Как узнать высоту треугольника

Как узнать высоту треугольника

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Как узнать высоту треугольника

1. Через площадь и длину стороны

Как узнать высоту треугольника

где S – площадь треугольника.

2. Через длины всех сторон

Как узнать высоту треугольника

где p – это полупериметр треугольника, который рассчитывается так:

Как узнать высоту треугольника

3. Через длину прилежащей стороны и синус угла

Как узнать высоту треугольника

4. Через стороны и радиус описанной окружности

Как узнать высоту треугольника

Как узнать высоту треугольника

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Как узнать высоту треугольника

Как узнать высоту треугольника

Высота в прямоугольном треугольнике

Как узнать высоту треугольника

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Как узнать высоту треугольника

2. Через стороны треугольника

Как узнать высоту треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Как узнать высоту треугольника

Как узнать высоту треугольника

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Как узнать высоту треугольника

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Источник

Способы нахождения высоты треугольника: теорема и формула

Определение высоты треугольника

Геометрия, являющаяся разделом математики, изучает структуры в пространстве и на плоскости. Одним из типов таких фигур являются геометрические фигуры. К ним можно отнести квадрат, прямоугольник, круг, пятиугольник, треугольник и другие. Из них можно делать более сложные фигуры или оставлять в первоначальном виде.

Треугольником является фигура, относящаяся к классу простых фигур, которая образована тремя точками, находящимися не на одной прямой, и соединенными между собой тремя отрезками.

Треугольники могут быть:

Помимо трех сторон, важными элементами треугольников являются медианы, высоты и биссектрисы.

Высотой треугольника является перпендикуляр, опущенный из угла треугольника вниз, на противоположную сторону.

В геометрии высота треугольника обозначается буквой h.

В зависимости от типа треугольника высота может:

Чтобы сделать высоту графически явной и понятной на рисунке, ее нередко выделяют красной линией.

Для того чтобы определить графическое начертание высоты треугольника, необходимо:

Любой треугольник имеет 3 высоты — по числу углов. Их пересечение находится в точке ортоцентра, которая, в зависимости от типа треугольника, может находиться внутри треугольника, снаружи на пересечении продолжений высот или совпадать с вершиной прямого угла.

Все три высоты треугольника обратно пропорциональны сторонам, к которым опущены. Доказательством будет соотношение:

A × H A ÷ B × H B ÷ C × H C = 1 B C ÷ 1 A C ÷ 1 A B

Выглядеть графически это будет так:

Существует множество способов нахождения высоты треугольника в зависимости от имеющихся данных.

Через площадь и длину стороны, к которой опущена высота:

где S — уже известная площадь треугольника,

Через длины всех сторон:

h = 2 p p × a p × b p × c a

где a, b и c — стороны треугольника,

p — его полупериметр.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через длину прилежащей стороны и синус угла:

s i n a — синус угла прилежащей стороны.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через стороны и радиус описанной окружности.

Решать задачи с треугольником и описанной окружностью для нахождения высоты можно следующим образом:

где b, c — стороны разностороннего треугольника, к которым не опущена высота,

R — радиус описанной окружности.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через длины отрезков, образованных на гипотенузе при проведении к ней высоты треугольника:

где C 1 и С 2 — длины отрезков, образованных на гипотенузе, проведенной к ней высотой.

Данная формула подходит только для нахождения высоты прямоугольного треугольника.

Нахождение высоты равнобедренного треугольника через основание и боковые стороны

Равнобедренным треугольником называют треугольник, имеющий одинаковые по длине катеты, которые образуют равные углы с основанием. В таком треугольнике высота будет опускаться ровно в середину основания, образуя с ним прямой угол.

Помимо высоты, проведенная линия будет являться также осью симметрии, биссектрисой вершинного угла и медианой.

Формула для нахождения высоты в этом случае:

где a — основание,

b — равные боковые стороны.

Свойства высоты в равностороннем треугольнике

Равносторонний треугольник — это треугольник, стороны которого, углы, высоты, медианы, оси симметрии и биссектрисы будут равны.

Такой треугольник является частным примером равнобедренного треугольника, но не наоборот.

Высоту в таком треугольнике можно найти с помощью следующей формулы:

где а — сторона равностороннего треугольника.

Главным свойством, которым обладает высота равностороннего треугольника, является тот факт, что она равна медиане и биссектрисе:

а — сторона правильного равностороннего треугольника.

Нахождение высоты прямоугольного треугольника через его катеты

Прямоугольным считается треугольник, у которого один из углов является прямым, то есть равным 90°. Высота, опущенная из такого угла, падает на гипотенузу треугольника и делит его на два прямоугольных треугольника, которые пропорциональны по отношению к большому треугольнику и друг к другу.

Важно отметить, что две другие высоты будут совпадать с катетами треугольника.

Найти высоту в прямоугольном треугольнике, можно через два его катета (a и b) и гипотенузу (c).

Причем гипотенуза также легко находится через катеты по теореме Пифагора:

Расчет высоты идет следующим образом:

где a, b и c — вышеупомянутые стороны треугольника.

Источник

Как посчитать высоту равнобедренного треугольника

Онлайн калькулятор

Как узнать высоту треугольника

Чтобы вычислить высоту равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

Введите их в соответствующие поля и получите результат.

Если известны длина стороны а и основания b

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и длина основания b?

Формула

Пример

Если сторона a = 10 см, а сторона b = 5 см, то:

Если известны длина стороны а и угол α

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол α?

Формула

Пример

Если сторона a = 5 см, а ∠α = 45°, то:

h = 5⋅sin 45 ≈ 3,53 см

Если известны длина стороны а и угол β

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол β?

