Как сделать кварцевый резонатор
Что такое кварцевый резонатор и как он работает?
Кварцевый резонатор является электронным прибором, построенным на пьезоэффекте, а также механическом резонансе. Применяется радиостанциями, где задает несущую частоту, в часах и таймерах, фиксируя в них интервал в 1 секунду.
Что это такое, и зачем он нужен
Прибор является источником, обеспечивающим гармонические колебания высокой точности. Имеет, при сравнении с аналогами, большую эффективность работы, стабильные параметры.
Первые образцы современных устройств появились на радиостанциях в 1920-1930 гг. как элементы, имеющие стабильную работу, способные задавать несущую частоту. Они:
Чуть позже кварцевые резонаторы стали составной частью таймеров, часов. Электронные компоненты с собственной резонансной частотой 32768 Гц, которая в двоичном 15-разрядном счетчике задает временной промежуток равный 1 секунде.
Приборы используются сегодня в:
Устройства изготавливаются с разными корпусами. Делятся на выводные, применяемые в объемном монтаже, и SMD, используемые в поверхностном монтаже.
Их работа зависит от надежности схемы включения, влияющей на:
Свойства кварцевого резонатора
Превосходит ранее существовавшие аналоги, что делает прибор незаменимым во многих электронных схемах и объясняет сферу использования устройства. Это подтверждается тем, что за первое десятилетие с момента изобретения в США (не считая другие страны) выпущено больше 100 тыс. штук приборов.
Среди положительных свойств кварцевых резонаторов, объясняющих популярность, востребованность устройств:
Кварцевые резонаторы имеют и недостатки:
Принцип работы кварцевого резонатора
Работает прибор на основе пьезоэффекта, проявляющегося на пластинке из кварца, причем низкотемпературного. Элемент вырезают из цельного кристалла кварца, соблюдая задаваемый угол. Последний определяет электрохимические параметры резонатора.
Пластинки с обеих сторон покрывают слоем серебра (подходит платина, никель, золото). Затем их прочно фиксируют в корпусе, который герметизируется. Устройство представляет колебательную систему, которая обладает собственной резонансной частотой.
Когда электроды подвергаются переменному напряжению, пластинка из кварца, обладающая пьезоэлектрическим свойством, изгибается, сжимается, сдвигается (зависит от типа обработки кристалла). Одновременно в ней появляется противо-ЭДС, как это происходит в катушке индуктивности, находящейся в колебательном контуре.
Когда подается напряжение с частотой, совпадающей с собственными колебаниями пластинки, то в устройстве наблюдается резонанс. Одновременно:
Энергия, которая необходима для поддержания колебаний, в случае равенства частот низкая.
Обозначение кварцевого резонатора на электрической схеме
Прибор обозначается аналогично конденсатору. Отличие: между вертикальными отрезками помещен прямоугольник — символ пластинки, изготовленной из кварцевого кристалла. Боковые стороны прямоугольника и обкладки конденсатора разделяет зазор. Рядом на схеме может присутствовать буквенное обозначение прибора — QX.
Как проверить кварцевый резонатор
Проверка резонатора на работоспособность требует наличия тестера. Его собирают по схеме на основе транзистора КТ3102, 5 конденсаторов и 2 резисторов (устройство подобно кварцевому генератору, собранному на транзисторе).
Прибор необходимо в подключаемых соединениях, подключениях подключить к базе транзистора и отрицательному полюсу, защищая установкой защитного конденсатора. Питание схемы включения постоянное — 9В. Плюс подключают на вход транзистора, к его выходу — через конденсатор — частотомер, который фиксирует частотные параметры резонатора.
Схемой пользуются при настройке контура колебаний. Когда резонатор исправный, он при подключении выдает колебания, которые приводят к появлению переменного напряжения на эмиттере транзистора. Причем частота напряжения совпадает с аналогичной характеристикой резонатора.
Прибор неисправен, если частотомер не фиксирует возникновение частоты или определяет наличие частоты, но она — либо намного отличается от номинала, либо при нагреве корпуса паяльником сильно изменяется.
Прибор для проверки кварцевых резонаторов+кварцевый калибратор
Здравствуйте, уважаемые Авторы, Журналисты, Читатели!
В этой статье я расскажу, как изготовил простой прибор, позволяющий проверять исправность кварцевых резонаторов и генерировать сигналы образцовых частот в широком диапазоне. А также определять частоту кварцевых резонаторов, если она не известна.
Повторить прибор не составит большого труда. Достаточно базовых знаний, навыков и минимума материалов и инструментов.
В настоящее время кварцевые резонаторы можно встретить на каждом шагу. Они применяются в часах, радиоприёмниках, телевизорах, компьютерах, мобильных телефонах, автомобилях и даже в некоторых стиральных машинах и холодильниках!
Много лет назад я собрал по схеме из какого-то журнала примитивный приборчик. В панельку вставлялся кварцевый резонатор и на выходе получалась точная, стабильная частота, указанная на корпусе кварца. Помогало проверить и настроить приёмники и другие приборы.
Со временем появился большой выбор кварцев и, казалось бы,теперь можно генерировать множество образцовых частот. Однако, я стал замечать, что далеко не каждый кварц работает в этом приборе. К тому же возникла необходимость проверять кварцевые резонаторы на исправность перед их установкой в свои конструкции и при ремонте различной аппаратуры. Прибор меня разочаровал и я его продал или просто подарил кому-то, точно не помню.
Недавно я решил изготовить подобный прибор, используя накопленные знания и опыт. По моей задумке, новый прибор должен быть в разы лучше, сохранив простоту в изготовлении. Вот что у меня получилось.
Это принципиальная электрическая схема прибора.
Условно я разбил её на две части.
Генераторная. При подключении испытуемого кварца, если он исправен, возникает генерация. Частота генерации определяется кварцевым резонатором. Получается маломощный передатчик, в спектре сигнала которого, помимо основной частоты, присутствуют её гармоники, то есть частоты, кратные основной. Например, если подключить кварц на частоту 10 МГц, в спектре так же будут частоты 20 МГц, 30 МГц и так далее. Это позволяет проверять и точно настраивать различную аппаратуру.
Индикаторная. Определяет наличие генерации и зажигает светодиод.
К генераторной части предъявляются весьма жёсткие требования. Генерация должна возникать при подключении любого исправного кварца, любого конструктивного исполнения. В тоже время не должна возникать «паразитная» генерация, то есть при отсутствии кварца или при подключении неисправного резонатора.
Я решил применить не биполярный, как можно встретить в большинстве подобных устройств, а полевой транзистор. Так схема получается проще и стабильнее в работе. Режим работы транзистора VT1 по постоянному току задан резисторами R1 и R2. Проверяемый кварц через конденсатор C1 подключается к затвору и стоку транзистора. При исправном резонаторе создаётся положительная обратная связь и возникает генерация. Для подключения кварца решил использовать небольшие зажимы типа «крокодил» с проводами небольшой длины. Такие зажимы позволяют легко подключать кварцы с самыми разными выводами. Провода также выполняют функцию передающей антенны. Конденсатор C2 закорачивает по высокой частоте провод питания на общий провод. Корпус транзистора соединён с общим проводом.
Чтобы сделать её максимально простой, я решил применить так называемый транзисторный детектор. Раньше его называли триодным детектором. Его изредка можно встретить в схемах старых радиоприёмников. В отличие от диодного детектора, триодный не только детектирует, но и усиливает продетектированный сигнал. Колебания с выхода генераторной части через конденсатор небольшой ёмкости C3 поступают на базу транзистора VT2. При положительных полупериодах колебаний транзистор открывается и в его коллекторной цепи протекают импульсы тока. Этими импульсами заряжается конденсатор С4. Параллельно конденсатору через ограничительный резистор R4 подключен светодиод HL1, который начинает светиться. База транзистора через резистор R3 подключена к общему проводу, поэтому в отсутствие сигнала транзистор закрыт и светодиод не светится. Таким образом, индикаторная часть однозначно показывает наличие или отсутствие генерации, то есть исправность проверяемого кварцевого резонатора.
Цепь питания прибора состоит из колодки для подключения батарейки 9 В типа «Крона», выключателя S1, диода VD1 защиты от переплюсовки и конденсатора C5.
Далее я расскажу, как изготовить этот прибор.
Детали и материалы:
Паяльник 25-40 Вт
Кусачки
Ножницы
Нож
Шило
Пинцет
Пассатижи
Лобзик
Напильник
Мини дрель с насадками
Перманентный фломастер
Линейка
Лупа
Швейная иголка
Мультиметр
Изготовление платы.
В качестве заготовки я решил использовать самодельную плату из фольгированного стеклотекстолита, которую я изготовил много лет назад. На ней были собраны макеты нескольких устройств. Хороша она тем, что имеются небольшие кружочки «пятачки», окруженные фольгой, выполняющей функцию общего провода. Такая плата идеально подходит для изготовления ВЧ устройств, каковым и является данный прибор. Также на этой плате имеется провод питания в виде дорожки. Если у Вас подобной платы нет, её легко изготовить, вырезав кружочки при помощи мини дрели с насадкой наподобие зубоврачебного бора. Или при помощи линейки и резака изготовленного из ножовочного полотна. В этом случае надо вырезать не кружочки, а квадратики.
Монтаж деталей на плату.
Залудив выводы деталей, я распаял их на плате, как показано на фотографиях. При монтаже старался выводы деталей сделать по возможности короткими, это важно для ВЧ устройств. Затем лобзиком аккуратно отпилил с двух сторон ненужные части платы и обработал края напильником. Конечно, это неправильно, эти операции нужно делать до монтажа деталей. Но всё дело в том, что я точно не знал, сколько деталей и каких потребуется для этой самоделки. Определился в процессе работы. Используя лупу осмотрел монтаж, особое внимание уделил отсутствию замыканий «пятачков» с окружающей их фольгой. При помощи швейной иголки и тряпочки смоченной растворителем очистил плату от остатков канифоли. В результате у меня получилась плата размерами 65 х 40 мм.
Здесь обозначение выводов транзисторов, в том положении, как они распаяны на плате. Также обозначены аноды диода, светодиода и плюсовые выводы электролитических конденсаторов.
Изготовление корпуса.
Сначала я хотел изготовить или подобрать готовый металлический корпус. Но мне попался на глаза небольшой пластиковый контейнер для мелочей. Вот такой.
Решил его использовать. У него 4 небольших и одно большое отделение. Прикинул, что в одном отделении можно будет разместить плату, в другом батарейку, в третьем выключатель питания, в четвёртом зажимы с проводами и подключенным кварцем. В пятом (большом) отделении можно разместить набор резонаторов. Кроме того, корпус полупрозрачный, поэтому не надо будет думать, где и как разместить светодиод, чтобы он был виден с разных сторон. Корпус будет свободно пропускать радиоволны, излучаемые прибором, при этом можно будет закрыть крышку, никакие провода снаружи болтаться не будут и можно будет легко перемещать прибор в нужное место.
Первым делом я наметил маркером место отверстия для крепления выключателя питания и три места прорезей для проводов. Сделал отверстие и прорези.
Шаг 4.
Для того,чтобы батарейка и набор кварцев не болтались в корпусе, вырезал 4 подкладки из поролона.
И приклеил их на соответствующие места.
Монтаж всего прибора.
Отмерил необходимое количество провода,чтобы соединить плату с колодкой и выключателем, а также зажимы «крокодил» с платой. Провода взял разных цветов. Спаял согласно схеме. Провода свил между собой.
Сборка в корпусе.
Закрепил выключатель питания гайкой, плату закреплять не стал, она хорошо держится в своём отделении корпуса. Уложил провода в соответствующие прорези. Прибор готов!
Проверка работоспособности прибора.
Прибором было проверено большое количество кварцевых резонаторов в диапазоне частот от 1,000 МГц до 79,000 МГц, самого разного конструктивного исполнения. Разных лет изготовления, начиная с 1961 года. Прибор чётко определил неисправные резонаторы. Кроме того, один исправный кварц был умышленно выведен из строя. Для этого на пластину была нанесена капля клея. Прибор показал, что резонатор неисправен.
Излучаемый прибором сигнал (при частоте кварца 24,200 МГц) фиксировался простейшим индикатором поля на расстоянии 10 см, а радиоприёмником (на третьей гармонике) на расстоянии не менее 15 м.
Работоспособность прибора сохранялась при снижении напряжения батареи питания до 4,0 Вольт (с уменьшением яркости свечения индикатора).
Потребляемый ток при напряжении питания 9,0 В составлял 10-13 мА.
В дальнейшем я планирую усовершенствовать это изделие.
1) Сделать выход для подключения частотомера.
2) Сделать отключаемую модуляцию сигналом звуковой частоты (встроенный генератор).
Свободного места в корпусе для этого достаточно.
Я доволен своей самоделкой и активно пользуюсь ей. Также давал на время знакомому радиолюбителю. Отзыв положительный.
Надеюсь, эта статья будет Вам полезна.
Буду рад Вашим комментариям и пожеланиям.
Современная цифровая техника требует высокой точности, поэтому совсем неудивительно, что практически любое цифровое устройство, какое бы не попалось сегодня на глаза обывателю, содержит внутри кварцевый резонатор.
Кварцевые резонаторы на различные частоты необходимы в качестве надежных и стабильных источников гармонических колебаний, чтобы цифровой микроконтроллер мог бы опереться на эталонную частоту, и оперировать с ней в дальнейшем, в процессе работы цифрового устройства. Таким образом, кварцевый резонатор — это надежная замена колебательному LC-контуру.
Если рассмотреть простой колебательный контур, состоящий из конденсатора и катушки индуктивности, то быстро выяснится, что добротность такого контура в схеме не превысит 300, к тому же емкость конденсатора будет плавать в зависимости от температуры окружающей среды, то же самое произойдет и с индуктивностью.
Не даром есть у конденсаторов и катушек такие параметры как ТКЕ — температурный коэффициент емкости и ТКИ — температурный коэффициент индуктивности, показывающие, насколько изменяются главные параметры этих компонентов с изменением их температуры.
Так, благодаря высоким показателям температурной стабильности и добротности, кварцевые резонаторы применяются всюду в радиотехнике и цифровой электронике.
Для задания микроконтроллеру или процессору тактовой частоты, ему всегда необходим генератор тактовой частоты, на который он мог бы надежно опереться, и генератор этот всегда нужен высокочастотный и при том высокоточный. Здесь то и приходит на помощь кварцевый резонатор. Конечно, в некоторых применениях можно обойтись пьезокерамическими резонаторами с добротностью 1000, и таких резонаторов достаточно для электронных игрушек и бытовых радиоприемников, но для более точных устройств необходим кварц.
В основе работы кварцевого резонатора — пьезоэлектрический эффект, возникающий на кварцевой пластинке. Кварц представляет собой полиморфную модификацию диоксида кремния SiO2, и встречается в природе в виде кристаллов и гальки. В свободном виде в земной коре кварца около 12%, кроме того в виде смесей в составе других минералов также содержится кварц, и в общем в земной коре более 60% кварца (массовая доля).
Для создания резонаторов подходит низкотемпературный кварц, обладающий ярко выраженными пьезоэлектрическими свойствами. Химически кварц весьма устойчив, и растворить его можно лишь в гидрофторидной кислоте. По твердости кварц превосходит опал, но до алмаза не дотягивает.
При изготовлении кварцевой пластинки, от кристалла кварца под строго заданным углом вырезают кусочек. В зависимости от угла среза полученная кварцевая пластинка будет отличаться по своим электромеханическим свойствам.
От типа среза зависит многое: частота, температурная стабильность, устойчивость резонанса и отсутствие либо наличие паразитных резонансных частот. На пластинку затем наносят с обеих сторон по слою металла, коим может быть никель, платина, серебро или золото, после чего жесткими проволочками крепят пластинку в основание корпуса кварцевого резонатора. Последний шаг — корпус герметично собирают.
Так получается колебательная система, обладающая собственной резонансной частотой, и кварцевый резонатор, полученный таким образом, обладает собственной резонансной частотой, определяемой электромеханическими параметрами.
Теперь если приложить к металлическим электродам пластики переменное напряжение данной резонансной частоты, то проявится явление резонанса, и амплитуда гармонических колебаний пластинки весьма значительно возрастет. При этом сопротивление резонатора сильно понизится, то есть процесс аналогичен происходящему в последовательном колебательном контуре. В силу высокой добротности такого «колебательного контура», энергетические потери при его возбуждении на резонансной частоте пренебрежимо малы.
На эквивалентной схеме: C2 – статическая электроемкость пластинок с держателями, L – индуктивность, С1 — емкость, R – сопротивление, отражающие электромеханические свойства установленной пластинки кварца. Если убрать монтажные элементы, останется последовательный LC-контур.
В процессе монтажа на печатную плату, кварцевый резонатор нельзя перегревать, ведь конструкция его довольно хрупка, и перегрев может привести к деформации электродов и держателя, что непременно отразится на работе резонатора в готовом устройстве. Если же разогреть кварц до 5730°C, он вовсе утратит свои пьезоэлектрические свойства, но, к счастью, нагреть элемент паяльником до такой температуры невозможно.
Обозначение кварцевого резонатора на схеме похоже на обозначение конденсатора с прямоугольником между пластинами (кварцевая пластинка), и с надписью «ZQ» или «Z».
Чтобы проверить кварцевый резонатор на исправность, можно собрать небольшой пробник, который поможет не только убедиться в работоспособности резонатора, но и увидеть его резонансную частоту. Схема пробника представляет собой типичную схему кварцевого генератора на одном транзисторе.
Включив резонатор между базой и минусом (можно через защитный конденсатор на случай короткого замыкания в резонаторе), остается измерить частотомером резонансную частоту. Эта схема подойдет и для предварительной настройки колебательных контуров.
Когда схема включена, исправный резонатор станет способствовать генерации колебаний, и на эмиттере транзистора можно будет наблюдать переменное напряжение, частота которого будет соответствовать основной резонансной частоте тестируемого кварцевого резонатора.
Подключив к выходу пробника частотомер, пользователь сможет наблюдать эту резонансную частоту. Если частота стабильна, если небольшой нагрев резонатора поднесенным паяльником не приводит к сильному уплыванию частоты, то резонатор исправен. Если же генерации не будет, или частота будет плавать или окажется совсем другой, чем должна быть для тестируемого компонента, то резонатор неисправен, и его следует заменить.
Данный пробник удобен и для предварительной настройки колебательных контуров, в этом случае конденсатор C1 обязателен, хотя при проверке резонаторов его можно из схемы исключить. Контур просто подключается вместо резонатора, и схема начинает генерировать колебания аналогичным образом.
Пробник собранный по приведенной схеме замечательно работает на частотах от 15 до 20 МГц. Для иных диапазонов вы всегда можете поискать схемы в интернете, благо их там много, как на дискретных компонентах, так и на микросхеме.