задаче.

Обратите внимание, что нам нужно определить процент попаданий, а не процент пролетевших мимо стрел.

Поэтому вначале посчитаем, сколько стрел попало в цель. Сделать это не составит труда.

СтрелыПроценты
Всего выпущено50100 %
Попало в цель45x %

Чтобы правильно записывать нужные данные в таблицу, запомните простое правило.

Одинаковые наименования нужно записывать друг под другом. Проценты записываем под процентами, килограммы под килограммами и т.д.

Теперь, используя таблицу, составим нужную пропорцию и решим её с помощью правила «креста».

Как считать пропорцию

Ответ: 90% — процент попадания в мишень.

Видео

Уравнения с пропорцией

Существуют уравнения в виде обыкновенной дроби, в которых необходимо найти неизвестную величину. Для этого нужно рассмотреть основные их виды:

Различаются они степенным показателем. У первого типа степень переменной соответствует 1, второго — двойке, третьего — тройке и четвертого — четверке. При решении таких типов нужно выписать знаменатели отдельно, и решить их. Такие корни не являются решением исходной пропорции, поскольку знаменатели должны быть отличны от нулевого значения.

Решение линейного типа сводится к применению правила «крест-накрест». После чего нужно руководствоваться четвертым пунктом универсального алгоритма. Квадратное уравнение (ap 2 + bp + c = 0) решается при помощи разложения на множители (существует высокая вероятность сокращения степени с последующим упрощением выражения) или с использованием дискриминанта (D = b 2 — 4ac). Корни зависят от его значения:

По таким правилам были исследовано огромное количество функций. К нелинейным относятся следующие: прямые и обратные тригонометрические, гиперболические, показательные, логарифмические и сложные математические, состоящие из нелинейных зависимостей.

К прямым тригонометрическим относятся sin (p), cos (p), tg (p) и ctg (p), а к обратным — arcsin (p), arccos (p), arctg (p) и arcctg (p). Следует отметить, что гиперболическими являются sh, ch, th, cth, sech и csch. Показательная — z = a^y, а логарифмической — функция, имеющая операцию логарифмирования. Простые линейные могут объединяться с нелинейными. В таких случаях правило пропорции также не соблюдается.

Примеры решения задач с пропорцией

Чтобы потренироваться в составлении пропорций, решим вместе несколько задачек.

Задачка 1. Дана математическая пропорция: 15/3 = x/4

Ответ: в пропорции 15/3 = x/4, x = 20

Задачка 2. Найдите четвертый член пропорции: 18, 9 и 24.

Ответ: четвертый член пропорции — 12.

Задачка 3. 18 человек могут съесть пять килограммов суши за 8 часов, сколько часов понадобится 9 людям?

Ответ: 16 часов понадобится 9 людям, чтобы съесть все суши.

Задачка 4. Дана пропорция: 20/2 = y/4

Источник

Как решать пропорции — правила, методы и примеры вычислений

Математические операции необходимы не только для расчета каких-либо величин в научной сфере и во время учебы, но и в повседневной жизни. Многие люди сталкиваются с пропорциями. Решать их несложно, но если не знать свойств и правил, можно выполнить неверные вычисления. Специалисты рекомендуют получить теоретические знания, а затем перейти к их практическому применению.

Как считать пропорцию

Общие сведения

Изучение какого-либо термина в математике начинается с определения. Пропорцией вида x / y = v / z (x: y = v: z) называется равенство отношений двух чисел. Она представлена в виде правильной дроби, и состоит из следующих элементов, которые называются крайними (x и z) и средними (y и v) членами.

Следует отметить, что в некоторых сферах пропорциональная зависимость может быть представлена в немного другом виде. В этом случае знак равенства не указывается. Для удобства используется символ деления «:». Записывается в таком виде: a: b: c. Объяснение такой записи очень простое: для приготовления какого-либо вещества нужно использовать «а» частей одного компонента, b — другого и с — третьего.

Как считать пропорцию

Знак равенства не имеет смысла указывать, поскольку этот тип пропорциональной зависимости является абстрактным. Неизвестно, какой результат получится на выходе. Если взять за единицу измерения массу в кг, то и конечный результат получится в кг. В этом случае решать пропорцию не нужно — достаточно просто подставить данные, и получить результат.

Бывают случаи, когда следует посчитать пропорцию в процентах. Пример — осуществление некоторых финансовых операций.

Сферы применения

Пропорция получила широкое применение в физике, алгебре, геометрии, высшей и прикладной математике, химии, кулинарии, фармацевтике, медицине, строительстве и т. д. Однако ее нужно применять только в том случае, когда элементы соотношения не подчиняются какому-либо закону (методика исследования величин такого типа будет рассмотрена ниже), и не являются неравенствами.

В алгебре существует класс уравнений, представленных в виде пропорции. Они бывают простыми и сложными. Для решения последних существует определенный алгоритм. Кроме того, в геометрии встречается такие термин, как «гомотетия» или коэффициент подобия. Он показывает, во сколько раз увеличена или уменьшена фигура относительно оригинала.

Как считать пропорцию

Масштаб в географии является также пропорцией, поскольку он показывает количество см или мм, которые содержатся в какой-либо единице, зависящей от карты (например, в 1 см = 10 км). Специалисты применяютправило пропорции в высшей и прикладной математике. Расчет количества реактивов, вступающих в реакцию, для получения другого вещества применяется также пропорциональная зависимость.

Каждая хозяйка также применяет это соотношение для приготовления различных блюд и консерваций. В этом случае пропорция имеет немного другой вид: 1:2. Все компоненты берутся частями с одинаковыми размерностями или единицами измерения. Например, на 1 кг клубники необходимо 2 кг сахара. Расшифровывается такое соотношение следующим образом: 1 часть одного и 2 части другого компонентов.

В фармацевтике она также применяется, поскольку необходимо очень точно рассчитать массовую долю для каждого компонента лекарственного препарата. В медицине используется пропорциональная зависимость для назначения лекарства больному, дозировка которого зависит от массы тела человека.

Как считать пропорцию

Для приготовления различных строительных смесей она также используется, однако у нее такой же вид, как и для кулинарии. Например, для приготовления бетона М300 необходимы такие компоненты: цемент (Ц), щебень (Щ), песок (П) и вода (В). Далее следует воспользоваться таким соотношением, в котором единицей измерения является ведро: 1: 5: 3: 0,5. Запись расшифровывается следующим образом: для приготовления бетонной смеси необходимо 1 ведро цемента, 5 щебня, 3 песка и 0,5 воды.

Основные свойства

Для решения различных задач нужно знать основные свойства пропорции. Они действуют только для соотношения x / y = v / z. К ним можно отнести следующие формулы:

Первое свойство позволяет перевернуть правильные дроби соотношений двух величин. Это следует делать одновременно для левой и правой частей. Умножение по типу «крест-накрест» считается главным соотношением. С помощью его решаются уравнения и упрощаются выражения, в которых нужно избавиться от дробных частей. Найти неизвестный член пропорции можно также с помощью второго свойства, формулировка которого следующая: произведение крайних эквивалентно произведению средних элементов (членов).

Как считать пропорцию

Очень часто члены соотношения необходимо переставить для оптимизации вычислений. Для этого применяется свойство перестановки. При этом следует внимательно подставлять значения в формулу, поскольку неправильные действия могут существенно исказить результат решения. Этого можно не заметить. Для осуществления проверки следует подставить значение неизвестной в исходную пропорцию. Если равенство соблюдается, то получен верный результат. В противном случае необходимо найти ошибку или повторить вычисления.

Увеличение или уменьшение пропорции следует производить по четвертому свойству. Основной принцип: равенство сохраняется в том случае, когда уменьшение или увеличение числителя происходит на значение, которое находится в знаменателе. Нельзя отнимать от пропорции (от числителя и знаменателя равные числовые значения), поскольку соотношение не будет выполняться. Это является распространенной ошибкой, которая влечет за собой огромные погрешности при расчетах или неверное решение экзаменационных заданий.

Составить пропорцию можно с помощью вычитания и сложения. Этот прием применяется редко, но в некоторых заданиях может использоваться. Суть его заключается в следующем: отношение суммы крайнего и среднего элемента к суммарному значению других крайнего и среднего членов, которое равно отношению крайнего к среднему значению. Однако не ко всем выражениям можно применять свойства пропорции. Следует рассмотреть методику их определения.

Методика исследования

Пропорция применима только к линейным законам изменения величин. Примером этого является поведение простой тригонометрической функции z = sin (p). Величина «z» — зависимая переменная, которая называется значением функции. Переменная «p» — независимая величина или аргумент. В данном контексте она принимает значения углов в градусах. Для демонстрации того, что пропорция «не работает» необходимо подставить некоторые данные.

Кроме того, нужна таблица значений тригонометрических функций некоторых углов. Необходимо предположить, что p = 30, тогда z = sin (30) = 0,5. По свойству пропорции можно найти значение функции при р = 60, не используя таблицу. Для этого нужно составить пропорцию с неизвестным: 30 / 0,5 = 60 / х. Чтобы найти х («икс»), нужно воспользоваться свойством умножения «крест-накрест»: 60 * 0,5 = 30 * х. Уравнение решается очень просто: х = 60 * 0,5 / 30 = 30 / 30 = 1. Ответ получен очень быстро, и нет необходимости смотреть табличное значение.

Как считать пропорцию

В этом случае не так все просто. Если воспользоваться вышеописанной таблицей, то z = sin (60) = [3^(½)] / 2. Полученное значение не равно 1. Причина несоответствия — нелинейность функции. Математики для облегчения вычислений предлагают методику определения нелинейных выражений. Она состоит из следующих положений:

По таким правилам были исследовано огромное количество функций. К нелинейным относятся следующие: прямые и обратные тригонометрические, гиперболические, показательные, логарифмические и сложные математические, состоящие из нелинейных зависимостей.

К прямым тригонометрическим относятся sin (p), cos (p), tg (p) и ctg (p), а к обратным — arcsin (p), arccos (p), arctg (p) и arcctg (p). Следует отметить, что гиперболическими являются sh, ch, th, cth, sech и csch. Показательная — z = a^y, а логарифмической — функция, имеющая операцию логарифмирования. Простые линейные могут объединяться с нелинейными. В таких случаях правило пропорции также не соблюдается.

Как считать пропорцию

Универсальный алгоритм

Алгоритм позволяет решать уравнения, и найти неизвестный член пропорции. Для его реализации следует знать теорию о пропорциях, и методику обнаружения нелинейных функций. Он состоит из нескольких шагов, которые помогут правильно вычислить необходимую величину:

Существуют различные приложения, позволяющие решить пропорцию. Онлайн-калькулятор позволяет вычислить неизвестный компонент очень быстро. Кроме того, результат вычислений отображается после проведения расчетов. Для реализации последнего пункта необходимо рассмотреть некоторые типы равенств с неизвестными.

Уравнения с пропорцией

Существуют уравнения в виде обыкновенной дроби, в которых необходимо найти неизвестную величину. Для этого нужно рассмотреть основные их виды:

Как считать пропорцию

Различаются они степенным показателем. У первого типа степень переменной соответствует 1, второго — двойке, третьего — тройке и четвертого — четверке. При решении таких типов нужно выписать знаменатели отдельно, и решить их. Такие корни не являются решением исходной пропорции, поскольку знаменатели должны быть отличны от нулевого значения.

Решение линейного типа сводится к применению правила «крест-накрест». После чего нужно руководствоваться четвертым пунктом универсального алгоритма. Квадратное уравнение (ap 2 + bp + c = 0) решается при помощи разложения на множители (существует высокая вероятность сокращения степени с последующим упрощением выражения) или с использованием дискриминанта (D = b 2 — 4ac). Корни зависят от его значения:

Как считать пропорцию

Решение уравнений в виде пропорции осуществляется по такому же принципу. При этом рекомендуется использовать любые свойства. Необходимо проходить процесс обучения постепенно. Начинать нужно с простых примеров, а затем практиковаться на сложных заданиях. Первый тип был рассмотрен выше на примере sin (p).

Итак, необходимо решить уравнение [(t — 5) / (t — 2)] = [(t — 5) / (t — 1)]. Для начала следует определить тип функций каждого из элементов. Просмотрев список нелинейных выражений, можно сделать вывод о том, что все члены пропорции являются линейными. Далее нужно решить равенства с неизвестными, находящихся в знаменателях: t1 = 2 и t2 = 1. Корни не являются решениями уравнения.

Таким образом, для решения пропорций необходимо знать основные свойства, определение типа выражения по методике и алгоритм расчета.

Источник

Пропорция в математике

Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин.
Например, отношение 1/5 равно отношению 2/10.

Дроби, из которых составлена пропорция, всегда равны. Например, если в пропорции выполнить деление в обеих дробях, то получится число 1/5 (или 0,2) в обеих частях.

Все числа, находящиеся в пропорции (числители и знаменатели обеих дробей) называются членами пропорции. Эти члены подразделяются на два вида: крайние члены и средние члены.

где a, b, c, d — члены пропорции, a, d — крайние члены, b, c — средние члены.

Почему крайние члены называют крайними, а средние средними? Если записать пропорцию не в дробном, а в обычном виде, то получим: a : b = c : d

Числа a и d располагаются с краю, поэтому их назвали крайними, а числа b и c располагаются посередине, поэтому их назвали средними.

Главное свойство пропорции

Произведение крайних членов равно произведению средних.

где : a, d — крайние члены, b, c — средние члены. Получаем: a×d=b×c

Чтобы проверить, правильно ли составлена пропорция, нужно перемножить её крайние и средние члены. Если произведение крайних членов будет равно произведению средних членов, то такая пропорция в математике составлена правильно.

Заметим, что крайние и средние члены пропорции располагаются «крест-накрест», поэтому перемножаем члены пропорции «крест-накрест».

Рассмотрим пропорцию на примере

Юля в магазине купила 10 яблок и 5 бананов. Запишем отношение десяти яблок к пяти бананам — 10 : 5.
Если мы запишем данное отношение как дробь, то получим 10/5=2.
То есть, на один банан будет приходиться два яблока.

На второй день Юля купила в магазине 8 яблок и 4 банана. Получаем отношение 8 : 4.
Если мы запишем данное отношение как дробь, то получим 8/4=2.
То есть, на один банан будет приходиться два яблока.

Проверим правильность составления пропорции (основное свойство пропорции):

10 и 4— крайние члены; 5 и 8 — средние члены.
Получаем 10×4=5×8 ⇒ 40=40.
Произведение крайних членов равно произведению средних членов, значит пропорция составлена правильно.

На третий день Юля купила в магазине 6 яблок и 2 банана. Получаем отношение 6 : 2.
Если мы запишем данное отношение как дробь, то получим 6/2=3.
То есть, на один банан будет приходиться три яблока.

Данное отношение не является пропорциональным к первому или второму отношению.
То есть отношение 6/2 не пропорционально отношению 10/5 и также не пропорционально отношению 8/4:
6×5≠ 2×10 и 6×4≠ 2×8 — произведение крайних членов пропорции не равно произведению её средних членов. Значит пропорция в математике составлена неправильно.

Прямая и обратная пропорциональность

Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз.

Прямая пропорциональность — взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой увеличение другой во столько же раз. И наоборот, если одна величина уменьшается в определенное число раз, то другая уменьшается во столько же раз.

Рассмотрим пример 1.

Автобус едет со скоростью 60 км/ч. Это значит, что за один час проедет расстояние, равное 60 километрам, а за два часа — расстояние 120 км.
Увеличение времени в два раза привело к увеличению расстояния во столько же раз (в нашем примере в 2 раза).
Такие величины, как время и расстояние называют прямо пропорциональными. А взаимосвязь между такими величинами называют прямой пропорциональностью.
И наоборот. Если автобус едет со скоростью 60 км/час, то за 60 минут он проедет 60 километров, а за 30 минут — 30 километров. Таким образом, уменьшив время в два раза, расстояние уменьшится во столько же раз.

Обратная пропорциональность — взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой уменьшение другой во столько же раз. И наоборот, если одна величина уменьшается в определенное число раз, то другая увеличивается во столько же раз.

Рассмотрим пример 2.

Расстояние между двумя пунктами (А и Б) 160 км. Автобус выехал из пункта А со скоростью 80 км/ч и доехал до пункта Б за 2 часа (160 км : 80 км/ч = 2 ч).
На обратном пути автобус сломался и его скорость составила 40 км/ч. Поэтому на тот же путь и он затратил 4 часа (160 км : 40 км/ч = 4 ч).
Как видно из примера, уменьшение скорости привело к увеличению времени движения во столько же раз.
Такие величины, как скорость и время называют обратно пропорциональными. А взаимосвязь между такими величинами называют обратной пропорциональностью.

Источник

Задачи на проценты: стандартный расчет с помощью пропорций

Сегодня мы продолжаем серию видеоуроков, посвященных задачам на проценты из ЕГЭ по математике. В частности, разберем две вполне реальных задачи из ЕГЭ и еще раз убедимся, насколько важно внимательно читать условие задачи и правильно его интерпретировать.

Итак, первая задача:

Задача. Только 95% и 37 500 выпускников города правильно решили задачу B1. Сколько человек правильно решили задачу B1?

На первый взгляд кажется, что это какая-то задача для кэпов. Наподобие:

Задача. На дереве сидело 7 птичек. 3 из них улетело. Сколько птичек улетело?

Тем не менее, давай все-таки сосчитаем. Решать будем методом пропорций. Итак, у нас есть 37 500 учеников — это 100%. А также есть некое число x учеников, которое составляет 95% тех самых счастливчиков, которые правильно решили задачу B1. Записываем это:

37 500 — 100%
X — 95%

Как считать пропорцию

Перед нами классическая пропорция, но прежде чем воспользоваться основным свойством и перемножить ее крест-накрест, предлагаю разделить обе части уравнения на 100. Другими словами, зачеркнем в числителе каждой дроби по два нуля. Перепишем полученное уравнение:

Как считать пропорцию

По основному свойству пропорции, произведение крайних членов равно произведению средних членов. Другими словами:

Это довольно большие числа, поэтому придется умножать их столбиком. Напоминаю, что пользоваться калькулятором на ЕГЭ по математике категорически запрещено. Получим:

Итого ответ: 35 625. Именно столько человек из исходных 37 500 решили задачу B1 правильно. Как видите, эти числа довольно близки, что вполне логично, потому что 95% тоже очень близки к 100%. В общем, первая задача решена. Переходим к второй.

Задача на проценты №2

Задача. Только 80% из 45 000 выпускников города правильно решили задачу B9. Сколько человек решили задачу B9 неправильно?

Решаем по той же самой схеме. Изначально было 45 000 выпускников — это 100%. Затем из этого количества надо выбрать x выпускников, которые должны составить 80% от исходного количества. Составляем пропорцию и решаем:

45 000 — 100%
x — 80%

Как считать пропорцию

Давайте сократим по одному нулю в числителе и знаменателе 2-й дроби. Еще раз перепишем полученную конструкцию:

Как считать пропорцию

Основное свойство пропорции: произведение крайних членов равно произведению средних. Получаем:

45 000 · 8 = x · 10

Это простейшее линейное уравнение. Выразим из него переменную x :

x = 45 000 · 8 : 10

Сокращаем по одному нулю у 45 000 и у 10, в знаменателе остается единица, поэтому все, что нам нужно — это найти значение выражения:

Можно, конечно, поступить так же, как в прошлый раз, и перемножить эти числа столбиком. Но давайте не будем сами себе усложнять жизнь, и вместо умножения столбиком разложим восьмерку на множители:

x = 4500 · 2 · 2 · 2 = 9000 · 2 · 2 = 36 000

А теперь — самое главное, о чем я говорил в самом начале урока. Нужно внимательно читать условие задачи!

Что от нас требуется узнать? Сколько человек решили задачу B9 неправильно. А мы только что нашли тех людей, которые решили правильно. Таких оказалось 80% от исходного числа, т.е. 36 000. Это значит, что для получения окончательного ответа надо вычесть из исходной численности учеников наши 80%. Получим:

45 000 − 36 000 = 9000

Полученное число 9000 — это и есть ответ к задаче. Итого в этом городе из 45 000 выпускников 9000 человек решили задачу B9 неправильно. Все, задача решена.

Я надеюсь, что этот ролик поможет тем, кто самостоятельно готовится к ЕГЭ по математике. А у меня на этом все. С вами был Павел Бердов. До новых встреч!:)

Источник

Расчет пропорций и соотношений

Полученный результат пропорционального изменения элементов

То есть если есть некие числа A, B и C

если чисел четыре A, B, C и D

Самый просто пример где используется пропорция, это вычисление процентов.

В общем случае, применение пропорций настолько широко, что проще сказать где они не применяются.

Пропорции могуит быть использованы для определения расстояний, масс, объемов, а также количества чего бы то ни было, при одном важном условии: в пропорции, между разными объектами должны быть линейные зависимости. Ниже, на примере строительства макета медного всадника, Вы увидите как надо считать пропорции где есть нелинейные зависимости.

Определить сколько килограмм риса будет если взять 17 процентов от общего объема риса в 150 килограмм?

Теперь неизвестное число вычиляется элементарно 25.5″ border=»0″ alt=»неизвестное число» style=»width: 186px; height: 17px;»/>

То есть наш ответ 25, 5 килограмм риса.

С пропорциями также связаны интересные загадки, которые показывают, что не надо необдуманно применять пропорции на все случаи жизни.

Вот одна из них, немного модифицированная:

Для начала обратимся к справочникам.

Все дело в небольшом нюансе, который обязательно нужен учитывать. Все дело в том, что связь между массой и высотой скульптуры нелинейная, то есть нельзя сказать, что увеличив, к примеру, куб на 1 метр(соблюдая пропорции, что бы он кубом и остался), мы увеличим его вес на ту же величину.

Это легко проверить, на примерах:

1. склеем куб с длиной ребер в 10 сантиметров. Сколько туда войдет воды? Логично что 10*10*10 =1000 кубический сантиметров, то есть 1 литр. Ну и так как налили туда воду(плотность равна единице), а не другую жидкость, то и масса будет равна 1 кг.

2. склеем подобный куб но с длиной ребер в 20 см. Объем воды налитой туда будет равен 20*20*20=8000 куб. сантиметров, то есть 8 литров. Ну и вес естественно 8 кг.

Несложно заметить что связь между массой и изменением длины ребра куба нелинейная, а точнее говоря кубическая.

То есть при изменение фигуры ( при соблюдении пропорций / формы) линейного размера(высоты, ширины, глубины) масса/объем объемной фигуры меняется кубически.

Линейный размер у нас изменился с 5,35 метров до 1 метра, тогда масса(объем) изменится как кубический корень из 8000/x

И получаем, что макет Медного всадника в офисе фирмы при высоте в 1 метр будет весить 52 килограмма 243 грамма.

Но наш бот помогает вычислять пропорции в других, чаще встречающихся и практичных случаях.

Наверняка, он пригодится всем домохозяйкам, которые готовят еду.

Возникают ситуации, когда найден рецепт изумительного торта в 10 кг, но объем его слишком велик для того что бы сготовить.. Хотелось бы поменьше, например всего лишь в два килограмма, но как рассчитать все новые веса и объемы ингредиентов?

Вот тут то и поможет Вам бот который сможет рассчитать новые параметры 2-х килограммного торта.

Также бот поможет в расчетах для работящих мужчин, которые строят дом и им нужно рассчитать сколько нужно взять ингредиентов для бетона если у него только 50 килограммов песка.

Синтаксис

Для пользователи XMPP клиентов: pro

где строка имеет обязательные элементы

число1/число2- нахождение пропорции.

Что бы не пугались такого куцего описания, приведем здесь пример

200 300 100 3 400/100

Что говорит например о следующем:

Сколько надо взять ингредиентов что бы испечь всего 100 грамм блинчиков?

Как несложно заметить

400/100 это отношение типового рецепта и того выхода, который мы хотим получить.

Более подробно примеры мы рассмотрим в соответствующем разделе.

Примеры

Подружка поделилась замечательным рецептом

Тесто: 200 грамм мака, 8 яиц, 200 сахарной пудры, 50 грамм тертой булки, 200 грамм молотых орехов, 3 стакана ложки меда.
Мак варить 30 минут на слабом огне, растереть пестиком, добавить растопленный мед, молотые сухари, орехи.
Яйца взбить с сахарной пудрой, добавить в массу.
Тесто осторожно перемешать, вылить в форму, выпечь.
Остывший корж разрезать на 2 пласта, промазать кислым вареньем, потом кремом.
Украсить ягодами из варенья.
Крем: 1 стакан сметаны, 1/2 стакана сахара, взбить.

Но начав делать, вы обнаружили что у вас всего 6 яиц.

Какие же пропорции надо взять что бы не испортить рецепт?

Пишем в строку все данные (кроме крема) этого рецепта

200 8 200 50 200 3

а теперь показываем что у нас вместо 8 яиц, всего 6

Источник

Пропорция.

Поскольку 3,6 : 0,9 = 4 и 1,2 : 0,3 = 4, то верно и равенство 3,6 : 0,9 = 1,2 : 0,3, которое называют пропорцией (от лат. ргороrtio — «соизмеримость»).

Если соотношение а : b равно соотношению с : d, то тождество а : b = с:d называют пропорцией.

Пропорцию можно выразить также в виде:

Как считать пропорцию

Приведённые записи читают: «соотношение а к b равно соотношению с к d или «а соотносится к b, как с соотносится к d».

В пропорции 3,6 : 0,9 = 1,2 : 0,3 числа 3,6 и 0,3 — крайние члены, числа 0,9 и 1,2 — средние члены. Рассмотрим произведение крайних и средних членов 3,6•0,3 = 0,9 • 1,2

Это определяется так:

если Как считать пропорцию, то ad = bc

Главную особенность пропорции еще именуют правилом креста. Следуя главной особенности пропорции, можно рассчитать ее неизвестный член, если все остальные члены определены.

Чтобы определить неизвестный крайний член пропорции, необходимо произведение средних членов пропорции поделить на известный крайний член.

Чтобы определить неизвестный средний член пропорции, необходимо произведение крайних членов пропорции поделить на известный средний член. Или обобщенно можно сформулировать так: чтобы вычислить неизвестный член пропорции, следует перемножить диагональ с обоими известными членами, а далее поделить на оставшееся известное значение.

Правильна и следующая формулировка: если а, b, с и d числа отличные от нуля, то для них верно:

если Как считать пропорцию, то Как считать пропорцию

эта особенность называется свойством обращения пропорции.

Если в верной пропорции поменять местами средние члены или
крайние члены, то получившиеся новые пропорции тоже верны. Это свойство перестановки крайних и средних членов пропорции.

Если Как считать пропорцию, то

Как считать пропорцию(перестановка средних членов пропорции),

Как считать пропорцию(перестановка крайних членов пропорции).

Так же на практике пользуются правилом увеличения и уменьшения пропорции.

Если Как считать пропорцию, то равенство сохранится и в следующих случаях:

Как считать пропорцию(увеличение пропорции),

Как считать пропорцию(уменьшение пропорции).

Если Как считать пропорцию, то

Как считать пропорцию(составление пропорции сложением),

Как считать пропорцию(составление пропорции вычитанием).

Обратим внимание, что составление пропорций — ещё один способ решения задач на проценты.

Олово производят из минерала, который называют касситеритом. Сколько тонн олова получат из 25 т касситерита, если он содержит 78 % олова?

Решив 25•78 = 100х мы находим, что х = 19,5т.

Пропорциональность может быть прямой и обратной.

Источник

Пропорции в математике с примерами решения и образцами выполнения

Деление числа на 100

При делении на 100 получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать процент от суммы, нужно умножить их на размер 1%. А чтобы перевести известное значение, следует разделить его на размер 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты.

Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой?

Блогер за 8 дней может написать 14 постов. Сколько помощников ему понадобится, чтобы написать 420 постов за 12 дней?

Количество человек (блогер и помощники) увеличивается с увеличением объема работы, если ее нужно сделать за то же количество времени.

Если разделить 420 на 14, узнаем, что объем увеличивается в 30 раз.

Но так как по условию задачи на работу дается больше времени, то количество помощников увеличивается не в 30 раз. Таким образом:

Ответ: 20 человек напишут 420 постов за 12 дней.

Как посчитать проценты, составив пропорцию

сумма, составляющая 100% : 100% = часть суммы: доля в процентном соотношении.

Или можно записать её так: a: b = c: d.

Обычно пропорция читается как «а относится к b так же, как с относится к d». Произведение крайних членов пропорции равно произведению её средних членов. Чтобы узнать неизвестное число из этого равенства, нужно решить простейшее уравнение.

Пример 1

Сначала вычисляем процентную долю оставшегося шоколада.

90 г: 100% = 70 г: Х, где Х — масса оставшегося шоколада.

Х = 70 × 100 / 90 = 77,7%.

Теперь составляем пропорцию, чтобы выяснить, сколько масла нам нужно:

200 г: 100% = Х: 77,7%, где Х — нужное количество масла.

Х = 77,7 × 200 / 100 = 155,4.

Следовательно, в тесто нужно положить примерно 155 г масла.

Пример 2

Пропорция подойдёт и для расчёта выгодности скидок. Например, вы видите блузку за 1 499 рублей со скидкой 13%.

Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию

Сначала узнайте, сколько стоит блузка в процентах. Для этого отнимите 13 от 100 и получите 87%.

Составьте пропорцию: 1 499: 100 = Х: 87.

Х = 87 × 1 499 / 100.

Заплатите 1 304,13 рубля и носите блузку с удовольствием.

среда, 4 июля 2018 г.

Как видите, «во множестве не может быть двух идентичных элементов», но если идентичные элементы во множестве есть, такое множество называется «мультимножество». Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова «совсем». Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой «чур, я в домике», точнее «математика изучает абстрактные понятия», есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его «математическое множество зарплаты». Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: «к другим это применять можно, ко мне — низьзя!». Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами — на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально…

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует — всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова — значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов — у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких «мыслимое как не единое целое» или «не мыслимое как единое целое».

Как разметить острый угол

Гораздо реже возникает надобность в создании острых углов, в частности 45°. Для формирования подобных фигур формулы более сложные, однако это не самое проблематичное. Гораздо сложнее свести все линии, начерченные или натянутые шнурами — дело это непростое. Поэтому я предлагаю использовать упрощенный метод. Сначала размечается прямой угол 90°, а затем диагональ 141,4 делится на нужное количество равных частей. Например, чтобы получить 45°, диагональ нужно поделить пополам и от точки А провести линию через место деления. Таким образом мы получим два угла по 45 градусов. Если поделить диагональ на 3 части, то получится три угла по 30 градусов. Думаю алгоритм вам понятен.

Собственно я рассказал все, что мог рассказать, надеюсь все изложил понятным языком и у вас больше не возникнет вопросов как размечать и проверять прямые углы. Стоит добавить, что уметь делать это должен любой отделочник или строитель, ведь полагаться на строительный угольник небольшого размера — непрофессионально.

При ремонте, строительстве или самостоятельном изготовлении мебели часто бывает необходимо проверить или построить прямой угол. В любом случае, очень важна точность измерения, но если стороны угла равны нескольким метрам, то это сложно будет сделать с помощью угольника. Сегодня мы рассмотрим несколько универсальных методов замера прямого угла с помощью рулетки.

как посчитать соотношение чисел (шаг за шагом):

Отношение состоит из двух частей: числитель и знаменатель, как и дробь. Если у нас есть два отношения, и мы хотим вычислить соотношение для недостающего значения в соотношении, просто выполните следующие действия:

Вы можете воспользоваться нашим онлайн-калькулятором дробей, чтобы сложить, вычесть, умножить или разделить две или три дроби. Здесь у нас есть ручной пример, чтобы прояснить понимание:

Пример:

У нас есть 6 кусочков пиццы, из которых съедаются 2. Теперь мы хотим знать, сколько кусочков можно съесть из 54 кусочков пиццы?

Запишите соотношение в виде дроби как:

Съеденный ломтик / всего ломтик = 2/6

Съеденный ломтик / всего ломтик = x / 54

Приравняйте дроби друг к другу:

Мы рекомендуем вам использовать наш калькулятор соотношений, если вы собираетесь решать комплексные отношения больших чисел.

Зачем измеряют угол уклона покрытия и от каких факторов зависит эта величина

Угол ската крыши — это геометрическое образование пересечения двух плоскостей. Под ними подразумевается горизонтальная плоскость и аналогичная поверхность ската.

Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию

Итак, зачем измерять угол крыши:

ОБРАТИТЕ ВНИМАНИЕ!
Когда уклон установлен на отметке 45 градусов и выше, расчет снеговой нагрузки уже не принимают во внимание, поскольку такая кровля является «самоочищающейся».

Само собой, не все так хорошо с острым румбом, ведь увеличивая склон, пропорционально растет необходимость в дополнительных объемах как кровельных материалов, так и элементов конструкции. Также становится актуальным вопрос повышения стойкости несущих деталей.

Не менее важным при расчете уклона является специфика материала, который будет завершать структуру навеса с внешней стороны. Ни для кого ни секрет, что каждый тип верхнего элемента крова отличается эксплуатационными свойствами и стоимостью.

В то же время могут быть предусмотрены нюансы, которые характерны исключительно для такого вида верхнего слоя крыши. К примеру, возможно потребуется настилание дополнительных слоев, либо понадобится большие расходы на тепло- и гидроизоляцию.

Угол уклона зависит от розы ветров

Пожалуй, третьим по значимости фактором, от которого зависит рассчитываемый склон — это установление эксплуатируемого или не эксплуатируемого статуса. Не эксплуатируемая поверхность предусматривает исключение пространства на стыке перекрытия и внешней защитной конструкции.

Визуально трактовка понятия выглядит гораздо проще, поскольку при виде плоских вальм или при наличии небольшого уклона (в интервале 2-7%), сразу становится понятно, почему она получила такое название. Эксплуатируемая мансарда указывает на наличие чердачного пространства.

Основные определения

Математическая зависимость — это соответствие между элементами двух множеств, при котором каждому элементу одного множества ставится в соответствие элемент из другого множества.

Зависимости также можно классифицировать по формам: функциональная и статистическая.

Функциональная зависимость между двумя переменными величинами характеризуется тем, что каждому значению одной из них соответствует вполне определенное и единственное значение другой.

В математике функциональной зависимостью переменной Y от переменной Х называют зависимость вида y = f(x), где каждому допустимому значению X ставится в соответствие по определенному правилу единственно возможное значение Y.

Статистическая зависимость — это зависимость случайных величин, когда изменение одной переменной приводит к изменению другой.

Если изменение одной из случайных величин влечет изменение среднего другой случайной величины, то статистическую зависимость называют корреляционной. Сами случайные величины, связанные корреляционной зависимостью, оказываются коррелированными.

Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин. Пропорциональными называются две взаимно-зависимые величины, если отношение их значений остается неизменным.

Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз. Проще говоря — это зависимость одного числа от другого.

Есть две разновидности пропорциональностей:

Коэффициент пропорциональности — это неизменное отношение пропорциональных величин. Он показывает, сколько единиц одной величины приходится на единицу другой. Коэффициент пропорциональности обозначается латинской буквой k.

Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию Как считать пропорцию

Как посчитать проценты с помощью соотношений

В некоторых случаях можно воспользоваться простыми дробями. Например, 10% — это 1/10 числа. И чтобы узнать, сколько это будет в цифрах, достаточно разделить целое на 10.

Пример

Вы нашли брюки за 2 300 рублей со скидкой 25%, но у вас в кошельке только 2 000 рублей. Чтобы узнать, хватит ли денег на обновку, проведите серию несложных вычислений:

100% — 25% = 75% — стоимость брюк в процентах от первоначальной цены после применения скидки.

2 400 / 4 × 3 = 1 800. Именно столько рублей стоят брюки.

Свойства пропорции и формула

Если Вас интересует конкретная формула пропорции, то в самом простом и распространенном варианте пропорция представляет собой такое равенство (формулу): a/b = c/d, в нем a, b, c и d являются отличными от нуля четырьмя числами.

Один процент — это сотая часть от числа. Данное понятие используется, когда нужно обозначить отношение доли к целому. Кроме этого, в процентах можно сравнивать несколько величин, при этом обязательно указывая, относительного какого целого проценты вычисляются. Например, расходы выше доходов на 10 % или цена на железнодорожные билеты возросла на 15 % в сравнении с тарифами прошлого года. Число процентов выше 100 означает, что доля превышает целое, как часто бывает при статистических расчетах.

Процент как финансовое понятие — плата, заемщика кредитору за предоставление денег во временное пользование. В бизнесе встречается выражение «работать за проценты». В данном случае подразумевается, что размер вознаграждения зависит от прибыли или оборота (комиссионные). Обойтись без вычисления процентов невозможно в бухгалтерии, бизнесе, банковском деле. Чтобы упростить расчеты, разработан онлайн-калькулятор процентов.

Калькулятор позволяет вычислить:

При решении задач на калькуляторе процентов нужно оперировать тремя значениями, одно из которых неизвестно (по заданным параметрам вычисляется переменная). Сценарий расчета следует выбирать, исходя из заданных условий.

Методика проведения расчетов

При проектировании крыши нужно в обязательном порядке проводить ряд расчетов, среди которых всегда должен присутствовать расчет угла наклона скатов. Данный параметр напрямую влияет на конструкцию крыши: при увеличении наклона снижается снеговая нагрузка, но увеличивается воздействие ветра, поэтому стропильную систему приходится дополнительно усиливать. Для обустройства скатов под большим углом требуется еще и большее количество материалов, что негативно сказывается на стоимости строительства.

Перед тем, как узнать градус наклона крыши, нужно рассчитать эксплуатационную нагрузку на крышу, для чего требуется два параметра:

Упрощенный алгоритм расчетов сводится к следующим действиям:

Вывод

Вот, как просто можно вычислить прямой угол без использования каких-либо строительных инструментов и приборов. Использовать можно самое простое, но в то же время весьма действенное средство, которое вкупе с использованием имеющихся знаний и бесхитростных расчётов, может помочь произвести измерение.

При использовании предложенных величин, ключевым становится финальный замер между двумя отметками, которые были сделаны ранее. Расстояние, которое будет равняться точно 5 метрам, покажется, что он прямой. Если же величина будет больше или меньше 5 метров, это будет означать, что он прямым не является.

Источник

Пропорция

Продолжаем изучать соотношения. В данном уроке мы познакомимся с пропорцией.

Что такое пропорция?

Пропорцией называют равенство двух отношений. Например, отношение Как считать пропорциюравно отношению Как считать пропорцию

Как считать пропорцию

Данная пропорция читается следующим образом:

Десять так относится к пяти, как два относится к одному

Дроби, из которых составлена пропорция, всегда равны. Например, если в пропорции Как считать пропорциювыполнить деление в обеих дробях, то получится число 2 в обеих частях:

Как считать пропорцию

Предположим, что в классе 10 девочек и 5 мальчиков

Как считать пропорцию

Запишем отношение десяти девочек к пяти мальчикам:

Преобразуем данное отношение в дробь

Как считать пропорцию

Выполнив деление в этой дроби, мы получим 2. То есть десять девочек так будут относиться к пяти мальчикам, что на одного мальчика будет приходиться две девочки

Как считать пропорцию

Теперь рассмотрим другой класс в котором две девочки и один мальчик

Как считать пропорцию

Запишем отношение двух девочек к одному мальчику:

Преобразуем данное отношение в дробь:

Как считать пропорцию

Выполнив деление в этой дроби, мы снова получим 2. То есть две девочки так будут относиться к одному мальчику, что на этого одного мальчика будут приходиться две девочки:

Как считать пропорцию

В нашем примере десять девочек так относятся к пяти мальчикам, как и две девочки относятся к одному мальчику.

Пример 2. Рассмотрим отношение 12 девочек к 3 мальчикам

Как считать пропорцию

а также отношение 12 девочек к 2 мальчикам

Как считать пропорцию

Данные отношения не являются пропорциональными. Другими словами, мы не можем записать, что Как считать пропорцию, поскольку первое отношение, как видно на рисунке показывает, что на одного мальчика приходятся четыре девочки, а второе отношение показывает, что на одного мальчика приходятся шесть девочек.

Поэтому отношение Как считать пропорциюне пропорционально отношению Как считать пропорцию.

Как считать пропорцию

Вторая рассмотренная нами пропорция была Как считать пропорцию. Мы пришли к выводу, что она составлена неправильно, поэтому поставили между дробями Как считать пропорциюи Как считать пропорциюзнак не равно (≠). Если выполнить деление в этих дробях, получим числа 4 и 6. Понятно, что 4 не равно 6.

Можно проверить это, выполнив деление в этих дробях, то есть разделить 4 на 2, а 8 на 4. В результате с двух сторон получатся двойки. А 2 равно 2

Как считать пропорцию

Все числа, находящиеся в пропорции (числители и знаменатели обеих дробей) называются членами пропорции. Эти члены подразделяются на два вида: крайние члены и средние члены.

В нашей пропорции Как считать пропорциюкрайние члены это 4 и 4, а средние члены это 2 и 8

Почему крайние члены называют крайними, а средние средними? Если записать пропорцию не в дробном, а в обычном виде, то сразу станет всё понятно:

Числа 4 и 4 располагаются с краю, поэтому их назвали крайними, а числа 2 и 8 располагаются посередине, поэтому их назвали средними:

Как считать пропорцию

С помощью переменных пропорцию можно записать так:

Как считать пропорцию

Данное выражение можно прочесть следующим образом:

a так относится к b, как c относится к d

Смысл данного предложения уже понятен. Речь идет о членах, участвующих в соотношении. a и d — это крайние члены пропорции, b и c — средние члены пропорции.

Основное свойство пропорции

Основное свойство пропорции выглядит следующим образом:

Произведение крайних членов пропорции равно произведению её средних членов.

Мы знаем, что произведение это ни что иное, как обычное умножение. Чтобы проверить правильно ли составлена пропорция, нужно перемножить её крайние и средние члены. Если произведение крайних членов будет равно произведению средних членов, то такая пропорция составлена правильно.

Например, проверим правильно ли составлена пропорция Как считать пропорцию. Для этого перемножим её крайние и средние члены. Легко заметить, что крайние и средние члены пропорции располагаются «крест-накрест», поэтому в умножении нет ничего сложного. Перемножаем члены пропорции «крест-накрест»:

Как считать пропорцию

4 × 4 = 16 — произведение крайних членов пропорции равно 16.

2 × 8 = 16 — произведение средних членов пропорции так же равно 16.

4 × 4 = 2 × 8

4 × 4 = 2 × 8 — произведение крайних членов равно произведению средних членов. Значит пропорция Как считать пропорциюсоставлена правильно.

Пример 2. Проверить правильно ли составлена пропорция Как считать пропорцию

Проверим равно ли произведение крайних членов пропорции произведению её средних членов. Перемножим члены пропорции крест-накрест:

Как считать пропорцию

2 × 6 = 12 — произведение крайних членов пропорции равно 12

3 × 1 = 3 — произведение средних членов пропорции равно 3

2 × 6 ≠ 3 × 1 — произведение крайних членов пропорции НЕ равно произведению её средних членов. Значит пропорция Как считать пропорциюсоставлена неправильно.

Поэтому в пропорции Как считать пропорциюразумнее заменить знак равенства (=) на знак не равно (≠)

Как считать пропорцию

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Источник

Пропорции в математике с примерами решения и образцами выполнения

Определение пропорции:

Связь между четырьмя алгебраическими выражениями А, В, С и D, имеющая вид

Как считать пропорцию

называется пропорцией.

(Равенство Как считать пропорциютеряет смысл и перестает быть пропорцией как при В = О, так и при D = 0. Оно теряет смысл и перестает быть пропорцией и тогда, когда В и D равны нулю одновременно.)

Как считать пропорцию

В пропорции Как считать пропорциювеличины А и D называются крайними, а В и С средними членами. Далее выражение Как считать пропорциюназывается первым отношением, а Как считать пропорциювторым; А и С называются предыдущими членами этих отношений, а В и Dпоследующими.

Как считать пропорцию

Главное свойство пропорции

Умножив левую и правую части пропорции

Как считать пропорцию

на произведение bd, получим ad = be, т. е. во всякой пропорции произведение крайних членов равно произведению средних.

Составление пропорции по данному равенству двух произведений

Пусть pq = ху. Разделив левую и правую части этого равенства на qx, получим

Как считать пропорцию

Этот результат можно сформулировать следующим образом.

Если произведение двух чисел равно произведению двух других, то из этих четырех чисел можно составить пропорцию, беря множители одного произведения за крайние, а множители другого произведения за средние члены пропорции. (При этом дополнительно требуется, чтобы оба последующих члена пропорции не оказались равными нулю.)

Перестановка членов пропорции

Пусть ad = be и числа а, b, с, d — все отличны от нуля. Разделив левую и правую части равенства ad = bc первый раз на bd, второй на ab, третий на ас и четвертый на cd, получим соответственно четыре пропорции:

Как считать пропорцию

Поменяв местами отношения в этих равенствах, получим еще четыре пропорции:

Как считать пропорцию

Этот результат показывает, что в пропорции можно менять местами средние и крайние члены и ставить оба крайних члена на места средних, а оба средних на места крайних.

Производные пропорции

1. Прибавив к левой и правой частям пропорции Как считать пропорциюпо единице, получим

Как считать пропорцию

Как считать пропорцию

т. е. во всякой пропорции сумма членов первого отношения так относится к своему последующему, как сумма членов второго отношения — к своему последующему.

2. Вычтя из левой и правой частей пропорции Как считать пропорциюпо единице, получим:

Как считать пропорцию

Как считать пропорцию

т. е. во всякой пропорции разность членов первого отношения так относится к своему последующему, как разность членов второго отношения — к своему последующему.

3. Разделив левую часть равенства Как считать пропорциюна левую часть равенства Как считать пропорциюи правую на правую, получим:

Как считать пропорцию

т. е. во всякой пропорции сумма членов первого отношения так относится к своему предыдущему, как сумма членов второго отношения — к своему предыдущему.

4. Разделив левую часть равенства Как считать пропорциюна левую часть равенства Как считать пропорциюи правую на правую, получим:

Как считать пропорцию

т. е. во всякой пропорции разность членов первого отношения так относится к своему предыдущему, как разность членов второго отношения —к своему предыдущему.

5. Разделив левую часть равенства Как считать пропорциюна левую часть равенства Как считать пропорциюи правую на правую, получим:

Как считать пропорцию

т. е. во всякой пропорции сумма членов первого отношения так относится к их разности, как сумма членов второго отношения — к их разности.

Из пропорции Как считать пропорциюмы вывели пять производных пропорций. Однако надо иметь в виду, что из пропорции Как считать пропорциюможно было бы получить сколько угодно производных пропорций.

Например, умножив обе части пропорции Как считать пропорциюна число а, получим Как считать пропорцию. Прибавив к левой и правой частям последнего равенства число Как считать пропорцию, будем иметь, что

Как считать пропорцию

Как считать пропорцию

т. е. получим новую производную пропорцию.

Определение неизвестного члена пропорции

Пусть в пропорции Как считать пропорциючисла а, с, d известны, a х изображает число неизвестное. Тогда по свойству пропорции cx = ad, откуда Как считать пропорцию, т. е. неизвестный средний член пропорции равен произведению крайних членов, деленному на известный средний. Аналогично определяется и неизвестный крайний член.

Примеры:

1. Найти неизвестное число х из пропорции Как считать пропорцию, где а, b и с числа известные.

Составим производную пропорцию по правилу: сумма членов первого отношения так относится к своему последующему члену, как сумма членов второго отношения к своему последующему:

Как считать пропорцию

Как считать пропорцию

Как считать пропорцию

2. Найти неизвестное х из пропорции Как считать пропорциюСоставим производную пропорцию по правилу: сумма членов первого отношения так относится к их разности, как сумма членов второго отношения к их разности, т. е.

Как считать пропорцию

Как считать пропорцию

Как считать пропорцию

Ряд равных отношений

Основное свойство ряда равных отношений

Пусть имеется ряд равных отношений:

Как считать пропорцию

Обозначим общее значение всех этих отношений буквой k. Тогда

Как считать пропорцию

Как считать пропорцию

Складывая левые и правые части этих равенств, получим:

Как считать пропорцию

Как считать пропорцию

Как считать пропорцию

Как считать пропорцию

Итак, доказано следующее:

если несколько отношений равны друг другу, то отношение суммы их предыдущих членов к сумме последующих равно каждому из этих отношений.

Пример:

Пусть длины Как считать пропорциюсторон одного многоугольника (рис. 53) пропорциональны длинам Как считать пропорциюсторон другого многоугольника, т. е.

Как считать пропорцию

По свойству ряда равных отношений получим:

Как считать пропорцию

Как считать пропорцию

где Р и Q периметры многоугольников.

Прямая пропорциональность

Сначала рассмотрим несколько примеров.

Пример:

Пусть буква х обозначает в годах возраст сына, а буква у — возраст отца и пусть в данный момент сыну один год, а отцу 25 лет.

Составим таблицу значений х и соответствующих им значений буквы у. В третьей строке этой таблицы выпишем значения отношения Как считать пропорцию:

Как считать пропорцию

В этом примере отношение Как считать пропорцию(отношение возраста отца к возрасту сына) не остается неизменным. Оно с течением времени убывает.

Пример:

Пусть буква х обозначает в сантиметрах длину стороны квадрата, а буква у — площадь квадрата в квадратных сантиметрах.

Составим таблицу, подобную предыдущей.

Как считать пропорцию

Отношение Как считать пропорциюи здесь не остается неизменным. Оно возрастает при возрастании х.

Пример:

Пусть буква х обозначает в кубических сантиметрах объем ртути при температуре 0°, а буква у — вес этой ртути в граммах. Известно, что 1 куб. см ртути при температуре 0° весит 13,6 г.

Опять составим таблицу значений х, у и Как считать пропорцию.

Как считать пропорцию

Этот третий пример существенно отличается от двух предыдущих. Здесь отношение Как считать пропорциюсохраняет неизменное значение.

Определение:

Две величины у и х называются прямо пропорциональными (или просто пропорциональными), если при всех их возможных изменениях отношение Как считать пропорциюостается равным одному и тому же числу и если при х = 0 значение у также равно нулю.

Значит, вес ртути и объем ртути при постоянной температура являются величинами пропорциональными.

Возраст отца и возраст сына не пропорциональны.

Также не пропорциональны сторона квадрата и его площадь.

Пусть изменяющиеся величины у и х пропорциональны. Тогда отношение Как считать пропорциюбудет равно некоторому постоянному числу.

Обозначая это постоянное число буквой k, получим:

Как считать пропорцию

Как считать пропорцию

Следовательно, если величины у и х пропорциональны и отношение Как считать пропорциюравно k, то у выражается в зависимости от х формулой

Как считать пропорцию

Число k называется коэффициентом пропорциональности (величины у по отношению к величине х).

Теперь докажем обратное положение. Пусть

Как считать пропорцию

где k — постоянное число.

Отсюда следует, что при х = 0 и у = 0 и что Как считать пропорциюА это и означает, что величины у и х пропорциональны.

Из того что Как считать пропорциюследует, что Как считать пропорцию, или что Как считать пропорциюОтсюда можно сделать следующий вывод:

Если коэффициентом пропорциональности величины у по отношению к величине х служит постоянное число k, то коэффициентом пропорциональности величины х по отношению к величине у будет служить число Как считать пропорцию.

Приведем еще один пример пропорциональных величин. Путь s, пройденный при равномерном движении, пропорционален. времени t, т. е.

Как считать пропорцию

Здесь постоянное число v есть коэффициент пропорциональности величины s по отношению к величине t (v есть скорость равномерного движения).

Сделаем еще два замечания.

Замечание:

Если имеется два ряда чисел:

Как считать пропорцию

Как считать пропорцию

Как считать пропорцию

то числа одного из этих рядов называются пропорциональными числам другого ряда.

Замечание:

Если имеются только два постоянных числа а и b, то бессмысленно говорить о них, что они пропорциональны или не пропорциональны.

В этом случае можно интересоваться либо характером этих чисел, либо их разностью, либо их отношением и т. д.

В заключение решим две простые задачи на пропорциональные величины.

Задача:

На карте в масштабе Как считать пропорциюрасстояние между двумя пунктами равно 42,5 см. Определить, чему равно это расстояние на карте в масштабе Как считать пропорцию

Решение:

Длина на карте прямо пропорциональна масштабу. Поэтому.

Как считать пропорцию

Задача:

С помощью непосредственного измерения установили, что при повышении температуры рельса на 24°С его длина увеличивается на 1,5 мм. Требуется вычислениями определить изменение длины рельса при понижении его температуры на 40°С. (Считать изменение длины рельса величиной, прямо пропорциональной изменению температуры.)

Решение:

Обозначив искомое изменение (в мм) буквой х, получим:

Как считать пропорцию

Как считать пропорцию

т. е. при понижении температуры рельса на 40°С его длина сократится на 2,5 мм.

Обратная пропорциональность

Сначала приведем примеры.

1. Рассмотрим изменяющийся прямоугольный параллелепипед с квадратным основанием, имеющий неизменный объем, равный 3600 куб. см (рис. 54).

Пусть буква х обозначает в сантиметрах изменяющуюся сторону основания, а буква у — изменяющуюся высоту параллелепипеда.

Как считать пропорцию

легко видеть, что произведение ху не остается неизменным при постоянстве объема.

2. Рассмотрим изменяющийся прямоугольник, имеющий неизменную площадь, равную 100 кв. см.

Пусть буква х обозначает одно изменяющееся измерение (например, длину прямоугольника), а буква у — другое изменяющееся измерение (ширину). Пусть х и у выражены в сантиметрах.

Так как произведение измерений прямоугольника равно его площади, то величины х и у при всех своих возможных изменениях будут давать в своем произведении число 100, т. е. произведение изменяющихся величин х и у будет оставаться неизменным.

Существенное отличие второго примера от первого заключается в том, что в нем произведение ху остается неизменным, в то время как в первом оно изменяется.

Определение:

Две величины х и у называются обратно пропорциональными, если при всех их возможных изменениях произведение ху остается равным одному и тому же числу.

Обозначая это число буквой k, получим

Как считать пропорцию

Как считать пропорцию

Следовательно, если величины х и у обратно пропорциональны, то величина у выражается через величину х по формуле следующего вида:

Как считать пропорцию

Число k называется коэффициентом обратной пропорциональности.

Длина прямоугольника и ширина прямоугольника при заранее заданной площади прямоугольника являются величинами обратно пропорциональными. Коэффициентом обратной пропорциональности служит как раз эта площадь.

Сторона основания прямоугольного параллелепипеда с квадратным основанием и высота параллелепипеда при заранее заданном объеме не являются величинами обратно пропорциональными.

Задача:

Зал освещается m лампами по а свечей каждая. Сколькими лампами в b свечей можно получить ту же освещенность зала?

Число ламп и число свечей каждой лампы при данной освещенности зала являются величинами обратно пропорциональными. Поэтому, обозначая число ламп в b свечей буквой x, получим

Как считать пропорцию

Как считать пропорцию

Пропорциональное деление

Задача:

Число А разделить на n слагаемых прямо пропорционально числам Как считать пропорцию

Обозначим искомые слагаемые буквами Как считать пропорциюТогда по условию задачи

Как считать пропорцию

Пользуясь свойством ряда равных отношений, получим

Как считать пропорцию

Как считать пропорцию

Как считать пропорцию

Задача:

Число А разделить на n слагаемых обратно пропорционально числам Как считать пропорцию

Обозначим искомые слагаемые буквами Как считать пропорциюТогда согласно условию задачи

Как считать пропорцию

Как считать пропорцию

По свойству ряда равных отношений получим

Как считать пропорцию

Как считать пропорцию

Как считать пропорцию

Пропорции и пропорциональная зависимость

Как считать пропорцию

члены а и d называются крайними, а b и с средними.

При изложении свойств пропорции будем считать, что ни один из членов пропорции не равен нулю.

Пример:

Как считать пропорциюотношение числа 7 к числу 2. Предыдущий член здесь 7, последующей 2.

Пример:

Как считать пропорциюпропорция. Крайние члены здесь 10 и 2, средние— 4 и 5.

Главное свойство пропорции

Теорема:

Во всякой пропорции произведение крайних
членов равно произведению средних.

Доказательство:

Как считать пропорцию

Умножим обе части равенства (1) на bd, получим

Как считать пропорцию

Теорема:

Если произведение двух чисел
равно произведению двух других чисел, то из этих четырех чисел можно составить пропорцию^ крайними членами которой являются сомножители одного из двух произведений, а средними—сомножители другого.

При этом предполагается, что ни один из сомножителей не равен нулю.

Доказательство:

Как считать пропорцию

a, b, с, d все отличны от нуля. Разделим обе части равенства на bd, получим

Как считать пропорцию

Пример:

Как считать пропорцию— пропорция. Произведение крайних ее членов равно 20, произведение средних ее членов также равно 20.

Пример:

8 • 9 = 3 • 24 — равенство двух произведений.
Разделим обе части этого равенства на 9 • 24, получим пропорцию

Как считать пропорцию

Определение неизвестного члена пропорции

Теорема:

Средний член пропорции равен произведению крайних, деленному на другой средний. Крайний член пропорции равен произведению средних, деленному на другой крайний.

Как считать пропорцию

Как считать пропорцию

На основании теоремы 1 имеем

Как считать пропорцию

Разделим обе части равенства (4) на с, получим равенство (2). Разделим обе части равенства (4) на d, получим равенство (3). Теорема доказана.

Пример:

Найти х, если Как считать пропорцию

Решение:

Как считать пропорцию

Пример:

Найти х, если Как считать пропорцию

Решение:

Как считать пропорцию

Перестановка членов пропорции

Теорема:

Во всякой пропорции можно переставить
средние члени, переставить крайние члени, переставить и средние члени и крайние, средние поставить на место крайних, а крайние на место средних.

Иными словами, если

Как считать пропорцию

Как считать пропорцию

(переставлены средние члены),

Как считать пропорцию

(в (1) переставлены крайние члены),

Как считать пропорцию

(в (1) переставлены и средние и крайние члены),

Как считать пропорцию

(средние поставлены на место крайних, крайние — на место средних).

Доказательство:

Как считать пропорцию

Разделим обе части равенства (6) на cd, получим равенство (2). Точно так же, разделив обе части равенства (6) на аb, а затем на ас, получим равенства (3) и (4). Равенство (5) получается из равенства (4) посредством перестановки отношений. Теорема доказана.

Следствие:

Переставим отношения в равенствах (I), (2), (3), получим еще три пропорции

Как считать пропорцию

Таким образом, всякую пропорцию посредством перестановки ее членов можно представить в восьми различных видах.

Производные пропорции

Теорема:

1) Во всякой пропорции сумма членов первого отношения так относится к последующему члену этого отношения, как сумма членов второго отношения относится к своему последующему.
2) Во всякой пропорции разность членов первого отношения так относится к последующему члену этого отношения, как разность членов второго отношения относится к своему последующему.

Иными словами, если

Как считать пропорцию

Как считать пропорцию

Доказательство:

Прибавим к каждой части равенства (1)
по 1, получим равенство (2). Вычтем из каждой части равенства (1) по 1, получим равенство (3). Теорема доказана.

Теорема:

1) Во всякой пропорции сумма членов первого отношения так относится к предыдущему члену этого отношения, как сумма членов второго отношения относится к своему предыдущему.
2) Во всякой пропорции разность членов первого отношения так относится к предыдущему члену этого отношения, как разность членов второго отношения относится к своему предыдущему.

Иными словами, если

Как считать пропорцию

Как считать пропорцию

Доказательство:

Разделим равенство (2) почленно на
равенство (1), т. е., левую часть равенства (2) разделим на левую часть равенства (1), а правую часть равенства (2) на правую часть равенства (1). Получим равенство (4). Разделив равенство (3) почленно на равенство (1), получим равенство 5). Теорема доказана.

Теорема:

Во всякой пропорции сумма членов первого
отношения так относится к их разности, как сумма членов второго отношения относится к их разности, если только эти разности отличны от нуля.

Иными словами, если

Как считать пропорцию

Как считать пропорцию

Доказательство:

Разделив почленно равенство (4) на
равенство (5), получим равенство (6).

Ряд равных отношений

Теорема:

Если даны несколько равных отношений* то
сумма всех предыдущих членов отношений относится к сумме всех последующих как любой из предыдущих к своему последующему.

Доказательство:

Пусть имеется несколько равных отношений

Как считать пропорцию

Обозначим результат деления Как считать пропорциюна Как считать пропорциюбуквой q. Так как все отношения ряда (1) равны между собой, каждое из них также равно q. Таким образом,

Как считать пропорцию

Как считать пропорцию

Сложив почленно все равенства (2), имеем

Как считать пропорцию

Как считать пропорцию

Задача:

Как считать пропорцию

Доказать, что при любых Как считать пропорциюотличных от нуля,

Как считать пропорцию

Решение:

Умножим каждый, член первого отношения на Как считать пропорциюполучим пропорцию

Как считать пропорцию

Как считать пропорцию

Как считать пропорцию

На основании теоремы 8 имеем

Как считать пропорцию

Задача:

Решить уравнение Как считать пропорцию

Решение:

Пользуясь теоремой 7 § 5, имеем

Как считать пропорцию

Пропорциональная зависимость

Мы много раз составляли уравнения, выражающие зависимость между величинами, и могли наблюдать, что. зависимости эти бывают весьма разнообразны.

При решении многих задач мы встречаемся с двумя величинами, зависимость между которыми такова, что при изменении этих величин их отношение остается неизменным. Такие величины называются прямо пропорциональными, а зависимость между ними — пропорциональной зависимостью.

Для примера приведем несколько задач, в которых мы встретимся с величинами, находящимися в пропорциональной зависимости.

Задача:

Скорость течения реки 3 км в час. Плот за t часов прошел вниз по реке S км. Составить уравнение, выражающее зависимость между S и t.

Задача:

С каждого гектара собрано 30 ц ржи и, таким образом, с k га собрано А ц. Составить уравнение, выражающее зависимость между А и k.

Задача:

Основание прямоугольника 2 см, высота h см, площадь Q Как считать пропорцию. Составить уравнение, выражающее зависимость между Q и h.

Задача:

1 м материи стоит 20 руб. За m м этой материи
уплатили N pyб. Составить уравнение, выражающее зависимость между N и m.

Мы рассмотрели четыре задачи, которые по своему содержанию относятся к различным областям практической деятельности. Нетрудно убедиться, что в каждой из этих задач мы действительно имеем дело с прямо пропорциональными величинами.

Как считать пропорцию

Так, в первой задаче отношение расстояния (в ), пройденного плотом, к времени (в часах), в течение которого плот находился в пути, всегда одно и то же и равно 3. Поэтому расстояние, которое проходит плот вниз по реке, пропорционально времени, в течение которого плот находится в пути, при условии, что скорость течения реки повсюду одна и та же.

Точно так же во второй задаче количество ржи, собранной с нескольких гектаров, пропорционально количеству ржи, собранной с одного гектара, при условии, что с каждого гектара собрано по одному и тому же количеству ржи и т. д.

Заметим, что уравнения, к которым мы пришли в рассмотренных задачах, имеют один и тот же вид. В этих уравнениях одна, из величин равна произведению некоторого числового множителя на другую величину. Этот множитель называется коэффициентом пропорциональности. В первой задаче коэффициент
пропорциональности равен 3, во второй задаче он равен 30, в третьей задаче он равен 2, в четвертой задаче он равен 20.

Таким образом, пропорциональная зависимость между величинами всегда выражается уравнением y = kx, где kкоэффициент пропорциональности. Известно, что зависимость между двумя величинами может быть наглядно представлена таблицей, а затем и графиком.

Для примера представим таблицей зависимость, выражаемую уравнением S = 3/ (первая задача):

Как считать пропорцию

Построим график зависимости S = 3t (рис. 19). Обратим внимание на следующие обстоятельства:

Как считать пропорцию

и т. д. (для первого столбца это отношение не имеет смысла; так как на нуль делить нельзя).

2, График представляет собой луч, выходящий из начала координат (при t= 0, S = 0). (Доказательство этого утверждения здесь провести нельзя, так как для этого требуются некоторые сведения из геометрии.)

То же самое можно наблюдать и при графическом представлении любой другой пропорциональной зависимости между двумя величинами.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Как считать пропорцию

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *