Как сделать индуктивный щуп
САМОДЕЛЬНЫЙ ЩУП ДЛЯ ОСЦИЛЛОГРАФА
Самодельные осциллографы перестают быть редкостью по мере развития микроконтроллеров. И естественным образом возникает потребность в щупе для него. Желательно со встроенным делителем. Некоторые из возможных конструкций рассмотрены в данной статье.
Щуп собран на отрезке фольгированного стеклотестолита и помещен в металлическую трубку, выполняющую роль экрана. Чтобы не вызывать аварийных ситуаций, когда и если щуп падает на включенное испытуемое устройство, трубка покрыта термоусадкой. Без покрытия заготовка выглядит вот так:
Щуп в разобранном виде:
Конструкции могут быть разными. Просто нужно учитывать некоторые вещи:
В моем случае соединение трубки с экраном (точнее с обратной стороной стеклотестолита) выполнено припаиванием пружинки на тектолит, которая и создает контакт между экраном и платой щупа.
В качестве иглы использовал «Папу» от разъема типа ШР. Но ее можно выполнить и из любого другого подходящего стержня. Разъем от ШР удобен тем, что его «Маму» можно впаять в зажим, который можно будет при необходимости надевать на щуп.
Подбор провода
Отдельного упоминания заслуживает подбор провода. Правильный провод выглядит так:
Миниджек 3,5 мм расположен рядом для масштаба
Правильный провод представляет из себя более-менее обычный экранированный провод, с одним существенным отличием – центральная жила у него одна. Очень тонкая и выполнена из стальной проволоки, а то и проволоки с высоким удельным сопротивлением. Почему именно так поясню немного позже.
Такой провод не сильно распространен и найти его достаточно непросто. В принципе, если вы не работаете с высокими частотами порядка десятка мегагерц, особой разницы, использовав обычный экранированный провод, вы можете и не ощутить. Встречал мнение, что на частотах ниже 3-5 МГц выбор провода не критичен. Ни подтвердить, ни опровергнуть не могу – нет практики на частотах выше 1 МГц. В каких случаях это может сказываться тоже скажу позже.
Самодельные осциллографы нечасто имеют полосу пропускания в несколько мегагерц, поэтому используйте тот провод, который найдете. Просто стремитесь подобрать такой, у которого центральные жилы потоньше и их поменьше. Встречал мнение, что центральная жила должна быть потолще, но это явно из серии «вредных советов». Малое сопротивление проводу осциллографа без надобности. Там токи в наноамперах.
И важно понимать, чем ниже собственная емкость изготовленного щупа, тем лучше. Это связано с тем, что когда вы подключаете щуп к исследуемому устройству, вы тем самым подключаете дополнительную емкость.
Если подключаете напрямую на выход логического элемента либо в ИБП, т.е. к достаточно мощному источнику сигнала, имеющему достаточно малое собственное сопротивление, то все будет отображаться нормально. Но если в цепи есть значительные сопротивления, то емкость щупа будет сильно искажать форму сигнала, т.к. будет заряжаться через это сопротивление. А это означает, что вы уже не будете уверены в достоверности осциллограммы. Т.е. чем ниже собственная емкость щупа, тем шире диапазон возможных применений вашего осциллографа.
Принципиальные схемы щупов
Собственно схема щупа, которую я применил, предельно проста:
Это делитель на 10 для осциллографа с входным сопротивлением 1 мегом. Сопротивление лучше составить из нескольких, соединенных последовательно. Переключатель просто замыкает напрямую добавочное сопротивление. А подстроечный конденсатор позволяет согласовать щуп с конкретным прибором.
Пожалуй вот более правильная схема, которую стоило бы рекомендовать:
Она явно лучше по допустимому напряжению, так как пробивное напряжение резисторов и конденсаторов СМД обычно принимают за 100 вольт. Встречал утверждения, что они выдерживают и 200-250 вольт. Не проверял. Но если вы исследуете достаточно высоковольтные цепи, стоит применить именно такую схему.
Я ее никогда не делал, рекомендаций по настройке (подбору конденсаторов С2, С3, С4) дать не могу.
Немного обещанной теории
Емкость прямо пропорциональна площади проводников и обратно пропорциональна расстоянию между ними. Там еще есть коэффициент, но для нас это не важно сейчас.
Имеем два проводника. Центральная жила и экран провода. Расстояние между ними определяется диаметром провода. Площадь экрана сильно снизить не получится. Да и не надо. Остается снижать ПЛОЩАДЬ ПОВЕРХНОСТИ ЦЕНТРАЛЬНОЙ ЖИЛЫ.
Т.е. снижать ее диаметр насколько это технически целесообразно без потери механической прочности.
Ну а чтобы повысить эту самую прочность при уменьшении диаметра надо выбрать материал попрочнее.
Провод можно представить так:
Распределенная емкость по длине провода. Ну а чем больше будет удельное сопротивление материала центральной жилы, тем меньшее влияние соседние участки (соседние емкости) будут оказывать друг на друга. Поэтому целесообразен провод с высоким удельным сопротивлением. По этой же самой причине нецелесообразно делать провод щупа слишком длинным.
Разъемы рассматривать не буду. Лишь скажу, что оптимальным для осциллографа считаю разъемы BNC. Они чаще всего и применяются. Миниджек, аудиоразъем я бы применять не рекомендовал (хотя сам применяю, в силу того, что не использую осциллограф в цепях со значительными напряжениями). Он опасен. Дернули провод при проведении исследований цепей с хорошим напряжением. Что происходит далее? А далее миниджек, скользя по гнезду, может вызвать замыкание. И даже если в силу разных причин ничего не произошло, на самом миниджеке будет присутствовать это напряжение. А если он упадет к вам на колени? А там открытый центральный контакт и земля рядом.
Лето, жарко, любите работать в трусах? Выбирайте BNC (не реклама). BNC тем и хорош. Его не выдернешь просто так. А даже если и случилось – он закрытый. Ничего опасного произойти не должно, то что в трусах, не пострадает))
Дополнительную информацию можно почерпнуть из цикла статей Входные узлы самодельных осциллографов. Так, теорией поутомлялись, теперь
Щуп № 2
Он хорош тем, что его можно вставить так:
Или вот так, ему безразлично, он свободно крутится.
Устроен он примерно так:
Единственное, что на нем еще будет сделано. Отверстие для выхода провода земли из щупа будет залито каплей термоклея, чтобы сложнее было вырвать его при случайном рывке и провод будет зафиксирован в рукоятке отрезком спички, заточенным под пологий клин.
Чтобы не оборвать и не открутить центральную жилу. Кстати это самый простой способ «лечить» дешевые китайские щупы для тестера, чтобы провод не отламывался от наконечника.
На что стоит обратить внимание: Экран доходит почти до самого наконечника. Не должно быть под пальцами значительного по площади открытого участка центральной жилы, иначе вы будете любоваться наводками с рук на дисплее ослика.
Изготавливаем щупы для мультиметра. Мультиобзор. Щупаем силикон ™
Под общим названием «щупаем силикон» я пишу обзоры о щупах и прочих наконечниках для тестеров, осциллографов и т.д. В данном обзоре я осуществляю давнюю мечту — изготавливаю модульные щупы для настольного тестера. Модульные щупы — это провода которые оканчиваются стандартными штекерами типа «банан», которые одной стороной втыкаются в гнезда тестера, а на другую надеваются наконечники соответствующие задаче — это могут быть и наконечники с 2мм иглами как у «обычных» щупов, и иголки, и крокодилы. Концепция удобна именно возможностью оперативно поменять наконечник на максимально подходящий к задаче. Чтобы не валить всё в слишком уж большую кучу — будет два обзора: на собственно изготовление щупов и на нужные для работы наконечники.
ВНИМАНИЕ! под катом присутствуют оскорбительно грязные руки, кое-как прикрытые пикселями! воздержитесь от перехода под кат, если это может как-то травмировать вашу тонкую душевную организацию! на совместимость с ios не проверено!
Для изготовления щупов нам потребуется провод и «бананы»-«папы». Начнем с провода, а точнее с его выбора. Во-первых щупов мне нужно минимум два комплекта — себе и брательнику, во-вторых как ни крути а это расходник, и есть смысл взять провода с запасом, к тому же в этом случае можно сделать несколько щупов разной длины. Отсюда — выбор необходимой длины по 5м провода каждого цвета на комплект является идеальным решением. Далее нужно выбрать сечение. Тут придется искать компромисс, как, впрочем, и с длиной. Выбирать придется исходя из необходимости измерять большой ток, гибкости, веса провода. Практика показала, что измерять большие токи мне нужно довольно редко, а также что большая длина, как и большое сечение — это лишний вес, что часто прямо мешает. И если уменьшить длину в нашем случае будет довольно просто, то с сечением потом ничего уже не сделаешь. Выбор в итоге пал на провода сечением 20AWG, что примерно соответствует нашему 0.5мм2, и ток через такой провод допускается (очень грубо!) до 10-11А (тут я взял значение из таблички для однопроволочных проводов, чисто для оценки).
Провода поставляются двумя кусками по 5м каждого цвета, всё это смотано и засунуто в пакет.
Общая длина у меня получилась 4.96м, что простительно. 😉 Взвесить к сожалению забыл, взвесил только после того как отрезал и распаял по 110см от каждого куска. остаток 3.86м весит 78.5г
По всей длине провода имеются надписи, которые я переписал на бумажку чтобы не ломать глаза по фоткам:
Каждый провод имеет 20 жил диаметром 0.17мм, что дает нам суммарное сечение 0.4539мм2, при том что 20AWG это 0.518мм2. Но 21AWG это уже 0.4мм2, то есть даже если считать что я измерил толщину идеально точно (а вполне мог чуть передавить жилки микрометром) — «недосыпали» сечения совсем чуть-чуть, и это будет 20.5AWG 😉 одним словом, считаю что и тут в пределах погрешности.
Сопротивление я додумался измерить тоже только после того как провод покоцал, но для этих 3.86м у меня получилось 0.1376 Ом, что дает 0.0366 Ом/м, при табличных значениях 0.0357 Ом/м для 0.5мм2 провода.
Провода гибкие, не магнитятся, отлично лудятся
Но при этом в определенной мере держат форму
Наружный диаметр — 2.5мм
Паяльника температурой 350 градусов не боятся, на холоде не дубеют.
Теперь переходим к бананам. Первые два вида — ровно такие же как у модульных щупов моего тестера
Диаметр отверстия для провода — порядка 4.2мм.
Ничего не магнитится, под покрытием металл или сплав желтого (в смысле не белого) цвета, наверно латунь. На фотках толком цвет не разобрать. Сами пружины сидят достаточно туго, не болтаются. Зазор минимальный, возможно даже будут распираться торцами, как задумано изначально.
Второй вариант, который я буду использовать для изготовления данных щупов — т.н. стэкируемые коннекторы. Их фишка в том, что провод отводится сбоку, и в коннектор можно воткнуть еще один такой же, а в него еще один и т.д. Забегая вперед для наглядности:
Не магнитятся, желтый металл и всё такое. Лудится после сцарапывания покрытия изумительно.
Бывают аналогичные коннекторы со складной защитной втулкой над самим «папой». Но в них к сожалению можно ставить только такие же «складные» бананы, что меня не совсем устроило, и выбор пал на обозреваемые.
Ну и приступим к сборке. Продеваем провод в отверстие и паяем его к лыске. Можно предварительно зачистить и залудить лыску и провод. Не забываем надеть корпус разъема!
Собираем:
Результат:
Примерно так. И коннекторы и провода вполне понравились, могу смело рекомендовать к покупке. Некоторым минусом в данной конструкции можно посчитать то что провод болтается в разъеме и не имеет защиты от перегиба/переламывания на выходе, но это в принципе решается одним-двумя слоями термоусадки, либо выбором провода бóльшего сечения, что к сожалению кроме увеличения диаметра изоляции приведет и к увеличению массы щупа, чего не хотелось бы. Но в данном «настольном» применении даже с этими недостатками оно проработает долго, как мне кажется.
Прямые соединители применю для ремонта щупов для тестера из этого обзора. Ремонтировал скорее из интереса и для эстетики чем по необходимости
Было. Как видим сломался «кабельный фиксатор» (или как правильно перевести strain relief?) что приводит к переламыванию провода в месте его выхода из корпуса. один раз я уже это дело чинил, но на тот момент нового банана у меня не было, натянул термоусадку, которая опять разболталась.
В этот раз я взял термоусадку с клеевым слоем — думаю, конструкция протянет подольше.
Как видим — и тут отличный результат, лучше предыдущего по причине более толстого провода.Но более толстый — это более тяжелый, что к сожалению не всегда удобно.
В следующем обзоре я расскажу какие я купил наконечники для работы на столе.