Как сделать контроллер заряда аккумулятора
Контроллер заряда солнечной батареи
Контроллер заряда солнечной батареи своими руками
Контроллер заряда солнечной батареи — вниманию читателей предлагается контроллер заряда фотоэлектрических систем при токе заряда до 8А и напряжении аккумуляторов 12 В. Контроллер оптимизирует процесс заряда, не допуская перезаряда аккумуляторов в широком диапазоне освещенности и температуры панели.
Контроллер заряда солнечной батареи содержит доступные компоненты общей стоимостью менее 3 долларов (менее 200 рублей). Несколько устройств в течение 6 месяцев эксплуатируются с панелями, имеющими максимальную мощность от 40 до 100 ватт.
Вступление
Несмотря на привлекательность идеи солнечной энергетики, ее реальное внедрение в энергоснабжение сельских и дачных домов условно рентабельно только на широтах Краснодарского края и южнее. Тем не менее, энтузиасты приобретают солнечные панели с максимальной мощностью от 40 до 100 ватт и пробуют использовать системы на их основе в качестве резервного источника питания для аварийного освещения и компьютерной техники. Как правило, эти люди обладают руками, растущими из правильного места, и знают практическую электронику. Вот именно для их подготовлена эта статья.
Описание схемы устройства
Существует закономерность, что для эффективного выбора мощности модуль контроллера обязан следить за точкой предельной мощности солнечной панели, то есть точку, в которой и напряжение и ток, отдаваемые панелью, максимальны. Универсальные промышленные контроллеры, отслеживающие положение рабочей точки и рассчитанные на широкий диапазон мощностей солнечных панелей, собранных в батареи, достаточно дороги и избыточны в случае эксплуатации одиночной панели.
Точка максимальной мощности и температурный диапазон эксплуатации указываются в паспортных данных качественных панелей.
При проектировании предлагаемого контроллера реализованы обе основных задачи эксплуатации — непрерывное поддержание батареи в точке максимальной мощности и температурная коррекция положения рабочей точки. Контроллер заряда солнечной батареи, а вернее блок-схема представлена на Рисунке 1 и содержит эквивалент солнечной батареи в виде источника тока SB, обладающего внутренним сопротивлением RBH.
При отсутствии внешнего освещения RBH стремится к бесконечности, а ток к нулю. При росте освещенности RBH стремится нулю, а ток к максимальному, технически допустимому значению. Рассмотрим работу схемы. В исходном состоянии (при отсутствии освещения) конденсатор С1 разряжен, на выходе компаратора U1 присутствует «1», ключ S1 разомкнут. Uoп равно паспортному значению точки максимальной мощности солнечной панели.
При росте освещенности емкость С1 будет получать заряд через внутреннее сопротивление солнечной панели. Когда напряжение на С1 превышает опорное напряжение, в выходной цепи компаратора появляется «О», замыкающий ключ S1. Емкость С1 сбрасывает заряд через S1 на нагрузку RH, а далее процесс повторяется. Чем выше освещённость, тем чаще происходит повторение описанного выше процесса.
По сути, мы имеем релаксационный генератор — преобразователь освещенности в частоту.
В практической схеме частота следования импульсов тока составляет единицы герц на рассвете и в сумерки, до десятков килогерц при максимальной освещенности, что обеспечивает широкий динамический диапазон работоспособности контроллера.
Принципиальная схема: контроллер заряда солнечной батареи, представлена на Рисунке 2.
Настройка схемы
Конструктивные особенности
При пиковом значении тока более 3 А для транзистора Q3 необходим теплоотвод. Разумеется, полевой МОП-транзистор не утратит работоспособность без заметного ухудшения параметров при температурных значениях в пределах 100 градусов, но в случае желания иметь уверенно работающий прибор, радиатор необходим.
В качестве дросселя L1 использован дроссель режекторного фильтра от блока питания компьютера. Обмотки дросселя соединены последовательно. При токах более 5 А дроссель может нагреваться до 60 градусов, но это не влияет на надежность устройства.
К вопросу о линеаризации характеристики термистора
В процессе разработки схемы контроллера были исследованы различные варианты управления положением рабочей точкой контроллера при помощи измерения температуры панели. В одной из моделей использовалась более сложная схема термокомпенсации, основанная на суммирующем ОУ для сложения опорного напряжения с выходным напряжением температурного датчика на термисторе. Это решение не применяется в описываемом контроллере, но автор считает полезным упомянуть его в рамках данной статьи.
Наилучшая линеаризация выходного сигнала датчика получается при включении термистора по схеме, показанной на Рис 4.
Динамический диапазон изменения выходного сигнала сужается, чувствительность термистора в данном случае значительно не ухудшается, оставаясь постоянной в довольно большом температурном диапазоне.
В Таблице 1 и на Рис 5 показаны результаты полученные с помощью компьютерного моделирования термисторного датчика температуры. Следовательно, в рабочем диапазоне температурной составляющей выходной сигнал практически линеен.
Внешний вид и конструкция контроллера заряда солнечной батареи показаны на Рисунке 6.
Как создать дешевый и эффективный контроллер заряда аккумулятора от солнечной батареи
Это автоматически включающаяся схема, которая контролирует зарядку аккумулятора от солнечных панелей и других источников питания. Она основана на интегральных схемах 555 и заряжает батарейку, когда её заряд становится ниже заданного уровня, а затем останавливает зарядку во время того, когда батарейка достигает верхнего лимита по вольтажу.
Шаг 1: Моя цель
«Создать дешевый и эффективный контроллер заряда солнечной батареи»
Шаг 2: Схема
В нашем случае мы подключаем плюс солнечной панели на полюс реле (обычную клемму) и плюс батарейки на обычно открытый контакт; когда батарейка подключена к контроллеру солнечной зарядки, схема проверяет вольтаж батарейки. Если вольтаж меньше или равен обычному, то ток начинает поступать на батарейку, и она заряжается. Когда вольтаж батарейки начинает превышать верхний предел, реле активируется и ток перенаправляется в обычно закрытый контакт.
Шаг 3: Калибровка
После завершения схемы, нужно настроить нижний и верхний пороги. Калибровка батарейки нужна, чтобы предотвратить чрезмерную разрядку или зарядку. Я использую 12V в качестве нижнего предела и 14.9V в качестве верхнего. Это означает, что когда заряд батареи понижается до 12V, начинается зарядка и когда вольтаж поднимается до 14.9V, реле активируется, и схема перестает заряжать батарейку.
Чтобы настроить лимиты, вам понадобится мультиметр и два источника питания на 12V и 15V, или один универсальный. Сначала нужно установить нижний порог. Для этого установите вольтаж на 12V и подключите его к схеме. Соедините землю с мультиметром и замерьте показатель на пине 2 схемы 555. Настройте вольтаж так, чтобы получить 1.66V. Затем переключите вольтаж на 14.9V и возьмите замер на пине 6 схемы 555. Настройте вольтаж на 3.33V. Теперь контроллер готов к работе.
Шаг 4: Соединение
Приложенная картинка показывает электрическую схему устройства. Сначала соедините плюс от солнечной панели к центральному полюсу реле, затем соедините красный провод от батарейки с NO на реле. Соедините минус от солнечной панели с минусом на схеме, а затем присоедините минус батарейки к схеме.
Шаг 5: Работа
Когда вольтаж батарейки меньше, чем 14.9V, она начинает заряжаться путём передачи тока через NO на реле. Когда вольтаж батарейки достигает 14.9 вольт, реле автоматически переключается на NC.
Шаг 6: Момент истины
Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.
ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ
Обычные зарядные устройства к автоаккумуляторам, продающиеся по цене от 2000 рублей, представляют из себя простейший блок питания с диодным мостом и амперметром для контроля тока. Можно ли долго пользоваться таким ЗУ, если цена нового свинцового аккумулятора Bosch достигает 5000 руб? Каждый сам решает для себя. Вот автор и решил немного потратиться и создать зарядку, имеющую все необходимые режимы по быстрому и безопасному восстановлению ёмкости АКБ.
Описание зарядного устройства
Схема и печатные платы ЗУ
Схема управляющего блока
Схема источника питания
Работа зарядного устройства
1. Программа запускается/останавливается нажатием на кнопку старт из любого окна программы. Если кнопка нажата, когда программа запущена, устройство переходит в режим финиш (окончание работы программы). Следующее нажатие переводит устройство в первоначальное состояние (основное окно индикатора).
2. Если напряжение на аккумуляторе ниже, чем Umax/4, считается, что аккумулятор не подключен или неисправен. На дисплей выводится надпись No Bat. В режиме START название выбранного режима мигает.
Режим Зарядка
Программа контролирует напряжение и ток на АБ. Если напряжение ниже заданного в настройках Umax – работает стабилизатор зарядного тока с заданием Is. Если напряжение достигло Umax – остановка программы. Индикация заряд выкл.
Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR в верхней строке. В нижней строке напряжение, при котором произошло отключение.
Если ток заряда I превысил ток Is на 0.2 на время более 5 сек – остановка программы, индикация ERROR.
Если истекло время заряда (параметр H, часы) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.
Режим Разряд
Если при старте программы напряжение на АБ ниже Umax, включается дозаряд АБ с током Is. После достижения напряжения Umax начинается разряд АБ с током Ii. Ведется подсчет емкости АБ.
Когда напряжение на АБ достигнет Umin разряд прекращается, на индикатор выводится индикация разряд выкл и емкость на АБ-. AH Vm 11.0 – минимальное напряжение на АБ.
Если истекло время дозаряда или разряда (для дозаряда и заряда устанавливается время H) – остановка программы, индикация ERROR.
Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR в верхней строке. В нижней строке ток, при котором произошло отключение.
Режим КТЦ АКБ
При старте программы включается заряд АБ с током Is. Через 1 сек АБ переключается на разряд с током Ii. Еще через 1 сек АБ снова переключается на заряд. Так продолжается до тех пор, пока напряжение не достигнет Umax – программа останавливается. Индикация КТЦ выкл. Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR. Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR.
Если истекло время заряда (параметр H) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.
Выбранный режим после отключения от сети не запоминается. При включении всегда режим зарядка.
Обозначение символов на дисплее
1.При подключении к сети устройства вывести на дисплей информацию-если АБ подключена
1.1.Напряжение до какого будет произведен заряд. По умолчанию Vs=14.2 (Диапазон выбора в меню 1-30 вольт.)
1.3.Реальное напряжение на АБ. Например-V=13.7
РЕЖИМ 1.заряд
Пример 1.0. батарея не подключена
Vs=14.2 Is=0.5A
? АКБ Заряд
Пример 1.1. батарея подключена.
Vs=14.2 Is=0.5A
V=13.7 Заряд
При запущенном режиме вместо установленного напряжения до которого будет произведен заряд отображать реальный ток заряда. Пример I = 3.6 A
Пример 1.2. идет заряд.
I=3.6A Is=0.5A
V=13.7 заряд
После окончания заряда (по таймеру или по достижению установленного напряжения на АБ или ток заряда снизится до I=min) отключить заряд и вывести – заряд выкл.
РЕЖИМ 2. разряд
2.При выборе режима- разряд (при запуске этого режима автоматически зарядить АБ до установленного напряжения и затем начать разряд.
Пример 2.0. Индикация в основном окне режима. Если режим не запущен-название режима (разряд) не мигает. При запущенном режиме, название режима используемого в данный момент (заряд или разряд) мигает.
Если режим запущен. АБ не заряжена. Идет автоматический заряд, после которого начнется разряд.
I=0.5A заряд
P=0Ah
2.1 Ток разряда по умолчанию A. Диапазон выбора в меню 0.5-10 А. дискретность 0.5 А.
2.3. Измеренная емкость батареи P=. Ah (пример Р = 45.4Ah).
Пример 2.1. окно в процессе разряда
Id=0.5A Hi=10
P=45.4Ah разряд
Пример 2.2. разряд окончен
P=100.3Ah Vm=11.0
Разряд выкл
РЕЖИМ 3. Ктц акб. Десульфатация.
3.1. Ток заряда по умолчанию Is = 5А. Диапазон 0.5-10 А
3.2. Ток разряда Диапазон 0.5-10 А.
3.3. Напряжение на АБ. Частота 1 Гц.
Пример 3.0. идет десульфатация.
I=5.0A Id=0,5A
V=14.2 КТЦ-АКБ
Пример 3.1.конец работы.
V=14.7
КТЦ ВЫКЛ
Остальные настройки в меню. Все файлы находятся в архиве. За подробностями обращайтесь на форум. Автор: Александрович.
Форум по обсуждению материала ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ
Для чего нужен контроллер заряда и как его настроить
Контроллер заряда стоит недорого, поэтому его сможет позволить себе каждый Немалую популярность приобретают устройства, независящие от наличия электрической энергии или имеющие возможность подзарядиться, не используя ее. Одним из полезных приборов, помогающих в осуществлении этой цели – контроллер заряда. Что же он собой представляет? Попробуем разобраться.
Для чего нужен контроллер заряда аккумулятора
Основная функция зарядного контроллера для аккумулятора – регулировка восстановления энергетических потерь. Вначале отслеживается превращение электрической энергии в химическую, а затем она аккумулируется, чтобы использоваться в случае необходимости для определенных приборов и механизмов.
Сделать такой приборчик можно и своими руками, что с успехом делают домашние умельцы, подбирая границы в аппаратах до 15 Вольт.
Существуют такие виды зарядных контроллеров в зависимости от их применения:
Кроме этого, контроллеры могут применяться для различных солнечных батарей и ветродуев. Верхняя граница напряжения в таких устройствах обычно – 15 В, а нижняя – 12 В.
Перед покупкой контроллера заряда аккумулятора нужно проконсультироваться с продавцом, чтобы убедиться в правильности своего выбора
Что случится, если напряжение превысит верхнюю отметку? Тогда контролер замкнет контакты реле и источник энергии переключится на балласт нагрузки. Для ветровых генераторов эти элементы считаются обязательными.
Применение контроллера заряда АКБ подойдет и для мобильных устройств. Разницы между прибором для смартфона, кнопочного телефона или планшета особо нет никакой.
Контроллер зарядки: его устройство и настройка
Чтобы понять, как работает зарядный контроллер, следует разобраться с его устройством.
Схема типичного контроллера зарядки выглядит так:
Такой контролер применяется для прекращения заряда батареи после того, как она полностью разрядится. Прибор подойдет для АКБ как на 12, так и на 24 В.
Прибор работает таким образом: когда напряжение превышает максимально-заданные значения, на реле «идет» ток, тем самым включая его. Реле будет работать, пока напряжение не упадет ниже установленной границы.
Сам энергетический источник подключается к АКБ через нормально замкнутое реле, которое при превышении верхних границ переключает прибор с аккумулятора на балласт нагрузки. Когда напряжение падает нижеуказанной границы, реле отключается, а источник заново подключается к батарее.
Как настроить контроллер:
Остается еще раз проверить работу контроллера, и если все в порядке, то настройка прибора завершена.
Полезный контроллер заряда солнечной батареи и его особенности
Контролер зарядки для солнечной батареи немного отличается от приборов для обычной свинцовой АКБ. Такой аппарат представляет собой электронный механизм, который осуществляет контроль над работой системы и регулирует заряд аккумулятора.
Работоспособность контроллера заряда солнечной батареи стоит проверить еще в магазине
Прибор для солнечной панели не допускает лишнего заряда или полной разрядки аккумулятора.
Когда батарея заряжена максимально, ток уменьшается и подается только в том количестве, который нужен для компенсации самостоятельного разряда.
Как правильно выбрать «солнечный» контроллер? Для этого нужно обратить внимание на такие характеристики:
Также в коллекторах могут быть установлены различные электронные предохранители и экраны, на которые выводятся данные о работе всей системы в целом. Например, степень зарядки и напряжения батареи, ток для нагрузки и заряда, предупреждение об уменьшении зарядки и отключении питания.
Дополнительно такие устройства снабжаются различными системами защиты от замыканий, перегрева, воздействия молнии, перенапряжения, неправильного подключения, разряда батареи ночью.
Простенький контроллер солнечной батареи своими руками
Люди, понимающие в электронике, зачастую сами пытаются собрать контроллеры для солнечных систем. Это у них получается, но эффективность таких механизмов все же уступает заводским. Впрочем, для небольших установок небольшого приборчика с малой мощностью бывает вполне достаточно.
Делая самодельный контролер заряда, следует иметь в виду, что:
Что такое контроллер заряда (видео)
Создавая контроллер заряда необходимо внимательно изучить предъявляемые к нему требования и четко их выполнять. Это устройство прекрасно подойдет для солнечных батарей, ветрогенератора или обычной бытовой техники. Аппарат состоит из простых деталей, поэтому будет несложно достать все комплектующие и сделать полезный механизм для АКБ.