Как сделать кварцевый фильтр

Записки программиста

Учимся делать кварцевые полосовые фильтры

Ключевым компонентом любого супергетеродинного приемника является фильтр промежуточной частоты. Это фильтр с полосой пропускания всего лишь 2000-3000 Гц (для SSB) или даже 50-500 Гц (для телеграфа), малыми вносимыми потерями и очень крутой АЧХ. Сделать такой фильтр, используя конденсаторы и катушки индуктивности, не представляется возможным, в основном из-за низкой добротности последних. Поэтому фильтры делают из кварцевых резонаторов.

При выборе промежуточной частоты (ПЧ) нужно учитывать ряд ограничений. Низкая частота плоха тем, что кварцевый фильтр будет иметь довольно высокий импеданс, который неудобно согласовывать с 50 Ом. Слишком высокой ПЧ делать тоже не стоит, поскольку с ростом частоты увеличивается влияние паразитных эффектов в цепи. По этим соображениям на КВ рекомендуется выбирать ПЧ от 6 до 12 МГц. Для нормального подавления зеркального канала ПЧ не должна находится близко к принимаемой частоте. Таким образом, 7 МГц и 10 МГц в общем случае не годятся. Популярным выбором являются 12 МГц, на которых мы и остановимся.

После того, как мы определились с ПЧ, возникает вопрос непосредственно о расчете фильтра. Практический и завоевавший популярность подход был описан Wes Hayward, W7ZOI в статье 1987-го года «Designing and Building Simple Crystal Filters». Статья вошла в книгу QRP Classics, которую можно бесплатно скачать на archive.org. Метод, предложенный W7ZOI, нам предстоит немного адаптировать под современные реалии. В оригинальной статье использованы кварцевые резонаторы на 3.579 МГц, поскольку их можно было легко и дешево купить. В наши дни без проблем доступны кварцы на любую частоту, и в силу озвученных причин в качестве ПЧ выгоднее выбрать 12 МГц.

Wes предлагает зафиксировать топологию фильтра на следующей:

Как сделать кварцевый фильтр

Кварцы подбираются как можно более похожими. В идеале, каждый кварц необходимо измерить, как ранее было описано в заметке Измеряем параметры кварцевых резонаторов. Как альтернативный вариант, допускается просто вставлять кварцы в один и тот же генератор (например, по схеме G3UUR) и группировать их по частоте. Кварцы в фильтре должны различаться не более, чем на 50 Гц. Кварцы бывают разные, но в среднем 20 штук должно хватить по крайней мере на пару фильтров.

Остается открытым вопрос о выборе конденсаторов. W7ZOI предлагает использовать С1-С4 одинаковой емкости. При этом можно наблюдать явную закономерность. Чем меньше емкость, тем больше импеданс фильтра, и тем шире его полоса. Конкретные значения будут зависеть от кварцев. Но это не беда. При помощи LTspice мы можем построить модель фильтра и определить зависимость его свойств от C1-C4.

Мной была использована модель с одинаковыми Y1-Y3. Для них Lm, Cm, Rm и C0 равны измеренным у одного из трех кварцев, что планируется применить в фильтре. Если использовать разные Y1-Y3, то модель выходит не особо полезной. В этом случае LTspice предсказывает кривую АЧХ, чего не будет в реальности.

Было решено сделать два фильтра — для SSB с конденсаторами 56 пФ и для CW с конденсаторами 470 пФ:

Как сделать кварцевый фильтр

В SSB-фильтре для согласования импеданса применены автотрансформаторы на кольцах FT37-43. Отношение числа витков должно быть sqrt(320/50) или примерно 10:4. Соответственно, в каждом трансформаторе было намотано 4 витка, сделан отвод, и затем еще 6 витков. Как альтернативный вариант, фильтр может быть согласован с помощью LC-схемы. Телеграфный фильтр и так хорошо согласован, поэтому в нем СУ не требуется.

В некоторых источниках рекомендуется припаивать корпуса кварцев к земле. Утверждается, что это снижает паразитную емкость и оттого улучшает свойства фильтра. Однако другие авторы (см книгу QRP Power) напротив, категорически не рекомендуют этого делать. По их наблюдениям, кварцевые резонаторы могут деградировать при чрезмерном нагреве. В своих фильтрах корпуса кварцев я не паял. Принято такое решение по соображениям, что так меньше работы, и кварцы легче отпаять в случае необходимости.

Как сделать кварцевый фильтр

Важно! Этот фильтр очень узкополосный. Анализатор спектра ничего не покажет, если пытаться измерить его с широким Span и большим RBW. Поначалу я решил, что фильтр не работает.

АЧХ и возвратные потери телеграфного фильтра:

Как сделать кварцевый фильтр

В данном случае имеем практически полное соответствие модели. Вносимые потери 4.9 дБ, полоса 320 Гц, идеальное согласование.

АЧХ двух фильтров для сравнения:

Как сделать кварцевый фильтр

Интересно, а что будет, если не подбирать кварцы? Для ответа на этот вопрос я взял SSB фильтр и заменил в нем кварцы на случайные. Вносимые потери стали 2.7 дБ вместо 2.3 дБ, и АЧХ в полосе пропускания стала немного кривовата. То есть, случайный фильтр уступает подобранному, но не то, чтобы очень сильно. Однако имеющиеся у меня кварцы на 12 МГц очень похожи. В худшем случае частота двух кварцев отличается лишь на 300 Гц. Случайный фильтр может заработать, а может и нет, смотря что у вас за кварцы.

По аналогии можно сделать фильтр и с большим числом кварцевых резонаторов. Таким образом добиваются еще более крутой АЧХ. Типично применяют до 8 кварцев, хотя отдельные энтузиасты используют до 15 штук.

Напоследок хотел бы порекомендовать статью 9 MHz Filters Built With Inexpensive Crystals [PDF]. Она написана все тем же Wes Hayward, W7ZOI в октябре 2020 года и описывает CW- и SSB-фильтры, содержащие до 6-и кварцевых резонаторов на 9 МГц. Топология фильтров отличается от использованной выше. Описание еще двух методов изготовления кварцевых фильтров можно найти в 3-ей главе книги Experimental Methods in RF Design.

А доводилось ли вам делать кварцевые фильтры и если да, то как вы их рассчитывали?

Дополнение: В продолжение темы о кварцевых полосовых фильтрах см часть 2 и часть 3.

Источник

Кварцевые фильтры КВ трансивера

Кварцевые фильтры КВ трансивера

Как сделать кварцевый фильтрАнатолий В. Белых (UA1OJ)
164500,
Северодвинск,

а/я 27

ua1oj (at) atnet.ru

Одной из основных задач при создании аппаратуры для любительской КВ и УКВ радиосвязи является селекция, которая решается с помощью различного рода фильтров. Получение высоких параметров фильтров требует применения высокодобротных элементов. Такими элементами служат магнитострикционные диски в электромеханических фильтрах и кварцевые резонаторы в пьезоэлектрических фильтрах. В радиолюбительской практике широкое распространение получили квазиполиноминальные лестничные кварцевые фильтры на одинаковых резонаторах.

Все полосовые фильтры строятся на основании преобразований фильтров НЧ прототипов. Полиноминальные фильтры содержат последовательные и параллельные контуры. Такие фильтры имеют геометрически симметричные характеристики относительно средней частоты. Но при проектировании в ряде случаев (узкая полоса, высокие частоты и др.) не очень удобны с точки зрения конструирования, изготовления и настройки из-за значительной разницы величин элементов последовательных и параллельных контуров. Для достаточно узкополосных фильтров соотношение значений индуктивностей и емкостей в параллельных и последовательных плечах настолько велико, что величины элементов становятся неприемлемыми. Поэтому полосовые фильтры часто реализуются в виде схем, состоящих из только последовательных или параллельных контуров, связанных между собой индуктивными или емкостными связями. Ярким примером могут служить фильтры сосредоточенной селекции – ФСС на связанных контурах и лестничные кварцевые фильтры. Характеристики затухания полосового фильтра на связанных контурах при относительной полосе пропускания, не превышающей 10-20% от средней частоты фильтра, может быть весьма близкой к характеристике затухания полиноминального полосового фильтра с тем же числом колебательных контуров. Расчет таких фильтров может производиться с помощью таблиц [7] полиноминальных НЧ прототипов. Поэтому эти фильтры именуются квазиполиноминальными.

Вопросы проектирования и изготовления квазиполиноминальных лестничных кварцевых SSB и CW фильтров в любительских условиях остаются актуальными на протяжении четверти века. За прошедшее время в печати было опубликовано много статей, посвящённых этой теме. Пионером, признанным специалистом и популяризатором лестничных кварцевых фильтров среди радиолюбителей считается J. Hardcastle (G3JIR). Он одним из первых уделил достойное внимание и вложил много труда и таланта в разработку методики расчёта указанных выше фильтров. Его статья [1] стала бестселлером.

Расчёт и моделирование качественных кварцевых фильтров с заданными параметрами сложная задача, требующая выполнения большого количества математических расчётов. Помочь в решении этой задачи может применение компьютеров. Первым энтузиастом этого направления в радиолюбительской практике стал U. Rohde (DJ2LR). Его знания и опыт в расчёте мостовых фильтров отражен в программе для семейства малых компьютеров и подробно описан в [2].

Но не только за рубежом уделялось внимание кварцевым фильтрам. В. Жалнераускас опубликовал на страницах журнала «Радио» цикл статей [3], в которых осветил новые, нераскрытые его предшественниками, страницы в теории и практике изготовления кварцевых фильтров. Достойное внимание уделили этой теме Бунин С. Г. и Яйленко Л. П. в [6]. «Справочник радиолюбителя-коротковолновика» украинского дуэта, «широко известного в узких кругах», печатался многотысячными тиражами.

C момента выхода в свет указанных выше трудов прогресс, а вместе с ним компьютерные и информационные технологии, глубоко проникли во все области деятельности человека. Не обошли они стороной и радиолюбительское движение. Компьютеры всё больше и больше находят применение в любительской радиосвязи и конструировании. Многие радиолюбители стали применять компьютеры в решении вопросов, связанных с расчётом и проектированием кварцевых фильтров.

Использование компьютерных программ позволяет быстро и качественно выполнить большой объём математических вычислений, провести анализ результатов и выбрать наиболее приемлемый вариант. В Интернете на сайтах, посвящённых любительской радиосвязи можно найти до десятка различных программ по расчёту лестничных кварцевых фильтров. Но в основном эти программы рассчитывают только величины конденсаторов связи и входных сопротивлений проектируемых фильтров. Кроме этого упомянутые программы имеют довольно большую погрешность в результатах расчётов, в некоторых случаях доходящую до 50%. Эта погрешность обусловлена наличием в эквивалентной схеме замещения кварцевого резонатора Cs и Rd (Рис. 1), никак не участвующих в расчётах при использовании упомянутых программ.

При расчёте электрических цепей кварцевый резонатор, согласно [5] стр. 39, может быть заменён эквивалентной схемой замещения (рис. 1) с соответствующими параметрами.

Как сделать кварцевый фильтр

Рис. 1. Эквивалентная схема замещения кварцевого резонатора.

Ldдинамическая индуктивность резонатора
Сdдинамическая ёмкость резонатора
Rdдинамическое сопротивление резонатора
Csстатическая ёмкость резонатора

Эти параметры связаны между собой следующей зависимостью:

Как сделать кварцевый фильтр

Foчастота последовательного резонанса;
Fpчастота параллельного резонанса
Fiчастотный интервал
Qдобротность резонатора

.В радиолюбительской практике получили распространение в основном фильтры с характеристиками двух типов – Баттерворта и Чебышева. Фильтр Баттерворта характеризуется монотонным изменением затухания в полосе пропускания и задерживания. Затухание в полосе задерживания изменяется приблизительно на 6 дБ за октаву для каждого элемента схемы. Например, пятиэлементный фильтр будет иметь затухание 30 дБ при двойной частоте среза и 60 дБ при учетверенной частоте среза. За нормированную частоту среза для фильтра Баттерворта принимается частота, на которой затухание составляет 3 дБ. Такие фильтры характеризуются меньшим «звоном» и в основном применяются для приема CW и при работе цифровыми видами связи (RTTY, AMTOR, PACTOR, PACKET RADIO и т.п.).

Табл. 1

Коэффициент отражения КотрКоэффициент стоячей волны напряжения в полосе пропускания КСВНеравномерность затухания в полосе пропускания фильтра
Котр=10%КСВ=1,222dA=0,044 дБ
Котр=15%КСВ=1,353dA=0,099 дБ
Котр=20%КСВ=1,5dA=0,177 дБ
Котр=25%КСВ=1,667dA=0,28 дБ

Как сделать кварцевый фильтр

Рис. 2. Зависимость АЧХ от Сs

Таблица 2.


п/п
Тип фильтраПараллельная емкость
Cs (пФ)
Расчётная полоса по уровню dF (–3 дБ) (Гц)Полученная полоса по уровню dF’ (–3 дБ) (Гц)Затухание в полосе пропускания A(дБ)Коэффициент прямоугольности по уровням –6/-60 дБ
АЧХ1Т08-10-31006,3+0310023931,252499/4522=1,81
АЧХ2Т08-10-31006,3+10310016031,671711/3473=2,03
АЧХ3Т08-10-31006,3+3031008432,59964/2810=2,91

Как сделать кварцевый фильтр

Рис. 3. Зависимость АЧХ от Rd

Таблица 3.

№ п/пТип фильтраСопротивление резонатора Rd (Ом)Расчётная полоса по уровню dF (–3 дБ) (Гц)Полученная полоса по уровню dF’ (–3 дБ) (Гц)Затухание в полосе пропускания A (дБ)Коэффициент прямоугольности по уровням –6/-60 дБ
АЧХ1Т08-10-31005,7+0310023931,252499/4522=1,81
АЧХ2Т08-10-31005,7+10310021963,342415/4634=1,92
АЧХ3Т08-10-31005,7+30310018567,522223/4869=2,19

Анализ полученных данных показывает, что Cs и Rd в значительной мере влияют на полосу пропускания, затухание, вносимое фильтром, и коэффициент прямоугольности. Отсюда вывод, что для качественного фильтра следует подбирать кварцевые резонаторы с минимальными значениями Cs и Rd.

Устранить указанные выше недостатки попытались авторы программы «Расчёт кварцевых фильтров». В мае 2001 года одна из первых версий программы была размещена на сайтах краснодарских (http://www.cqham.ru/ua1oj_d.htm) и QRZ.RU (http://www.qrz.ru/shareware/detail/307). Эта программа позволяет рассчитать параметры трёх, четырех, шести и восьми кристальных фильтров с характеристиками Баттерворта и Чебышева по методике, описанной в [1] и [3], и построить амплитудно-частотные характеристики проектируемых фильтров. В расчётах использованы коэффициенты из таблиц [7]. Положительной отличительной особенностью этой программы является реализация оригинального алгоритма расчёта и построения амплитудно-частотной характеристики квазиполиноминальных лестничных кварцевых фильтров с использованием полной эквивалентной схемы замещения кварцевого резонатора. Алгоритм построен на основе анализа линейных четырёхполюсников, подробно описанного в [4].

Вид одной из последней версии (V-6.1.8.0.) программы представлен на рис. 4. Форму, созданную программой, можно условно разделить на пять функциональных зон. Большую часть площади формы занимают графики АЧХ. Над ними расположены панели с принципиальными схемами фильтров и результатами расчётов. Справа от АЧХ находятся панели исходных данных резонатора и фильтра. В нижней части формы расположен статус-бар, который отражает порядковый номер АЧХ и краткое наименование рассчитанного фильтра, дату и время проведения вычислений, некоторые подсказки по работе с программой.

Как сделать кварцевый фильтр

Рис. 4. Скриншот программы.

Следует пояснить сокращения, принятые в программе:

Амин – минимальное вносимое затухание;
F(Амин) – частота минимального затухания;
А(Fo) – затухание на частоте последовательного резонанса;
dF(-N дБ) – полоса пропускания по уровню – N дБ;
Ck – емкость коррекции при расчёте фильтров со сдвигом полосы.

В дополнение к функциям предыдущих версий в программу введены несколько новых:

1. Сохранение и открытие файла с данными резонатора и фильтра (Рис. 5.);

Как сделать кварцевый фильтр

Рис. 5.

2. Построение с наложением до пяти АЧХ различных фильтров (Рис. 6.);

Как сделать кварцевый фильтр

Рис. 6.

3. В программу введён расчёт и построение АЧХ 4-х, 6-ти и 8-ми кристальных узкополосных фильтров со сдвигом вверх средней частоты полосы пропускания. Идея сдвига полосы пропускания заимствована из [8]. Она заключается в том, что частота последовательного резонанса каждого кварцевого резонатора повышается с помощью включенного последовательно с ним корректирующего конденсатора небольшой емкости (Рис. 7).

Как сделать кварцевый фильтр

Рис. 7.

4. Программа позволяет провести расчёт фильтров с характеристиками Баттерворта и Чебышева с Котр от 10 до 25% (Рис. 8).

Как сделать кварцевый фильтр

Рис. 8.

5. Построение АЧХ производится с точностью до 1 Гц по частоте. Максимальная полоса АЧХ составляет +/-30 кГц. При превышении этого значения, программа выдаёт сообщение об ошибке (Рис. 9).

Как сделать кварцевый фильтр

Рис. 9.

6. В программе имеется возможность с помощью масштабирования просмотреть любой участок АЧХ (Рис. 10). Для этой цели нажатием левой клавиши мыши выделяется прямоугольный фрагмент графика диагонально из верхнего правого угла в левый нижний. Так можно поступить несколько раз, добиваясь необходимого масштаба изображения АЧХ. Возврат к исходному виду производится обратным движением мыши – из правого нижнего угла в левый верхний.

Как сделать кварцевый фильтр

Как сделать кварцевый фильтр

Рис. 10.

Минимальные системные требования для работы программы: Pentium MMX-166MHz, SVGA 800x600x16bit, RAM-16MB, Windows 9x/ME/XP/NT/2000.

Проверка на практике работы этой программы показывает высокую точность результатов расчётов. Погрешность во многом зависит от качества проведения измерений параметров кварцевых резонаторов и может не превышать 2-5%. В качестве примера приводятся результаты расчёта трёх кварцевых фильтров для коротковолнового трансивера, подобного [9].

При изготовлении этих фильтров использовались малогабаритные кварцевые резонаторы UTECH на частоту 8867,238 кГц. Выбор пал на эти резонаторы ввиду высокой точности их изготовления. Разброс по частоте последовательного резонанса в партии из 30 шт. не превышал +/- 150 Гц, а отклонения значений Ld и Cs укладывались в допуск 0,1%. Измерение частоты последовательного резонанса для этих резонаторов дало результат:

С помощью программы было рассчитано несколько вариантов фильтров и наиболее приемлемые изображены на рис. 11.

Как сделать кварцевый фильтр

Рис. 11. Принципиальные схемы и основные параметры фильтров.

ZQ1 – Т08-10-2800, фильтр 8-го порядка, с характеристиками Чебышева, неравномерностью в полосе пропускания dA=0,044 дБ, коэффициентом отражения 10%, расчётной полосой пропускания 2800 Гц, используется в качестве фильтра основной селекции в режиме SSB.

ZQ2 – В06С-760, фильтр 6-го порядка, с характеристиками Баттерворта, с корректирующими емкостями, расчётной полосой пропускания 760 Гц, используется в качестве фильтра основной селекции в режиме CW. Сдвиг вверх средней частоты полосы пропускания относительно опорной частоты составляет 1000 Гц.

ZQ3 – Т04-10-2400, фильтр 4-го порядка, с характеристиками Чебышева, неравномерностью в полосе пропускания dA=0,044 дБ, коэффициентом отражения 10%, расчётной полосой пропускания 2400 Гц, используется в качестве подчисточного фильтра в режиме SSB.

Как сделать кварцевый фильтр

Рис. 12. Схема автогенератора.

Особенность этой схемы заключается в отсутствии катушки индуктивности. Её функции в этой схеме выполняет кварцевый резонатор. Возбуждается генератор вблизи частоты параллельного резонанса кварца, в зоне, где его реактивное сопротивление носит положительный индуктивный характер. Основное требование к резонаторам на данном этапе – близкие значения частоты, отклонение которой не должно превышать четверти полосы пропускания фильтра. В противном случае получить заданные характеристики будет довольно сложно.

Как сделать кварцевый фильтр

Как сделать кварцевый фильтр

Рис. 13. Прибор для измерения Cs и Rd.

В последнюю очередь следует определить динамическую индуктивность Ld кварцевого резонатора. В литературе [1, 2, 3, 5, 6] описано несколько методов определения этого параметра. Наиболее точным и простым из них является моделирование четырёхкристального кварцевого фильтра Баттерворта и по его характеристикам расчёт Ld. Для этого с помощью упомянутой выше программы рассчитывается фильтр, на макете или в реальной конструкции он моделируется и настраивается. В расчётах исходным значением Ld для частот порядка 8-9 МГц можно принять 15-20 мГн. При настройке следует добиться АЧХ по своей форме наиболее близкой к рассчитанной. У настроенного фильтра измеряется полоса пропускания по уровню –3 дБ. Исходные и полученные в результате моделирования данные позволяют определить истинную величину динамической индуктивности кварцевого резонатора Ld. Изменяя в программе исходные значения Ld и dF, добиваются в результатах расчётов величин конденсаторов связи и полосы пропускания, близких к значениям настроенного фильтра. При полном совпадении этих данных Ld примет истинное значение.

ПРИМЕР:

Из партии кварцевых резонаторов выбираем 4 шт. с наиболее близкими параметрами:

Fo=8861,736 кГц; Cs =6,3 пФ; Rd=5,7 Ом.

С помощью программы рассчитываем четырехкристальный фильтр Баттерворта. При заданных исходных значениях:

Ld=15 мГн; dF=2265 Гц;

получили емкости связи в фильтре:

С2=С4=100 пФ; С3=155,5 пФ.

На макете по схеме рис. 16 или в реальном тракте приема трансивера с помощью ГКЧ настраиваем фильтр и измеряем полосу пропускания по уровню –3 дБ. Получили:

dF=3363 Гц.

В программе, изменяя исходные значения только Ld и dF, добиваемся в результатах расчетов:

С2=С4=100 пФ; С3=155,5 пФ; dF=3363 Гц.

Все параметры совпали при:

Ld=10,1 мГн.

Это значение динамической индуктивности кварцевого резонатора следует считать истинным и использовать его в дальнейших расчетах фильтров.

При изготовлении фильтра можно использовать технологию, когда кварцевые резонаторы крепятся пайкой на плату из двухстороннего фольгированного стеклотекстолита выводами вверх, а все конденсаторы фильтра монтируются между этими выводами и заземляющей поверхностью платы (Рис. 14а).

Как сделать кварцевый фильтр

Рис. 14. Конструкция кварцевого фильтра.

Настройка фильтров сводится в получении амплитудно-частоных характеристик, близких к рассчитанным с помощью программы. В процессе настройки фильтров использовался самодельный генератор качающейся частоты с медленной, порядка 8-12 Гц, разверткой на базе осциллографа С1-76. На рис. 16 приводится схема, печатная плата и расположение деталей этого ГКЧ.

Как сделать кварцевый фильтр

Как сделать кварцевый фильтр
b)c)

Рис. 15. Генератор качающейся частоты.

Особое внимание следует уделить согласованию фильтра с каскадами УПЧ. В процессе экспериментов с различными схемами включения фильтров, была выбрана наиболее оптимальная с точки зрения получения заданной АЧХ и минимального затухания. Такая схема представлена на рис. 16.

Как сделать кварцевый фильтр

Рис. 16. Согласование кварцевого фильтра и УПЧ.

Кварцевый фильтр установлен между двумя контурами и имеет в каждый контур неполное включение с помощью емкостного делителя. Крайние ёмкости фильтра при этом входят в состав емкостного делителя. Эти контура позволяют трансформировать активное сопротивление и компенсировать емкостную реактивную составляющую входного импеданса фильтра. В такой схеме согласования обеспечивается режим с минимальными потерями сигнала, что в свою очередь приводит к минимальным шумам в цепях селекции приёмного тракта. Каскад усиления, включенный перед фильтром, рекомендуется установить в стабильный режим по постоянному току. Изменение тока транзистора сопровождается изменением выходного сопротивления каскада. Это приводит к рассогласованию каскада усиления и фильтра. На рис. 17 показаны АЧХ на примере фильтра Т08-10-3100 при различном режиме согласования с отклонением величины в пределах +/-20% от Rопт.

Как сделать кварцевый фильтр

Рис. 17. Зависимость АЧХ от согласования нагрузок.

Следующий за фильтром каскад усиления на полевом транзисторе имеет большое, порядка десятка килоом, сопротивление, которое слабо изменяется при изменении коэффициента усиления. Поэтому рекомендуется регулируемые каскады устанавливать после фильтра. Для уменьшения коэффициента шума этого каскада первый затвор следует включить непосредственно в контур. Наличие разделительной емкости и высокоомного делителя, задающего режим транзистора по первому затвору, увеличивает напряжение шумов усилителя промежуточной частоты. В усилителях на полевых транзисторах серии КП306, КП350 для обеспечения оптимального режима работы каскада в цепи истока потребуется стабилизированное отрицательное смещение порядка –3…-5 В. Для этой цели можно использовать интегральные стабилизаторы 79L05 или цепочку из нескольких диодов с минимальным дифференциальным сопротивлением типа КД409 или т.п. [10].

На рис. 18, 19 и 20 приводятся реальные амплитудно-частотные характеристики рассчитанных, изготовленных и настроенных фильтров. Результаты настройки фильтров с высокой точностью совпали с результатами расчётов этих фильтров. Это лишний раз показывает, что не только серьезные фирмы с всемирной известностью могут создавать качественные кварцевые фильтры с заданными параметрами. При наличии некоторых навыков работы с паяльником и измерительными приборами радиолюбитель средней квалификации может удовлетворить свои потребности в одном из самых значимых узлов своей аппаратуры – кварцевом фильтре. Причем это ему обойдется как минимум в несколько раз дешевле, нежели приобретение его в сети розничной торговли.

Как сделать кварцевый фильтр

Рис. 18. АЧХ фильтра Т04-10-2400.

Как сделать кварцевый фильтр

Рис. 19. АЧХ фильтра Т08-10-2800.

Как сделать кварцевый фильтр

Рис. 20. АЧХ фильтра В06С-760.

Все желающие ознакомиться с программой «Расчёт кварцевых фильтров» могут загрузить её последнюю демонстрационную версию с по указанным выше адресам. Для получения полной бесплатной версии программы необходимо с помощью утилиты регистрации, которая находится там же, заполнить бланк и выслать его по E-mail: ua1oj (at) atnet.ru. Программа имеет защиту от несанкционированного копирования и распространения, компилируется для каждого зарегистрированного пользователя индивидуально, и работоспособна только на том компьютере, на котором проходила регистрация.

В небольшой журнальной статье сложно подробно ответить на все затронутые вопросы. Каждый из них достоин изложения, как минимум, в большом фолианте. Но если читатели считают, что некоторые из вопросов не раскрыты или не достаточно точно изложены, то автор приглашает всех неравнодушных радиолюбителей к диалогу. Наиболее оперативно можно обмениваться мнениями по E-mail. Работы по совершенствованию программы не прекращаются и все поступившие замечания и предложения не останутся без внимания.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *