Как сделать кислород в космосе

Американские ученые, возможно, решили проблему производства кислорода в космосе

Несмотря на то, что в космосе есть кислород, основная его часть существует не в той форме, который мы привыкли дышать — молекулярным кислородом, или O2. Специалисты Калифорнийского технологического института (Калтех) заявляют, что создали реактор, позволяющий перерабатывать диоксид углерода в молекулярный кислород, что в перспективе может не только помочь в борьбе с климатическими изменениями на Земле, но еще и наладить производства кислорода в космосе. Об этом сообщает статья, опубликованная журналом Nature Communications.

Как сделать кислород в космосе

Как производить кислород в космосе?

Дефицит кислорода является одним из самых главных препятствий в освоении дальнего космоса. Земля – это единственное место, где объемы этого газа достаточны для выживания человечества, но необходимость брать с собой большие запасы этого важного для жизни элемента в дальние космические полеты будет очень затратной и непосильной задачей. Например, на той же Международной космической станции запаса кислорода восполняются за счет электролиза воды (разложения ее на водород и кислород). Этим на МКС занимается система «Электрон», расходующая 1 кг воды на человека в сутки. Запасы кислорода также время от времени пополняются в ходе грузовых миссий к орбитальной станции. Есть мнение, что когда начнется терраформирование Марса, электролиз станет одним из способов добычи кислорода для марсианских колонистов, однако технологий таких у человечества пока нет, поэтому думать об этом рано.

Поэтому ученые из Калтеха решили найти в рамках своего исследования иной метод производства кислорода. В итоге они пришли к созданию реактора, который, если говорить простыми словами, берет и удаляет из формулы «CO2» (диоксида углерода) «С» (углерод), оставляя только кислород. Исследователи обнаружили, что если разгонять и ударять молекулы диоксида углерода об инертные поверхности, такие как золотая фольга, то их можно расщепить на молекулярный кислород и атомарный углерод.

Ученые говорят, что их реактор работает по принципу ускорителя частиц. Сперва молекулы CO2 в нем ионизируются, а затем ускоряются с помощью электромагнитного поля, после чего сталкиваются с золотой поверхность. В текущей форме установка обладает весьма низким КПД: на каждые 100 молекул CO2 она способна производить порядка одной-двух молекул молекулярного кислорода. Однако исследователи обращают внимание на то, что их реактор доказал, что данный концепт производства кислорода действительно возможен и в будущем может стать масштабируемым.

Исследователи поясняют, что подобная реакция производства кислорода в космосе может происходить и естественным образом. Разработка концепта началась с попытки объяснить неожиданное открытие молекулярного кислорода на кометах. После того, как космический аппарат «Розетта» обнаружили газ, вырывающийся с поверхности кометы 67P/Чурюмова — Герасименко, ученые изначально предположили, что этот кислород находился в ней замороженном состоянии миллиарды лет, фактически со времен формирования Солнечной системы, то есть в течение примерно 4,6 миллиарда лет. Но эта гипотеза оставалась до сих пор весьма спорной, поскольку такой «замороженный» молекулярный кислород должен был обладать весьма высоким химическим потенциалом и вступать во взаимодействия с другими компонентами вещества кометы, согласно мнению ряда ученых.

Однако в 2017 году команда Колтеха предложила другое объяснение. Профессор Калифорнийского технологического института и специалист по молекулярному инжинирингу Константинос Гиапис обратил внимание на химические реакции, протекающие на поверхности кометы 67P/Чурюмова — Герасименко, поскольку они показались ему весьма похожими на те реакции, которые он изучал в лаборатории на протяжении свыше 20 лет. Ученый предположил, что хорошо изученный им механизм, состоящий в том, что атомарный кислород вещества кометы превращается в молекулярный кислород под действием бомбардирующих поверхность молекул воды, также содержащих один атом кислорода, хорошо применим в сфере астрофизики для объяснения данных, полученных учеными миссии «Розетта». Это и вдохновило ученых на разработку реактора.

Зачем производить кислород в космосе?

В будущем реактор может использоваться для производства кислорода для астронавтов, которые будут летать на Луну, Марс и за их пределы. На Земле подобная установка с учетом масштабов тоже может оказаться весьма полезной, ведь она сможет снижать концентрации диоксида углерода в атмосфере и перерабатывать их в кислород, тем самым помогая в борьбе с глобальными климатическими изменениями. Однако ученые отмечают, что для практической фазы их установка пока не готова.

«Окончательное ли это устройство? Нет. Может ли это устройство решить вопрос с Марсом? Нет. Однако это устройство доказывает один ранее предложенный концепт, казавшийся невозможным», — прокомментировал Константинос Гиапис, глава исследовательского проекта.

Обсудить новость можно в нашем Telegram-чате.

Источник

Добыча кислорода возможна на Марсе, а значит на Луне и других планетах. Как?

Для путешествия и освоения других планет человечеству обязательно придется поддерживать жизненно неободимые ресурсы: один из них воздух. Сможем ли мы без «дозаправок» кислородом спокойно дышать на Марсе и других планетах. Рассказываем, как ученые продвинулись в решении этой проблемы.

Как мы будем дышать на Марсе?

Выполнение будущей миссии НАСА может занять около пяти лет. Ученые планируют высадить астронавтов на Марс в 2030-х годах. Для этого необходимо достаточное количество кислорода и топлива.

В организации создали экспериментальную установку Mars Oxygen ISRU Experiment (MOXIE). Эта система находится в стадии тестирования на марсоходе Mars Perseverance, который был запущен в июле.

Аппарат преобразует углекислый газ, составляющий 96% атмосферы Красной планеты, в кислород. На Марсе кислород составляет всего 0,13% атмосферы, в то время как атмосфера Земли содержит 21%. Фактически, система работает как деревья — втягивает марсианский воздух насосом, затем отделяет два атома кислорода от каждой молекулы углекислого газа (CO2).

Специалисты Вашингтонского университета предложили еще один способ, дополняющий MOXIE. Их технология позволяет добывать кислород из соленых озер на Марсе.

Как сделать кислород в космосе

Экспериментальную методику предложил профессор Виджай Рамани. Она подразумевает использование совершенно другого ресурса. Речь идет о соленой воде из озер, которые находятся под поверхностью Марса. Большая часть воды, которая существует на Марсе, представляет собой лед – как на полюсах, так и в средних широтах планеты.

Согласно технологии Рамани, устройство будет брать воду и расщеплять ее на водород и кислород. Соответствующее исследование профессора и его коллег было опубликовано в журнале PNAS.

Сейчас команда разработчиков тестирует маленькую версию MOXIE. Это поможет исследователям узнать, как ряд факторов окружающей среды, включая пыльные бури, ветры и песок, а также температуру углекислого газа, могут влиять на аппарат. Полномасштабная система по размеру будет немного больше, чем домашняя плита. Ее вес составит около 1000 кг.

А на Луне можно также?

Предположительно да, ведь, как оказалось, в лунной почве содержится огромное количество кислорода. Исследования показывают, что около 45% веса пыли и камней — это чистый кислород.

Группа учёных из Metalysis и Университета Глазго предлагает перерабатывать лунный грунт, побочным эффектом чего станет железо и другие металлические порошки. Сообщается, что добыча собственного кислорода позволит ускорить создание колонии на Луне, а также значительно упростит доставку полезных грузов колонистам.

Отмечается, что материал лунной поверхности почти наполовину состоит из кислорода. Исследователи впервые продемонстрировали пригодный способ его выделения: им удалось добиться выхода почти 100% элемента, а оставшийся продукт был сплавом металлов, то есть также ценным ресурсом.

Добытый кислород можно смешать с другими газами, чтобы сделать его пригодным для дыхания. Также кислород можно использовать в качестве топлива, а Луну — как плацдарм для освоения дальнего космоса. В конце концов, полученное железо легко приспособить для строительства. Эти и многие факторы заинтересовали экспертов ESA, благодаря чему учёные получат необходимое финансирование на ближайшие 9 месяцев.

Новый метод даёт доступ к быстрой и экономичной добыче кислорода, необходимого для поддержания жизнедеятельности на Луне. Кроме того, металл, получаемый в результате реакции, можно будет использовать для производства на месте.

Как сделать кислород в космосе

На других планетах можно добывать кислород?

В статье, опубликованной в Nature Astronomy 12 февраля 2018 года Мендильо, адъюнкт-профессор астрономии Пол Уизерс и доктор философии Павел Дальба предлагают взглянуть на ионосферу экзопланеты — тонкий верхний слой атмосферы, который пронизан частицами. Найдете в ней ионы кислорода — и вы нашли жизнь. По крайней мере жизнь в том виде, в котором мы ее знаем.

На протяжении всей истории человеческой цивилизации мы никогда не доходили до сути рассмотрения вопроса об обитаемости Вселенной — вплоть до последних 15 лет — когда мы смогли увидеть планеты вокруг других звезд. А теперь мы находимся на таком этапе решения проблемы, что нужно придумываем идеи, как именно обнаружить жизни вне Земли. Это будет великое интеллектуальное состязание.

Джон Кларк, профессор астрономии Бостонского университета, директор Центра космической физики

Их работа началась, когда Мендильо и Витерс получили грант от Национального научного фонда (NSF) для сравнения всех планетных ионосфер в Солнечной системе. (Она есть на всех планетах, кроме Меркурия, который так близок к Солнцу, что его атмосфера полностью отсутствует.)

Одновременно команда также работала с миссией NASA MAVEN, пытаясь понять, как молекулы, которые составляли ионосферу Марса, убежали с этой планеты. С самого начала космической эры ученые понимали, что планетарные ионосферы сильно различаются, и команда исследователей сфокусировала свое внимание на том, почему это было именно так, и почему ионосфера Земли была настолько отличной от других.

В то время как другие планеты наполняют свои ионосферы сложными заряженными молекулами, возникающими из углекислого газа или водорода, ионосфера Земля держит свой состав довольно простым, в основном с заполнением пространства кислородом. И этот кислород — особый тип кислорода — одиночные атомы с положительным зарядом.

Большинство планет в нашей Солнечной системе имеют немного кислорода в своих атмосферах, но у Земли его много, около 21%. Это связано с тем, что очень много организмов заняты превращением света, воды и углекислого газа в сахар и кислород — этот процесс называется фотосинтезом, и он происходит на Земле последние 3,8 миллиарда лет.

Как и Земля, Венера имеет большое железное ядро ​​и скалистую силикатную мантию, а ее кора, по аналогии с нашей планетой, базальтовая.

Однако на Венере отсутствует кислород — 96% атмосферы состоит из углекислого газа, а несколько раз в день на поверхности выпадают дожди из серной кислоты. Вряд ли хотя бы один известный науке организм проживет в таких условиях больше нескольких секунд, а техника — больше нескольких часов.

Европа — это шестой спутник Юпитера и один из крупнейших спутников в Солнечной системе. Юпитерианская луна интересует ученых по той причине, что она является одним из небесных тел, на которых потенциально может существовать жизнь. Поверхность Европы покрыта слоем льда толщиной несколько километров, под которым находится жидкий водный океан глубиной около 160 километров. Для того чтобы в океане могли развиваться крупные формы жизни, похожие на земные, в воде должен быть растворен кислород. Но этот элемент не может проникнуть сквозь ледяной покров.

Ученые предложили механизм, который объясняет, как под лед может попасть большое количество O2. Кислород образуется на поверхности Европы, когда поток высокоэнергетических частиц из космоса бомбардирует лед — при этом образуются высокоэнергетические формы кислорода, которые способны вступать в реакцию со многими веществами.

Ученые предположили, что содержащие кислород соединения попадают в океан при подвижках корки льда, которые происходят из-за приливного воздействия Юпитера. Обломки льда, на поверхности которых образуется активный кислород, при этом уходят в глубину.

Диона — четвертый спутник газового гиганта Сатурна и еще одно небесное тело, на котором потенциально есть кислород. Космический зонд «Кассини» обнаружил следы этого газа в воздушной оболочке данного объекта. Правда, наличие кислорода в данном случае вовсе не связано с присутствием на Дионе живых организмов.

Уже в прошлом столетии удалось установить, что Диона, имеющая диаметр 1123,4 километра (то есть, она меньше нашей Луны), состоит из водяного льда со значительной примесью каменных пород во внутренних слоях.

Однако достаточно долгое время ученые были убеждены, что никакой атмосферы у этого спутника быть не может — она слишком мала, чтобы удерживать вокруг себя газовую оболочку посредством силы тяготения. Тем не менее, не так давно это представление о природе Дионы было опровергнуто, причем данные для подобного опровержения предоставил тоже «Кассини» — но уже не астроном, а автоматический зонд.

Можно ли производить кислород в космосе?

На МКС запаса кислорода восполняются за счет электролиза воды (разложения ее на водород и кислород). Этим на МКС занимается система «Электрон», расходующая 1 кг воды на человека в сутки. Запасы кислорода также время от времени пополняются в ходе грузовых миссий к орбитальной станции.

Ученые из Калтеха решили найти в рамках своего исследования иной метод производства кислорода. В итоге они пришли к созданию реактора, который удаляет из формулы «CO2» (диоксида углерода) «С» (углерод), оставляя только кислород. Исследователи обнаружили, что если разгонять и ударять молекулы диоксида углерода об инертные поверхности, такие как золотая фольга, то их можно расщепить на молекулярный кислород и атомарный углерод.

Ученые говорят, что их реактор работает по принципу ускорителя частиц. Сперва молекулы CO2 в нем ионизируются, а затем ускоряются с помощью электромагнитного поля, после чего сталкиваются с золотой поверхность. В текущей форме установка обладает весьма низким КПД: на каждые 100 молекул CO2 она способна производить порядка одной-двух молекул молекулярного кислорода.

Однако исследователи обращают внимание на то, что их реактор доказал, что данный концепт производства кислорода действительно возможен и в будущем может стать масштабируемым.

В будущем реактор может использоваться для производства кислорода для астронавтов, которые будут летать на Луну, Марс и за их пределы. На Земле подобная установка с учетом масштабов тоже может оказаться весьма полезной, ведь она сможет снижать концентрации диоксида углерода в атмосфере и перерабатывать их в кислород, тем самым помогая в борьбе с глобальными климатическими изменениями. Однако ученые отмечают, что для практической фазы их установка пока не готова.

Соответственно ответ на этот вопрос, да, однако технические изыскания на этот счет еще не закончены.

Источник

Ученые нашли способ добычи кислорода в космосе

Как сделать кислород в космосе

Космические агентства и частные компании уже разрабатывают планы по отправке людей на Марс в ближайшие несколько лет, что в конечном итоге приведет к его колонизации. И с увеличением числа открытых землеподобных планет вокруг близлежащих звезд дальние космические путешествия становятся все более актуальными.

Однако людям нелегко выжить в космосе в течение длительного периода времени. Одной из основных проблем космического полета на большие расстояния является транспортировка достаточного количества кислорода для дыхания космонавтов и достаточного количества топлива для работы сложной электроники. К сожалению, в космосе практически нет кислорода, поэтому запасать его нужно на Земле.

Но новое исследование, опубликованное в Nature Communications, показывает, что можно производить водород (для топлива) и кислород (для дыхания) из воды, используя только полупроводниковый материал, солнечный (или звездный) свет и невесомость, что делает далекие путешествия более реальными.

Использование неограниченного ресурса Солнца для питания нашей повседневной жизни — одна из самых глобальных задач на Земле. Поскольку мы медленно отходим от нефти к возобновляемым источникам энергии, исследователи заинтересованы в возможности использования водорода в качестве топлива. Лучшим способом сделать это было бы разделение воды (H2O) на ее составляющие: водород и кислород. Это возможно с использованием процесса, известного как электролиз, который состоит в пропускании тока через воду, содержащую некоторое количество растворимого электролита (например, соли — прим. перев.). В результате вода распадается на атомы кислорода и водорода, которые выделяются каждый на своем электроде.

Как сделать кислород в космосе
Электролиз воды.

Хотя этот метод технически возможен и известен уже не одно столетие, он все еще не стал легкодоступным на Земле, поскольку нам нужно больше инфраструктуры, связанной с водородом — например, заправочных станций водорода.

Водород и кислород, полученные таким образом из воды, могут также использоваться в качестве топлива на космическом корабле. Запуск ракеты с водой на самом деле был бы намного безопаснее, чем с дополнительным ракетным топливом и кислородом на борту, так как при аварии их смесь может быть взрывоопасной. Теперь же в космосе специальная технология сможет разделить воду на водород и кислород, которые, в свою очередь, могут быть использованы для поддержания дыхания и работоспособности электроники (например, с помощью топливных элементов).

Для этого есть два варианта. Один из них — это электролиз, как и на Земле, с использованием электролитов и солнечных батарей для получения тока. Но, увы, электролиз — очень энергозатратный процесс, а энергия в космосе и без того «на вес золота».

Альтернативой является использование фотокатализаторов, которые работают путем поглощения фотонов полупроводниковым материалом, размещенном в воде. Энергия фотона «выбивает» электрон из материала, оставляя в нем «дырку». Свободный электрон может взаимодействовать с протонами в воде с образованием атомов водорода. Между тем, «дырка» может поглощать электроны из воды с образованием протонов и атомов кислорода.

Как сделать кислород в космосе
Процесс фотокатализа в земных условиях и при микрогравитации (в миллион раз меньше, чем на Земле). Как видно, во втором случае количество появляющихся пузырьков газа больше.

Этот процесс может быть повернут вспять. Водород и кислород могут быть рекомбинированы (объединены) с использованием топливного элемента, в результате чего «вернется» затраченная на фотокатализ солнечная энергия и образуется вода. Таким образом, эта технология — реальный ключ к дальним космическим путешествиям.

Процесс с использованием фотокатализаторов является наилучшим вариантом для космических путешествий, поскольку оборудование весит намного меньше, чем необходимое для электролиза. В теории, работать с ним в космосе также проще. Отчасти это объясняется тем, что интенсивность солнечного света вне атмосферы Земли существенно выше, так как в последней достаточно большая часть света поглощается или отражается по пути к поверхности.

В новом исследовании ученые сбросили полностью рабочую экспериментальную установку для фотокатализа с башни высотой в 120 метров, создав условия, называющиеся микрогравитацией. По мере того, как объекты падают на Землю в свободном падении, эффект гравитации уменьшается (но сама она никуда не исчезает, поэтому это и называют микрогравитацей, а не отсутствием гравитации — прим. перев.), поскольку нет сил, которые компенсируют притяжение Земли — таким образом, на время падения в установке создаются условия как на МКС.

Как сделать кислород в космосе
Экспериментальная установка и процесс эксперимента.

Исследователям удалось показать, что в таких условиях действительно возможно раcщепить воду. Однако, поскольку при этом процессе получается газ, то в воде образуются пузырьки. Важной задачей является избавление от пузырьков материала катализатора, поскольку они препятствуют процессу создания газа. На Земле гравитация заставляет пузырьки всплывать на поверхность (вода около поверхности плотнее пузырьков, что позволяет им плавать на поверхности), освобождая пространство у катализатора для образования следующих пузырьков.

При невесомости это невозможно, и пузырьки газа остаются на катализаторе или около него. Тем не менее, ученые скорректировали форму катализатора в наноразмерных масштабах, создав пирамидальные зоны, где пузырек может легко оторваться от вершины пирамиды и попасть в воду, не препятствуя процессу образования новых пузырей.

Но остается одна проблема. В отсутствие силы тяжести пузырьки останутся в жидкости, даже несмотря на то, что они вынуждены были покинуть катализатор. Гравитация позволяет газу легко выходить из жидкости, что имеет решающее значение для использования чистого водорода и кислорода. Без гравитации никакие пузырьки газа не плавают на поверхности и не отделяются от жидкости — вместо этого образуется аналог пены.

Это резко снижает эффективность процесса, блокируя катализаторы или электроды. Инженерные решения вокруг этой проблемы будут ключевыми для успешной реализации технологии в космосе — одно из возможных решений заключается в вращении установки: таким образом центробежные силы создадут искусственную гравитацию. Но, тем не менее, благодаря этому новому исследованию мы стали на шаг ближе к длительному космическому полету людей.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *