Как сделать квантовую механику
Квантовая механика для «чайников»
Квантовая механика
Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.
Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?
Шутки в сторону, начинаем серьезный квантовый разговор.
С чего начать? Конечно, с того, что такое квант.
Квант
Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.
Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.
Квантовая механика для «чайников»
Как механика может быть квантовой?
Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с. Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.
Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.
Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные «сходились».
Мир частиц
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Немного истории
Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна
Наименьшая порция энергии излучения атома
Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.
Макс Планк
Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.
Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга.
Уравнение Шредингера
Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:
Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.
Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.
Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!
Эрвин Шредингер
Принцип неопределенности Гейзенберга
Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.
Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.
Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.
В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы. Математически это записывается так:
Принцип неопределенности Гейзенберга
На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:
Полицейский останавливает квантового физика.
— Сэр, Вы знаете, с какой скоростью двигались?
— Нет, зато я точно знаю, где я нахожусь
Вернер Гейзенберг
Надеемся, что эта статья помогла Вам немного размять мозги, вспомнить хорошо забытое старое, а может быть и узнать что-то новое. Здесь мы постарались рассказать о квантовой механике просто, понятно и по возможности интересно. Конечно, данная тема не может быть раскрыта в рамках одной статьи, поэтому о парадоксах, нерешенных задачах, черных дырах и котах Шредингера мы поговорим в самое ближайшее время. А пока, чтобы закрепить знания, предлагаем посмотреть тематическое видео. Возможно вас также заинтересуют правила оформления чертежей по ЕСКД.
И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к нашим авторам – профессионалам, которые были взращены с квантовой механикой на устах!
Может ли квантовая механика объяснить существование пространства-времени?
Квантовая механика странная. Для нас, существ, не способных видеть микромир не вооруженным глазом, представить себе как все устроено на уровне атомов довольно сложно. Между тем, согласно атомной теории, все во Вселенной состоит из мельчайших частиц – атомов, скрепленных друг с другом электрическими и ядерными силами. Физические эксперименты, проведенные в ХХ веке показали, что атомы можно дробить на еще более мелкие, субатомные частицы. В 1911 году британский физик Эрнест Резерфорд провел ряд экспериментов и пришел к выводу, что атом похож на Солнечную систему, только по орбитам вместо планет вокруг него вращаются электроны. Два года спустя, взяв за основу модель Резерфорда, физик Нильс Бор изобрел первую квантовую теорию атома и в этой области теоретической физики все стало еще сложнее. Но если квантовая механика объясняет как взаимодействуют между собой мельчайшие частицы, может ли она объяснить существование пространства-времени?
Ученые ищут ответ на вопрос о том из чего состоит пространство-время уже много лет, но пока безуспешно
Что такое пространство-время?
Уверена, большинство из нас воспринимают пространственно-временной континуум как нечто, само собой разумеющееся. И в этом нет ничего удивительного, ведь не каждый день мы размышляем над чем-то подобным. Но если хорошенько задуматься, то окажется, что ответить на вопрос о том, что представляет собой пространство-время не так уж просто.
Начнем с того, что в соотвествии с теорией относительности (ОТО) Эйнштейна, Вселенная имеет три пространственных измерения и одно временное измерение. При этом все четыре измерения органически связаны в единое целое, являясь почти равноправными и в определенных рамках и условиях способными переходить друг в друга. В свою очередь пространственно-временной континуум или пространство-время – это физическая модель, дополняющая пространство временным измерением.
В рамках общей теории относительности пространство-время также имеет единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами и есть гравитация.
В рамках ОТО теория гравитации и есть теория пространства-времени, которое не является плоским и способно менять свою кривизну.
Из ОТО также следует, что гравитация является результатом массы, такой как планета или звезда, искажающая геометрию пространства-времени. Космический аппарат NASA Gravity Probe, запущенный в 2004 году, точно измерил, насколько гравитация Земли искривляет пространство-время вокруг нее, в конечном итоге подтвердив расчеты Эйнштейна. Но откуда взялось пространство-время? Ответ, как это ни странно, может скрывать в себе квантовая механика.
Квантовая механика и теория гравитации
Как пишет портал Astronomy.com, сегодня физики стоят на пороге революции, которая может привести к пересмотру всего что мы знаем о пространстве-времени и, возможно, к объяснению того, почему квантовая механика кажется такой странной.
«Пространство-время и гравитация должны в конечном итоге возникнуть из чего-то другого», – пишет физик Брайан Свингл из Университета Мэриленда в статье, опубликованной в журнале Annual Review of Condensed Matter Physics. Иначе трудно понять, как гравитация Эйнштейна и математика квантовой механики могут примирить их давнюю несовместимость.
Квантовая механика противоречит ОТО
Взгляд Эйнштейна на гравитацию как проявление геометрии пространства-времени был чрезвычайно успешным. Но то же самое относится и к квантовой механике, которая с безошибочной точностью описывает махинации материи и энергии на атомном уровне. Однако попытки найти математическое решение, которое совместило бы квантовую странность с геометрической гравитацией, наталкивались на серьезные технические и концептуальные препятствия.
Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш новостной канал в Google News чтобы не пропустить ничего интересного.
По крайней мере, так было долгое время при попытках понять обычное пространство-время. Возможный ответ пришел из теоретического изучения альтернативных геометрий пространства-времени, мыслимых в принципе, но обладающих необычными свойствами. Одна из таких альтернатив известна как антидеситтеровское пространство, которое имеет тенденцию сжиматься само по себе, а не расширяться, как это делает Вселенная. Для жизни, безусловно, это было бы не самое приятное место. Но как лаборатория для изучения теорий квантовой гравитации, оно может многое предложить и даже стать ключом к квантовым процессам, которые могут быть ответственны за создание пространства-времени.
Что такое антидеситтеровское пространство?
Исследования антидеситтеровское пространства предполагают, например, что математика, описывающая гравитацию (то есть геометрию пространства-времени), может быть эквивалентна математике квантовой физики в пространстве с одним меньшим измерением.
Представьте себе голограмму — плоскую двумерную поверхность, которая включает в себя трехмерное изображение. Подобным же образом, возможно, четырехмерная геометрия пространства-времени может быть закодирована в математике квантовой физики, работающей в трехмерном пространстве. Или, может быть, нужно больше измерений — а вот сколько измерений требуется, являются частью проблемы, которую нужно решить.
Квантовая запутанность – одна из сложнейших для понимания научных теорий
Во всяком случае, исследования в этом направлении открыли удивительную возможность: само пространство-время может быть порождено квантовой физикой, в частности загадочным явлением, известным как квантовая запутанность. Подробно о том, что представляет собой квантовая запутанность я рассказывала в этой статье.
Если попробовать объяснить более-менее простыми словами, то квантовая запутанность это сверхъестественная связь между частицами, разделенными огромными расстояниями. Испускаемые из общего источника, такие частицы остаются запутанными независимо от того, как далеко они друг от друга находятся. Если вы измерите свойство (например, спин) одной частицы, то узнаете, каким будет результат измерения спина другой частицы. Но до измерения эти свойства еще не определены, что противоречит здравому смыслу и подтверждается многими экспериментами. Кажется, что измерение в одном месте определяет, каким будет измерение в другом отдаленном месте.
Энергичные усилия нескольких физиков подарили миру теоретические доказательства того, что сети запутанных квантовых состояний плетут ткань пространства-времени. Эти квантовые состояния часто описываются как «кубиты» — биты квантовой информации. Запутанные кубиты создают сети с геометрией в пространстве с дополнительным измерением, выходящим за пределы числа измерений, в которых находятся кубиты. Таким образом, квантовую физику кубитов можно приравнять к геометрии пространства с дополнительным измерением.
Примечательно, что геометрия, созданная запутанными кубитами, может очень хорошо подчиняться уравнениям из общей теории относительности Эйнштейна, которые описывают движение под действием гравитации — по крайней мере, последние исследования указывают в этом направлении.
Подводя итог отмечу, что никто точно не знает, какие квантовые процессы в реальном мире ответственны за соткание ткани пространства-времени. Возможно, некоторые допущения, сделанные в уже имеющихся расчетах, окажутся ошибочными. Но вполне возможно, что физика стоит на пороге проникновения в основы природы глубже, чем когда-либо. В существование, содержащее ранее неизвестные измерения пространства и времени.
Квантовая механика в повседневной жизни, или туннель в другую реальность
Однажды наступят волшебные времена. Однажды у нас будет мобильный телефон, который надо заряжать раз в год. Банковская карточка, с которой невозможно украсть деньги. Микротермометр, который почувствует первую же заболевшую клетку и вылечит ее. Однажды это все станет реальностью. Осталось разобраться в квантовой механике, которая сделает чудеса возможными.
Обычная квантовая магия
Постулаты квантовой механики кажутся удивительными, потому что они противоречат нашей интуиции и бытовым знаниям. Но если бы мы с детства росли в мире, живущем по квантово-механическим законам, то эти чудеса были для нас обыденными.
1. В макромире — том мире, который нас окружает, — вы читаете этот текст, сидя на диване или стуле, и он стоит точно под вами и нигде больше. «Если бы в нашем мире работали законы квантовой механики, то диван мог бы одновременно быть и под вами, и на ближайшей автобусной остановке. Такое квантовое состояние дивана называется суперпозицией», — объясняет профессор Гарвардского университета, член Международного консультативного совета Российского квантового центра физик Михаил Лукин.
2. На автобусной остановке диван могут испачкать или украсть, и вообще вас раздражает неопределенность его местоположения. Чтобы «вернуть» мебель домой, достаточно потрогать ту «ипостась» дивана, которая стоит у вас в квартире, ведь в мире квантовой механики он одновременно существует и там и там! Стоит вам коснуться обивки, суперпозиция дивана разрушится и он останется только в квартире. Впрочем, с некоторой вероятностью диван может оказаться и только на остановке. Поэтому мебельные магазины в квантовом мире продают диваны, для которых после разрушения суперпозиции выше вероятность очутиться у вас дома, а не где-то еще.
3. Есть более простой способ разобраться с диваном. «Суперпозиция — очень хрупкое состояние, и при попытке измерить ее, она тут же разрушается, — объясняет Лукин. — Причем не обязательно использовать приборы, достаточно просто посмотреть. В теории макроскопический диван может находиться в суперпозиции, но этого не происходит, так как с ним сталкиваются атомы воздуха, его «чувствует» пол, на него смотрят люди. Можно сказать, что таким образом внешний мир как бы измеряет суперпозицию и тем самым убивает ее. Но в микромире суперпозиция — самое обычное дело».
4. В нашем привычном мире, собираясь пойти пообедать с коллегами, вы спрашиваете, голодны ли они. В квантовом мире все проще: если в офисе все сотрудники особым образом связаны друг с другом (физики говорят «запутанны»), то вы и так знаете, как они себя ощущают. Более того, если кто-то из коллег пошел обедать, то в момент, когда он поест, вы тоже почувствуете насыщение. Если некто спросит у любого из связанных с вами коллег, сыт он или голоден, то, получив ответ, узнает и ваше состояние. Такой феномен мгновенного перемещения информации на любые расстояния получил название квантовой телепортации.
Знание о том, голоден или сыт связанный с вами коллега, никак не путешествует в пространстве: оно не передается ни по проводам, ни по радио, ни по телеграфу, но вы оба моментально узнаете обо всех изменения друг друга. «Это звучит как магия, но это и есть магия, особая квантовая магия», — говорит швейцарский физик и основатель компании id Quantique Николя Гизен.
5. В макромире, где работают квантовые законы, нет пробок. В привычной реальности, чтобы переместить автомобиль из точки А в точку Б, нужно затратить энергию. В квантовом макромире автомобиль может занять ее у Вселенной и попасть в точку Б сам собой. Этот феномен называют квантовым туннелированием, и он возможен благодаря принципу неопределенности Гейзенберга. Постулат, сформулированный немецким физиком Вернером Гейзенбергом в 1927 году, гласит, что мы не можем с одинаковой точностью измерить положение квантовой частицы и ее импульс. Из скучной фразы следует: если мы точно знаем, что автомобиль находится в гараже в точке А, его импульс оказывается неопределенным и может случайно стать достаточно большим для того, чтобы «подтолкнуть» машину на парковку в точку Б.
Так выглядит квантовый компьютер изнутри. Это запчасти машины, созданной компанией D-Wave. Ее первый компьютер содержал 16 кубитов, а более поздняя модель — уже 28. Фото:J CHUNG, © 2006-2007 D-WAVE SYSTEMS, INC. (X4)
Дырявые алмазы и суперсенсоры
Благодаря квантовой механике можно создать приборы, которые невозможны в рамках классической физики. Например, построить компьютеры, которые будут считать в миллионы раз быстрее самых мощных нынешних суперкомпьютеров. Квантовые компьютеры используют странное для людей состояние суперпозиции, которое позволяет совершенно иначе проводить вычисления.
В обычном компьютере информация хранится в виде двоичного кода, который состоит из двух значений — 0 и 1. Каждая цифра кода «лежит» в специальной ячейке памяти, и ее значение называется битом. Таким образом, бит может иметь только два состояния — 0 либо 1. «Квантовый компьютер — это вычислительная система, которая может находиться одновременно во многих состояниях. Благодаря суперпозиции квантовый бит, или кубит, может принимать бесконечное множество значений, а не два, — объясняет Лукин. — Это дает возможность делать вычисления параллельно. Если вы что-то делаете с этим битом, то изменяются сразу и 0, и 1. То есть мы можем одновременно проводить вычисления с начальным состоянием 0 и с начальным состоянием 1».
Пока ученые смогли построить только самые простые квантовые компьютеры, которые содержат от одного до тысячи кубитов. Чаще всего в качестве квантовых битов выступают атомы различных веществ, охлажденные почти до абсолютного нуля (–273,15 °С) — температуры, ниже которой не может остыть ничто во Вселенной. Поэтому даже самый маленький квантовый компьютер занимает целую комнату. Но недавно группе Михаила Лукина удалось создать кубит размером с пылинку. Это алмазный нанокристалл с вкраплениями атомов азота, которые имеют те же характеристики, что и сверххолодные кубиты. Алмазно-азотные кубиты работают при комнатной температуре и могут хранить информацию несколько секунд — для квантовых компьютеров это очень долго.
Пока квантовые компьютеры — это гигантские приборы, но не исключено, что скоро они будут стоять в любом смартфоне.
Термометр для раковой клетки
Пока одни разработчики квантовых компьютеров ломают голову, как удержать квантовые системы в чрезвычайно хрупком состоянии суперпозиции, другие придумали, как использовать эту неустойчивость во благо. Они создают квантовые системы, которые чувствительны к специфическим воздействиям, например к изменениям температуры. Точность подобных систем достигает миллионных долей градуса. Один из прототипов термометра будущего — те самые алмазные кубиты — сконструировали Лукин и его коллеги. Ученые шприцем вводят нанокристаллы в живые клетки и определяют, как сильно прогрелась та или иная их часть. Например, исследователи могут сравнить, насколько правая половина клетки горячее левой.
«Используя алмазные кубиты, мы можем искать в организме раковые клетки, потому что их температура отличается от температуры здоровых клеток. Кроме того, мы сможем в реальном времени следить, как работают те или иные гены, — говорит Лукин. — При этом локально слегка меняется температура, и «засечь» ее другими методами невозможно. Наконец, в чуть более отдаленном будущем при помощи таких нанотермомет ров можно будет определять многие болезни на самых ранних стадиях. В этот момент в клетках уже запустились специфические биохимические реакции, но внешне никаких признаков заболевания нет. Однако место в клетке, где проходят такие реакции, слегка нагревается, и мы сможем это увидеть».
При помощи сверхчувствительных квантовых датчиков можно измерять не только температуру. Квантовые состояния могут реагировать, например, на малейшие изменения давления, электромагнитных полей и прочее. У таких сенсоров будет колоссальная чувствительность к изменениям в окружающей среде, потому что квантовое состояние разрушается от малейших воздействий извне.
Исследования квантовых систем — та область, где специалисты ждут прорывов в ближайшие годы. Фото:PHOTONONSTOP/AFP/EAST NEWS
Батарейка вместо нефти
Владельцам смартфонов приходится искать розетку минимум раз в день. Благодаря достижениям в квантовой механике скоро можно будет уезжать в отпуск и не брать с собой зарядку. «Человеческие системы хранения и передачи энергии в разы уступают тому, что придумала природа, — рассказывает профессор Массачусетского технологического института (MIT), специалист по квантовым алгоритмам Сет Ллойд. — Процессы, которые идут в живых клетках, например фотосинтез, чрезвычайно эффективны, и в них используются примерно те же принципы, которые мы применяем для квантовых вычислений».
Постепенно ученые все лучше понимают квантово-механические процессы и начинают потихоньку разбираться, как именно протекает фотосинтез на этом уровне. Они даже конструируют искусственные системы, которые были бы сравнимы с ним по эффективности. «Моя коллега Анджела Белчер из MIT создает генетически модифицированные вирусы, на поверхности которых «торчат» особые молекулы, похожие на те, что задействованы в фотосинтезе у растений. Белчер и ее коллеги научились закреплять вирусные частицы на подложке так, что в итоге получился прототип чрезвычайно энергоэффективной батарейки, копирующей механизм фотосинтеза. Пока ученые дорабатывают изобретение, но уже нашлась компания, которая создает для Белчер вирусы в промышленном масштабе», — рассказывает Ллойд.
Многие компьютерные игры, например покер, основаны на случайных событиях. Но сегодня играющие с людьми в карты компьютеры жульничают, потому что создают псевдослучайные события, используя специальные алгоритмы. Квантовая механика, благодаря которой можно сделать раздачу карт по-настоящему случайной, наконец превратит механических соперников в честных игроков.
Квантовая телепортация и банковские счета
Пока у нас мало алгоритмов, которые позволили бы создать квантовые компьютеры, работающие намного быстрее классических. Самый перспективный — квантовой алгоритм факторизации Питера Шора, названный по имени создателя, выдающегося математика из США. Используя этот алгоритм, квантовый компьютер из семи кубитов разложил число 15 на множители 3 и 5. «И если нам удастся приспособить алгоритм для работы с большими квантовыми системами, то безопасному Интернету придет конец — квантовый компьютер вскроет любой шифр за секунды», — рисует картину близкого апокалипсиса Сет Ллойд.
Впрочем, взамен мы получим шифрование, разгадать которое невозможно физически. Навсегда защитить человечество от киберворовства поможет квантовая запутанность. Запутанные частицы настолько тесно связаны друг с другом, что мгновенно «чувствуют» изменения, которые происходят с «напарницей», даже если они разнесены на десятки километров.
«Волшебные технологии шифрования, основанные на этом принципе, существуют уже сегодня», — рассказывает Николя Гизен. Компания работает уже несколько лет и при помощи квантового шифрования защищает данные клиентов. Пока рынок небольшой, но у него есть все шансы вырасти — просто потому, что спрос на квантовые, принципиально невскрываемые шифры будет увеличиваться.
Так выглядел первый работающий транзистор, который в 1947 году изобрели в Bell Labs — американской копорации, знаменитой своим исследовательским подразделением. Прародитель современных транзисторов представлял собой пластину из германия, к которой были припаяны два контакта. В 1956 году его создатели получили Нобелевскую премию. Современные транзисторы настолько малы, что на их работу уже влияют законы квантовой механики.
Конец Сноудена и вселенная в триста кубитов
Когда бывший сотрудник американских спецслужб Эдвард Сноуден рассказал, что Агентство национальной безопасности (АНБ) США читает электронную почту доброй половины жителей Земли, многие почувствовали себя неуютно. Но бояться, что суровый лейтенант сейчас изучает именно вашу переписку, не стоит — никакие суперкомпьютеры не могут справиться с тем потоком данных, который сваливается на АНБ каждый день, и как следует рассортировать письма.
Волноваться можно начинать после того, как в дело вступят специалисты по квантовой механике: «Даже маленький квантовый компьютер, состоящий из нескольких десятков кубитов, способен за несколько секунд проверить все сообщения, написанные сегодня, на слово «тротил». Чтобы проанализировать все письма, написанные с момента появления электронной почты, потребуется компьютер из нескольких сотен кубитов. С переводом в квантовое состояние всей информации, которая образовалась во Вселенной с момента Большого взрыва, за доли секунды справится компьютер из трех сотен кубитов», — говорит Ллойд.
При этом благодаря природе квантовых состояний спецслужбы не смогут «вытянуть» из собранных данных персональные сведения пользователей, потому что вернуть данные, записанные в квантовой форме, к привычному виду невозможно. То есть квантовые системы позволят анализировать колоссальные массивы информации, не нарушая тайну переписки.
Решение без проблемы
Пока рынок квантовых технологий не очень велик. Не в последнюю очередь слабый интерес предпринимателей объясняется тем, что они не понимают, в чем же суть квантовых процессов. Некоторые маловеры и вовсе считают, что квантовая механика нужна для решения только очень специфических задач и неприменима к повседневной жизни. Впрочем, когда-то лазеры тоже считались всего лишь хитроумным изобретением, сделанным учеными для ученых. «Это решение, к которому еще нужно придумать проблему», — говорили скептики. Сегодня без лазеров трудно представить обычную жизнь — они работают в оптоволоконных системах, благодаря которым, например, домашний компьютер выходит в Интернет. Так что очень может быть, что лет через 20 отличным подарком внуку окажется телефон, работающий на удивительных принципах квантовой механики.