Формула

Пример

Если сторона a = 5 см, а ∠β = 30°, то:

Если известны длина стороны b и угол α

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол α?

Формула

Пример

Если сторона b = 20 см, а ∠α = 35°, то:

Если известны длина стороны b и угол β

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол β?

Источник

Определение и свойства высоты треугольника

В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.

Определение высоты треугольника

Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.

Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).

Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).

Высота в разных видах треугольников

В зависимости от вида фигуры высота может:

Свойства высоты треугольника

Свойство 1

Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).

Свойство 2

При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:

Свойство 3

Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.

Как узнать высоту треугольника

Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.

Свойство 4

Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.

Как узнать высоту треугольника

Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.

Источник

Треугольник. Высота треугольника.

Высота треугольника – перпендикуляр, прочерченный из выбранной вершины треугольника на противолежащею его сторону. Для обозначения высоты треугольника используют букву h, к ней добавляется название той стороны, к которой она прочерчена: ha, hb, hc,

Как узнать высоту треугольника

Сторону треугольника, к которой прочерчена высота, называют основанием треугольника.

Высота треугольника может быть прочерчена к любой из трех сторон треугольника. Случается высота треугольника пересекает не само основание треугольника, а его продолжение. Так, высоты AD и ЕМ пересекают продолжения оснований ВС и FK.

Как узнать высоту треугольника

Характерные особенности высоты.

В прямоугольном треугольнике высота, прочерченная из вершины прямого угла, разделит его на два треугольника, подобные первоначальному.

В остроугольном треугольнике две его высоты отделяют от него подобные треугольники.

Если треугольник остроугольный, то все основания высот принадлежат его сторонам, а у тупоугольного треугольника две высоты принадлежат продолжению сторон.

Три высоты в остроугольном треугольнике перекрещиваются в одной точке и эту точку обозначают как ортоцентр треугольника.

Источник

Высота треугольника

Там, где есть высота, есть и прямой угол.

А значит, и прямоугольный треугольник, который поможет тебе решить массу задач!

И простые подобия, и «хитрые подобия с косинусом», и другие свойства прямоугольных треугольников!

И самое главное – не нужно ничего запоминать.

Научись выводить и никогда не ошибёшься, сможешь всегда себя проверить и решить любую задачу!

Все в этой статье. Читай и смотри видео.

Высота треугольника — коротко о главном

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне (прямой, которая эту сторону содержит).

Основанием высоты называют ту точку, в которой высота пересекает противоположную сторону (или её продолжение).

Три высоты любого треугольника пересекаются в одной точке.

Высоты треугольника обратно пропорциональны сторонам, на которые они опущены: \( \displaystyle A<_>:B<_>:C<_>=\frac<1>:\frac<1>:\frac<1>\).

Как узнать высоту треугольника

Способ 1. Через сторону и угол треугольника: \( \displaystyle A<_>=AC\cdot \sin C=AB\cdot \sin B\).

Способ 3. Через сторону и площадь треугольника: \( \displaystyle A<_>=\frac<2S>\).

Способ 4. Через стороны треугольника и радиус описанной окружности: \( \displaystyle A<_>=\frac<2R>\), где \( \displaystyle R\) — радиус описанной окружности.

Читай далее! Здесь не все…

Высота треугольника — подробнее

Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне (прямой, которая эту сторону содержит).

Как узнать высоту треугольника

На этом рисунке \( \displaystyle BH\) – высота.

Но иногда высота (в отличие от биссектрисы и медианы) ведёт себя, как непослушный ребенок – «выбегает» из треугольника. Это бывает в тупоугольном треугольнике.

И тогда получается так:

Как узнать высоту треугольника

В общем, не нужно пугаться, если основание высоты оказалось не на стороне треугольника, а «за» треугольником, на продолжении стороны.

Как же решать задачи, в которых участвует высота?

Нужно стремиться применить какие-нибудь знания о прямоугольном треугольнике – ведь где высота – там и прямой угол.

Но попадаются задачи и похитрее, при решении которых лучше обладать дополнительными знаниями заранее, а не выводить их «с нуля». Сейчас мы обсудим некоторые из них.

Но для начала решим простенькую задачку на высоту в тупоугольном треугольнике:

В треугольнике \( \displaystyle ABC\) с тупым углом \( \displaystyle C\) проведена высота \( \displaystyle BH\). Найти \( \displaystyle AC\), если \( AB=2\sqrt<10>\), \( BC=\sqrt<13>\), \( BH=2\).

Смотри: из-за того, что угол \( C\) – тупой, высота \( BH\) опустилась на продолжение стороны \( AC\), а не на саму сторону.

Как узнать высоту треугольника

Теперь давай увидим во всём этом два прямоугольных треугольника.

Смотри их целых два:

Как узнать высоту треугольника

Применяем теорему Пифагора к треугольнику \( BCH\):

А теперь теорема Пифагора для \( \Delta ABH\):

Теперь осталось только заметить, что \( AC=AH-CH=6-3=3\).

А теперь давай вернемся к нашим высотам!

В треугольнике проведено две высоты

Как узнать высоту треугольника

Первый «неожиданный факт»:

Почему бы это? Да очень просто! У них общий угол \( \displaystyle B\) и оба – прямоугольные. Значит, подобны по двум углам.

Второй «неожиданный» факт:

Здесь тоже подобие по двум углам: \( \angle 1=\angle 2\) (как вертикальные) и по прямому углу.

Как узнать высоту треугольника

Третий, по-настоящему неожиданный факт:

Как узнать высоту треугольника

Вот это уже интереснее, правда? Давай разбираться, почему так.

Открыть ответы…

Чтобы открыть все задачи учебника, закрытые голубыми баннерами (как этот), зарегистрируйтесь один раз:

В треугольнике проведены три высоты

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

1. Треугольник остроугольный – тогда пересекаются сами высоты:

Как узнать высоту треугольника

2. Треугольник тупоугольный – тогда пересекаются продолжения высот:

Как узнать высоту треугольника

Что же полезного мы ещё не обсудили?

Угол между высотами

Давай узнаем, вдруг угол между высотами можно как–то выразить через углы треугольника? Давай рассмотрим остроугольный треугольник.

Итак, нам хотелось бы найти \( \displaystyle \angle \varphi \).

Смотрим на \( \displaystyle \Delta AHC\). Замечаем, что наш \( \displaystyle \angle \varphi \) – внешний угол в этом треугольнике.

Значит, \( \angle \varphi =\angle 1+\angle 2\).

Как узнать высоту треугольника

Чему же равны \( \displaystyle \angle 1\) и \( \displaystyle \angle 2\)?

Как узнать высоту треугольника

Но что же это такое? Ведь сумма угла углов треугольника — \( 180<>^\circ \)! Значит, \( \angle \varphi =\angle B\).

Итак, что получилось?

Открыть ответы…

Мы постоянно улучшаем этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)

Остроугольный треугольник и высота

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Как узнать высоту треугольника

Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника.

Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести.

И тогда, если ты будешь точно знать, например, что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

Бонус: Вебинары из нашего курса подготовки к ЕГЭ по математике

ЕГЭ №6 Все о равнобедренном треугольнике

Очень часто все «проблемы» с решением задач на равнобедренный треугольник решаются построением высоты.

Очень хороший вебинар, чтобы закрепить решением задач то, что вы изучили в этой статье о высоте.

Вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Научимся решать и «обычные» треугольники.

ЕГЭ №6 Все о прямоугольном треугольнике

Важнейшая тема — прямоугольный треугольник — свойства, теорема Пифагора, тригонометрия.

Абсолютное большинство задач геометрии сводятся к прямоугольным треугольникам. Поэтому знать нужно как «Отче наш».

И уметь решать задачи — чем мы займемся на этом вебинаре.

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Как узнать высоту треугольника

Алексей Шевчук — ведущий курсов

Добавить комментарий Отменить ответ

Один комментарий

Некоторые комментарии прошлых лет к этой статье:

Дарья Сулейманова
15 января 2018
Сидела и готовилась к зачёту по геометрии около двух часов, заходила на множество разных сайтов. И только на вашем сайте всё написано понятным языком, без заумных терминов. Спасибо!

Александр (админ)
15 января 2018
Дарья, спасибо! Всей нашей команде очень приятно это слышать. Мы, консультанты, убеждали математиков использовать «человеческий» язык. И они справились очень хорошо. В результате получилось то, что всем нравится. Мы каждый день получаем благодарности. Еще раз спасибо и удачи на зачете!

Олеся
06 апреля 2018
Готовится с внуком к ОГЭ. Школу закончила 45 лет назад. Учили в то время просто отлично. Многое помню хорошо, но некоторые нюансы забылись. Ваш сайт очень помог. Все лаконично, по существу и без лишних заумных оборотов. Скачала ла себе на телефон. В свободное время просматриваю. С удовольствием решаю задачи. Спасибо Вам.

Александр (админ)
06 апреля 2018
Олеся, спасибо за такой отзыв и удачи Вашему внуку на всех экзаменах. А сайт я лично попросил математиков написать «человеческим языком» ) Судя по отзывам, они справились.

Ольга
15 февраля 2019
А как бы еще доказать подобие треугольников HcHHa и АНС Можно без окружностей

Дмитрий
10 февраля 2020
Скажите, прав ли я. (Задание «Угол между высотами») Что не может угол Фи быть = углу В Так как, угол В это 180 минус угол А+С И угол Н это 180 минус угол А+С Значит В и Н равны, следовательно угол Фи это 180 — Н или минус В, что априори не может быть равным не В не Н.

Алексей Шевчук
13 февраля 2020
Дмитрий, угол H — это угол в треугольнике AHC, но в этом треугольнике углы A и С не равны углам A и C треугольника ABC. Чтобы не возникало такой путаницы, важно (а на экзаменах даже обязательно) писать углы полностью (тремя вершинами): ∠AHC = 180 — (∠HAC + ∠HCA); ∠ABC = 180 — (∠BAC + ∠BCA) — и теперь сразу видно, что это не одно и то же.

Андрей
08 апреля 2020
Очень доходчивый язык учебника. Как в старой советской школе. Я просто в восторге

Александр (админ)
08 апреля 2020
Андрей, спасибо большое! Очень приятно слышать! Сравнение лестное! ))

Источник

Как ⭐ найти высоту треугольника

Как узнать высоту треугольника

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя отрезками составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, нестандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Как правило, высоту треугольника обозначают буквой h. Также обозначается высота и в других фигурах.

Видео

Свойства равносторонней фигуры

При решении задач, связанных с нахождением высоты в равностороннем треугольнике, часто приходится использовать его свойства. Зная их, найти нужные параметры будет несложно. Тем более что все они связаны с главной особенностью фигуры — равенством его всех сторон.

Равностороннее тело с тремя углами обладает следующими особенностями:

Эти свойства очевидны. Если начертить треугольник с равными сторонами и вписать его в окружность, за центр можно принять точку O, при этом радиус описанного круга будет OK. Тогда линия, проведённая из неё к вершине, будет радиусом. Пусть конечная точка будет B. Но так как место пересечения является общим и для высот и медиан, из свойства последних можно сделать вывод, что в точке линия делится в отношении 2 к 1. Отсчёт следует вести с вершины треугольника. Значит: OB = 2 * OK.

Из основных формул, которые используются при вычислениях, в первую очередь нужно запомнить:

Если рассмотреть треугольник ABC с проведённой высотой BN, можно утверждать, что грань АВ = ВС = АС = AN /2 = NC /2. Так как фигура ABN является копией BNC в зеркальном отражении, разделённые углы у вершины будут одинаковыми, а и их разворот составлять 30 градусов. Из этого следует, что угол A равен 60 градусам, значит, отрезок BN = AB * sin 60 = (AB * √3) / 2.

Зная длину медианы (высоты), вычислить другие параметры треугольника не составит труда. Например, периметр, P = 2 √3 * h; площадь — S = (h * 2) / √3.

При этом замечательным свойством является ещё и то, что ортоцентр одновременно будет в фигуре и центром тяжести (центроидом), поэтому точка пересечения высот и делит отрезок в отношении 2 к 1.

Высота треугольника по двум сторонам и радиусу описанной окружности

Как узнать высоту треугольника

Рассмотрим треугольник на рисунке 6. Из теоремы синусов имеем:

Как узнать высоту треугольника(5)
Как узнать высоту треугольника(6)

Далее, из теоремы синусов имеем:

Как узнать высоту треугольника(7)

Подставляя (6) в (7), получим:

Как узнать высоту треугольника
Как узнать высоту треугольника(8)

Отметим, что радиус описанной окружности должен удовлетворять следующему неравенству:

\(\small \max (b,c) ≤2R Пример 3. Известны стороны треугольника: \( \small b=7, \) \( \small c= 3 \) и радиус описанной окружности \( \small R=4. \) Найти высоту треугольника, отпущенная на сторону \( \small a. \)

Решение: Проверим сначала условие (9):

\(\small \max (7,3) ≤2 \cdot 4 Ответ: \( \small 2\frac<5><8>. \)

Свойства высоты в равностороннем треугольнике

Равносторонний треугольник — это треугольник, стороны которого, углы, высоты, медианы, оси симметрии и биссектрисы будут равны.

Такой треугольник является частным примером равнобедренного треугольника, но не наоборот.

Высоту в таком треугольнике можно найти с помощью следующей формулы:

h=a32 где а — сторона равностороннего треугольника.

Главным свойством, которым обладает высота равностороннего треугольника, является тот факт, что она равна медиане и биссектрисе:

а — сторона правильного равностороннего треугольника.

В треугольнике проведены три высоты

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

1. Треугольник остроугольный – тогда пересекаются сами высоты:

Как узнать высоту треугольника

2. Треугольник тупоугольный – тогда пересекаются продолжения высот:

Как узнать высоту треугольника

Что же полезного мы ещё не обсудили?

Задача наподобие треугольников

В прямоугольном треугольнике ABC (угол C = 90) проведена высота CD. Определите CD, если AD = 9 см, BD = 16 см

Прямоугольные треугольники — единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.

Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)

Треугольники ABC и CBD подобны. Значит:

AD/DC = DC/BD, то есть

Высота треугольника по основанию и площади

Пусть известны сторона треугольника и площадь. Найти высоту треугольника, отпущенная на известную сторону (Рис.5).

Как узнать высоту треугольника

Решение. Площадь треугольника по основанию и высоте вычисляется из формулы:

Как узнать высоту треугольника.
Как узнать высоту треугольника.(1)

Пример 1. Сторона треугольника равна \( \small a=5 \) а площадь \( \small S=7. \) Найти высоту треугольника.

Применим формулу (1). Подставляя значения \( \small a \) и \( \small S \) в (1), получим:

Как узнать высоту треугольника

Ответ: Как узнать высоту треугольника

Остроугольный треугольник и высота

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Как узнать высоту треугольника

Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника.

Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести.

И тогда, если ты будешь точно знать, например, что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

Примеры задач

Задача 1 Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Как узнать высоту треугольника

Задача 2 Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Источник

Высота треугольника

Как узнать высоту треугольника Как узнать высоту треугольника

Средняя оценка: 4.6

Всего получено оценок: 93.

Средняя оценка: 4.6

Всего получено оценок: 93.

Почти никогда не получится определить все параметры треугольника без дополнительных построений. Эти построения являются своеобразными графическими характеристиками треугольника, которые помогают определить величину сторон и углов.

Как узнать высоту треугольника

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя отрезками составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, нестандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Как правило, высоту треугольника обозначают буквой h. Также обозначается высота и в других фигурах.

Как найти высоту треугольника?

Существует три стандартных способа нахождения высоты треугольника:

Через теорему Пифагора

Этот способ применяется для равносторонних и равнобедренных треугольников. Разберем решение для равнобедренного треугольника, а потом скажем, почему это же решение справедливо для равностороннего.

Дано: равнобедренный треугольник АВС с основанием АС. АВ=5, АС=8. Найти высоту треугольника.

Как узнать высоту треугольникаРис. 2. Рисунок к задаче.

Для равнобедренного треугольника важно знать, какая именно сторона является основанием. Это определяет боковые стороны, которое должны быть равны, а так же высоту, на которую действую некоторые свойства.

Свойства высоты равнобедренного треугольника, проведенной к основанию:

Высоту обозначим, как ВD. DС найдем как половину от основания, так как высота точкой D делит основание пополам. DС=4

Высота – это перпендикуляр, значит ВDС – прямоугольный треугольник, а высота ВD является катетом этого треугольника.

Любой равносторонний треугольник является равнобедренным, только основание у него равно боковым сторонам. То есть, можно использовать тот же порядок действий.

Через площадь треугольника

Этим способом можно пользоваться для любого треугольника. Чтобы им воспользоваться, нужно знать значение площади треугольника и стороны, к которой проведена высота.

Высоты в треугольнике не равны, поэтому для соответствующей стороны получится вычислить соответствующую высоту.

Через тригонометрическую функцию

Третий способ подойдет, если известна сторона и угол при основании. Для этого придется воспользоваться тригонометрической функцией.

Как узнать высоту треугольникаРис. 3. Рисунок к задаче.

Угол известен, как и сторона. Выразим высоту треугольника:

Значение косинуса в общем случае берется из таблиц Брадиса, но значения тригонометрических функций для 30,45 и 60 градусов – табличные числа.

Как узнать высоту треугольника

Что мы узнали?

Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.

Источник

Узнать высоту треугольника

Как узнать высоту треугольника

Высота треугольника – это перпендикуляр, проведенный из выбранной вершины треугольника на его противолежащею сторону. Высота треугольника находятся по формуле:

Решили сегодня: раз, всего раз

Другие онлайн калькуляторы

Вы поняли, как решать? Нет?

Теоретический материал

Как узнать высоту треугольника

Рассчитайте цену решения ваших задач

Как узнать высоту треугольника

Как узнать высоту треугольника

Как узнать высоту треугольника

Калькулятор
стоимости

* Точная стоимость будет определена после загрузки задания для исполнителя

Копирование материалов с сайта возможно только с разрешения администрации портала и при наличие активной ссылки на источник.

«Сегодня от своего лица хочу поблагодарить этот сайт за помощь мне с учебой. Здесь я пользовалась не только материалами, но и нашла преподавателей которые решали мне задачи.

Если тебе нужно что-то сделать в универе, я сама рекомендую. А также пользуйся моей ссылкой и получай 300 руб. на счёт при регистрации.»

Источник

Как узнать высоту треугольника

Как узнать высоту треугольника Вычисление высоты треугольника зависит от самой фигуры (равнобедренный, равносторонний, разносторонний, прямоугольный). В практической геометрии сложные формулы, как правило, не встречаются. Достаточно знать общий принцип вычислений для того, чтобы он мог быть универсально применим для всех треугольников. Сегодня мы познакомим вас с базовыми принципами вычисления высоты фигуры, расчетными формулами, основываясь на свойствах высот треугольников.

Что такое высота?

Высотой принято считать любой отрезок, опущенный из любого угла треугольника на противоположную сторону под прямым углом. Та сторона, на которую опускают прямую линию, будет называться основанием треугольника.

Высота имеет несколько отличительных свойств

Все стороны у данной фигуры равнозначны, их длины равны, поэтому и углы при основании тоже будут равными. Из этого следует, что высоты, которые проводим на основания, тоже будут равны, они же и медианы, и биссектрисы одновременно. Говоря простым языком, высота в равнобедренном треугольнике делит основание надвое. Треугольник с прямым углом, который получился после проведения высоты, будем рассматривать с помощью теоремы Пифагора. Обозначим боковую сторону как а, а основание как b, тогда высота h = ½ √4 a2 − b2.

Как найти высоту равностороннего треугольника?

Формула равностороннего треугольника (фигуры, где все стороны являются равновеликими), можно найти, исходя из предыдущих вычислений. Необходимо только измерить длину одной из сторон треугольника и обозначить её как а. Тогда высота выводится по формуле: h = √3/2 a.

Как найти высоту прямоугольного треугольника?

Как известно, угол в прямоугольном треугольнике равен 90°. Высота, опущенная на один катет, одновременно является и вторым катетом. На них и будут лежать высоты треугольника с прямым углом. Для получения данных о высоте, нужно немного преобразовать имеющуюся формулу Пифагора, обозначив катеты – а и b, а также измерив длину гипотенузы – с.

Найдем длину катета (сторона, которой будет перпендикулярна высота): a = √ (c2 − b2). Длина второго катета находится по точно такой же формуле: b =√ (c2 − b2). После чего можно приступать к вычислению высоты треугольника с прямым углом, предварительно сосчитав площадь фигуры – s. Значение высоты h = 2s/a.

Расчеты с разносторонним треугольником

Когда разносторонний треугольник имеет острые углы, то высота, опускаемая на основание, видна. Если же треугольник с тупым углом, то высота может находиться вне фигуры, и нужно мысленно её продолжить, чтобы получить точку соединения высоты и основания треугольника. Самым простым способом измерить высоту является вычисление её через одну из сторон и величины углов. Формула выглядит следующим образом: h = b sin y + c sin ß.

Источник

Высота треугольника

Как узнать высоту треугольника

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника

Содержание

Свойства

Как узнать высоту треугольника

Как узнать высоту треугольника

(Для доказательства тождества следует воспользоваться формулами

Как узнать высоту треугольника

В качестве точки E следует взять пересечение двух высот треугольника.)

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Основные соотношения

где Как узнать высоту треугольника— площадь треугольника, Как узнать высоту треугольника— длина стороны треугольника, на которую опущена высота.

где Как узнать высоту треугольника— основание.

Теорема о высоте прямоугольного треугольника

Если высота длиной h, проведённая из вершины прямого угла, делит гипотенузу длиной c на отрезки m и n, соответствующие b и a, то верны следующие равенства:

Мнемоническое стихотворение

См. также

Ссылки

Полезное

Смотреть что такое «Высота треугольника» в других словарях:

ВЫСОТА — ВЫСОТА, высоты, мн. высоты, высот, жен. 1. только ед. Протяжение снизу вверх, вышина. Высота дома. Башня большой высоты. || (мн. только спец. научн.). Расстояние от земной поверхности, измеряемое по вертикальной линии снизу вверх. Аэроплан летал… … Толковый словарь Ушакова

Высота (геометрия) — У этого термина существуют и другие значения, см. Высота (значения). Высота в элементарной геометрии отрезок перпендикуляра, опущенного из вершины геометрической фигуры (например, треугольника, пирамиды, конуса) на её основание или на… … Википедия

высота — ы/; мн. высо/ты; ж. см. тж. высотка, высотный 1) Величина, протяжённость чего л. от нижней точки до верхней, снизу вверх. Высота/ дома, дерева, горы. Высота/ волны. Плотина высотой в сто пят … Словарь многих выражений

высота — ы; мн. высоты; ж. 1. Величина, протяжённость чего л. от нижней точки до верхней, снизу вверх. В. дома, дерева, горы. В. волны. Плотина высотой в сто пятьдесят метров. Измерить, определить высоту чего л. 2. Расстояние от какой л. поверхности до… … Энциклопедический словарь

высота исходного треугольника резьбы — (H) Расстояние между вершиной и основанием исходного треугольника резьбы в направлении, перпендикулярном к оси резьбы. [ГОСТ 11708 82 (СТ СЭВ 2631 80)] Тематики нормы взаимозаменяемости Обобщающие термины основные элементы и параметры резьбы EN… … Справочник технического переводчика

Высота (значения) — Высота размер или расстояние в вертикальном направлении. Другие значения: В астрономии: Высота светила угол между плоскостью математического горизонта и направлением на светило. В военном деле: Высота возвышенность рельефа. В… … Википедия

ВЫСОТА (в геометрии) — ВЫСОТА, в геометрии отрезок перпендикуляра, опущенного из вершины геометрической фигуры (напр., треугольника, пирамиды, конуса) на ее основание (или продолжение основания), а также длина этого отрезка. Высота призмы, цилиндра, шарового слоя, а… … Энциклопедический словарь

ВЫСОТА — в геометрии отрезок перпендикуляра, опущенного из вершины геометрической фигуры (напр., треугольника, пирамиды, конуса) на ее основание (или продолжение основания), а также длина этого отрезка. Высота призмы, цилиндра, шарового слоя, а также… … Большой Энциклопедический словарь

ВЫСОТА — ВЫСОТА, ы, мн. оты, от, отам, жен. 1. Величина, протяжённость чего н. от нижней точки до верхней. В. кирпичной кладки. В. прибоя. В. циклона. 2. Пространство, расстояние от земли вверх. Смотреть в высоту. Самолёт набирает высоту. Лететь на… … Толковый словарь Ожегова

Высота (геометрич.) — Высота в геометрии, отрезок перпендикуляра, опущенного из вершины геометрической фигуры (например, треугольника, пирамиды, конуса) на её основание или продолжение основания, а также длина этого отрезка. В. призмы, цилиндра, шарового слоя,… … Большая советская энциклопедия

Источник

Элементы треугольника. Высоты

Определение

Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника.

Как узнать высоту треугольника

Свойства

1. Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон

Как узнать высоту треугольника

2. Высоты треугольника (или их продолжения) пересекаются в одной точке, называемой ортоцентром

Как узнать высоту треугольника

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному

Как узнать высоту треугольника

4. В остроугольном треугольнике две его высоты отсекают от него подобные треугольники

Как узнать высоту треугольника

Некоторые формулы, связанные с высотой треугольника

где Как узнать высоту треугольника— площадь треугольника, Как узнать высоту треугольника— длина стороны треугольника, на которую опущена высота

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Высота треугольника – определение, обозначение

Почти никогда не получится определить все параметры треугольника без дополнительных построений. Эти построения являются своеобразными графическими характеристиками треугольника, которые помогают определить величину сторон и углов.

Как узнать высоту треугольника

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя сторонами составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, не стандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Как узнать высоту треугольника

Рис. 1. Высота тупоугольного треугольника.

Как правило, высота треугольника имеет обозначение буквой h. Так же обозначается высота и в других фигурах.

Как найти высоту треугольника?

Существует три стандартных способа нахождения высоты треугольника:

Через теорему Пифагора

Этот способ применяется для равносторонних и равнобедренных треугольников. Разберем решение для равнобедренного треугольника, а потом скажем, почему это же решение справедливо для равностороннего.

Дано: равнобедренный треугольник АВС с основанием АС. АВ=5, АС=8. Найти высоту треугольника.

Как узнать высоту треугольника

Рис. 2. Рисунок к задаче.

Для равнобедренного треугольника важно знать, какая именно сторона является основанием. Это определяет боковые стороны, которое должны быть равны, а так же высоту, на которую действую некоторые свойства.

Свойства высоты равнобедренного треугольника, проведенной к основания:

Высоту обозначим, как ВD. DС найдем как половину от основания, так как высота точкой D делит основание пополам. DС=4

Высота это перпендикуляр, значит ВDС – прямоугольный треугольник, а высота ВН является катетом этого треугольника.

Любой равносторонний треугольник является равнобедренным, только основание у него равно боковым сторонам. То есть, можно использовать тот же порядок действий.

Через площадь треугольника

Этим способом можно пользоваться для любого треугольника. Чтобы им воспользоваться, нужно знать значение площади треугольника и стороны, к которой проведена высота.

Высоты в треугольнике не равны, поэтому для соответствующей стороны получится вычислить соответствующую высоту.

Через тригонометрическую функцию

Третий способ подойдет, если известна сторона и угол при основании. Для этого придется воспользоваться тригонометрической функцией.

Как узнать высоту треугольника

Рис. 3. Рисунок к задаче.

Угол известен, как и сторона. Выразим высоту треугольника:

Значение косинуса в общем случае берется из таблиц Брадиса, но значения тригонометрических функций для 30,45 и 60 градусов – табличные числа.

Что мы узнали?

Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.

Как узнать высоту треугольника

Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта «Образование».

Источник

Как найти высоту в треугольнике?

Высота треугольника, также называемая его высотой, может быть решена с помощью простой формулы с использованием длины основания и площади.

Аналогично, как вычислить высоту треугольника? Подставьте свои значения в уравнение A = 1 / 2bh и сделай математику. Сначала умножьте основание (b) на 1/2, затем разделите площадь (A) на произведение. Полученное значение будет высотой вашего треугольника!

Как найти высоту треугольника 45 45 90?

Похожие страницы:Блог

Какие есть 3 вида налогов?

Как найти среднюю точку между двумя точками?

Как вы делаете кадровые прогнозы?

Как найти начальную скорость, зная только время?

Как найти основание и высоту треугольника?

Во-вторых, как найти гипотенузу прямоугольного треугольника? калькулятор гипотенузы

Какие формулы для треугольников?

тогда как найти гипотенузу калькулятора треугольника 45 45 90? 45 45 90 сторон треугольника

Какова формула треугольника 30 60 90? В треугольнике 30-60-90 соотношение сторон всегда находится в соотношении 1:√3:2. Это также известно как формула треугольника 30-60-90 для сторон. г: г√ 3: 2г.

Как найти гипотенузу треугольника 45 45 90?

Как найти недостающую длину треугольника?

Как найти высоту треугольника без основания?

Как найти скорость треугольника?

треугольник равен 180?

Сумма углов треугольника равна 180°доказательство.

Как решить геометрический треугольник?

Как решить специальный прямоугольный треугольник 45 45 90?

Как найти сторону и гипотенузу угла?

Если у вас есть угол и сторона, противоположная ему, вы можете разделить длину стороны на sin(θ), чтобы получить гипотенузу. В качестве альтернативы разделите длину на tan(θ), чтобы получить длину стороны, примыкающей к углу.

Чему равна гипотенуза треугольника 30 60 90? Качества треугольника 30-60-90

Гипотенуза равняется удвоенной длине более короткой ноги, которая представляет собой сторону, противоположную углу 30 градусов. Более длинная ножка, которая находится под углом 60 градусов, равна умножению более короткой ножки на квадратный корень из 3.

Как решить треугольник 30 60 90 только с гипотенузой?

Как решить треугольник 30 60?

Как найти длину гипотенузы треугольника 30 60 90?

В любом треугольнике 30-60-90 вы видите следующее: самый короткий отрезок находится под углом 30 градусов, длина гипотенузы всегда вдвое больше длины самого короткого отрезка, и вы можете найти длину длинного отрезка. нога умножив короткую ногу на квадратный корень из 3.

Как найти длину гипотенузы и угол треугольника? Если у вас есть гипотенуза, умножьте его на sin(θ), чтобы получить длину стороны, противоположной углу. В качестве альтернативы умножьте гипотенузу на cos (θ), чтобы получить сторону, прилегающую к углу. Если у вас есть сторона, не являющаяся гипотенузой, примыкающая к углу, разделите ее на cos (θ), чтобы получить длину гипотенузы.

Источник

Как найти высоту треугольника

Высота треугольника по трем сторонам

Формула площади треугольника по трем сторонам имеет следующий вид (см. статью на странице Площадь треугольника онлайн):

где \( \small a, \ b, \ c \) стороны треугольника а полупериод \( \small p \) вычисляется из формулы:

Высота треугольника, отпущенная на сторону \( \small a\) вычисляется из формулы (1). Подставляя (2) в (1), получим формулу вычисления высоты треугольника по трем сторонам:

Пример 2. Известны стороны треугольника: \( \small a=5, \) \( \small b= 4, \) \( \small c=7. \) Найти высоту треугольника, отпущенная на сторону \( \small a. \)

Решение: Найдем, сначала полупериод \( \small p \) треугольника из формулы (3):

Основные соотношения

— площадь треугольника,
a

радиус описанной окружности

— сторона треугольника к которой опускается высота
h
a
<\displaystyle h_>

Свойства точки пересечения трех высот треугольника (ортоцентра)

(Для доказательства тождества следует воспользоваться формулами

В качестве точки E следует взять пересечение двух высот треугольника.)

Свойства высот равнобедренного треугольника

Угол между высотами

Давай узнаем, вдруг угол между высотами можно как–то выразить через углы треугольника? Давай рассмотрим остроугольный треугольник.

Итак, нам хотелось бы найти \( \displaystyle \angle \varphi \).

Смотрим на \( \displaystyle \Delta AHC\). Замечаем, что наш \( \displaystyle \angle \varphi \) – внешний угол в этом треугольнике.

Как узнать высоту треугольника Как узнать высоту треугольника Как узнать высоту треугольника Как узнать высоту треугольника Как узнать высоту треугольника Как узнать высоту треугольника Как узнать высоту треугольника Как узнать высоту треугольника Как узнать высоту треугольника Как узнать высоту треугольника

Значит, \( \angle \varphi =\angle 1+\angle 2\).

Чему же равны \( \displaystyle \angle 1\) и \( \displaystyle \angle 2\)?

Источник

Как найти высоту треугольника зная основание. Высота треугольника. Визуальный гид (2020). Что мы узнали

Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. — та, которая проведена к наибольшей из сторон треугольника.

Чтобы найти наибольшую высоту треугольника , можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).

Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.

Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

AC=7 см, AB=8 см, BC=9 см.

Найти: наименьшую высоту треугольника.

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

Как узнать высоту треугольника

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. можно найти с помощью формулы Герона. Поэтому

Как узнать высоту треугольника

Как узнать высоту треугольника

Как узнать высоту треугольника

Найти наибольшую сторону треугольника со сторонами 1 см, 25 см и 30 см.

Как узнать высоту треугольника

AC=25 см, AB=11 см, BC=30 см.

наибольшую высоту треугольника ABC.

Как узнать высоту треугольника

Наибольшая высота треугольника проведена к его наименьшей стороне.

Значит, нужно найти высоту CD, проведенную к стороне AB.

Для удобства обозначим

Как узнать высоту треугольникаВысота треугольника это перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону, или на ее продолжение (сторона, на которую опускается перпендикуляр, в данном случае называется основанием треугольника).

В тупоугольном треугольнике две высоты падают на продолжение сторон и лежат вне треугольника. Третья внутри треугольника.

В остроугольном треугольнике все три высоты лежат внутри треугольника.

В прямоугольном треугольнике катеты служат высотами.

Как найти высоту по основанию и площади

Посмотрите на треугольник и подумайте, какие величины вам уже известны. Если вам дана площадь, обозначьте ее буквой «А» или «S». Вам также должно быть дано значение стороны, обозначьте ее буквой «b». Если вам не дана площадь и не дана сторона, воспользуйтесь другим методом.

Имейте в виду, что основанием треугольника может быть любая его сторона, на которую опущена высота (независимо от того, как расположен треугольник). Чтобы лучше понять это, представьте, что вы можете повернуть этот треугольник. Поверните его так, чтобы известная вам сторона была обращена вниз.

Например, площадь треугольника равна 20, а одна из его сторон равна 4. В этом случае «‘А = 20″‘, ‘»b = 4′».

Подставьте данные вам значения в формулу для вычисления площади (А = 1/2bh) и найдите высоту. Сначала умножьте сторону (b) на 1/2, а затем разделите площадь (А) на полученное значение. Таким образом, вы найдете высоту треугольника.

В нашем примере: 20 = 1/2(4)h

Как узнать высоту треугольникаВспомните свойства равностороннего треугольника. В равностороннем треугольнике все стороны и все углы равны (каждый угол равен 60˚). Если в таком треугольнике провести высоту, вы получите два равных прямоугольных треугольника.
Например, рассмотрим равносторонний треугольник со стороной 8.

Вспомните теорему Пифагора. Теорема Пифагора гласит, что в любом прямоугольном треугольнике с катетами «а» и «b» гипотенуза «с» равна: a2+b2=c2. Эту теорему можно использовать, чтобы найти высоту равностороннего треугольника!

Разделите равносторонний треугольник на два прямоугольных треугольника (для этого проведите высоту). Затем обозначьте стороны одного из прямоугольных треугольников. Боковая сторона равностороннего треугольника – это гипотенуза «с» прямоугольного треугольника. Катет «а» равен 1/2 стороне равностороннего треугольника, а катет «b» – это искомая высота равностороннего треугольника.

Итак, в нашем примере с равносторонним треугольником с известной стороной, равной 8: c = 8 и a = 4.

Подставьте эти значения в теорему Пифагора и вычислите b2. Сначала возведите в квадрат «с» и «а» (умножьте каждое значение само на себя). Затем вычтите a2 из c2.

42 + b2 = 82
16 + b2 = 64
b2 = 48

Извлеките квадратный корень из b2, чтобы найти высоту треугольника. Для этого воспользуйтесь калькулятором. Полученное значение и будет высотой вашего равностороннего треугольника!

Как найти высоту с помощью углов и сторон

Подумайте, какие значения вам известны. Вы можете найти высоту треугольника, если вам известны значения сторон и углов. Например, если известен угол между основанием и боковой стороной. Или если известны значения всех трех сторон. Итак, обозначим стороны треугольника: «a», «b», «c», углы треугольника: «А», «В», «С», а площадь — буквой «S».

Если вам известны все три стороны, вам понадобится значение площади треугольника и формула Герона.

Если вам известны две стороны и угол между ними, можете использовать следующую формулу для нахождения площади: S=1/2ab(sinC).

Если вам даны значения всех трех сторон, используйте формулу Герона. По этой формуле придется выполнить несколько действий. Сначала нужно найти переменную «s» (мы обозначим этой буквой половину периметра треугольника). Для этого подставьте известные значения в эту формулу: s = (a+b+c)/2.

Для треугольника со сторонами а = 4, b = 3, c = 5, s = (4+3+5)/2. В результате получается: s=12/2, где s=6.

Затем вторым действием мы находим площадь (вторая часть формулы Герона). Площадь = √(s(s-a)(s-b)(s-c)). Вместо слова «площадь» вставьте эквивалентную формулу для поиска площади: 1/2bh (или 1/2ah, или 1/2ch).

Теперь найдите эквивалентное выражение для высоты (h). Для нашего треугольника будет справедливо следующее уравнение: 1/2(3)h = (6(6-4)(6-3)(6-5)). Где 3/2h=√(6(2(3(1))). Получается, 3/2h = √(36). С помощью калькулятора вычислите квадратный корень. В нашем примере: 3/2h = 6. Получается, что высота (h) равна 4, сторона b – основание.

Если по условию задачи известны две стороны и угол, вы можете использовать другую формулу. Замените площадь в формуле эквивалентным выражением: 1/2bh. Таким образом, у вас получится следующая формула: 1/2bh = 1/2ab(sinC). Ее можно упростить до следующего вида: h = a(sin C), чтобы убрать одну неизвестную переменную.

Теперь осталось решить полученное уравнение. Например, пусть «а» = 3, «С» = 40 градусов. Тогда уравнение будет выглядеть так: «h» = 3(sin 40). С помощью калькулятора и таблицы синусов подсчитайте значение «h». В нашем примере h = 1,928.

Для решения многих геометрических задач требуется найти высоту заданной фигуры. Эти задачи имеют прикладное значение. При проведении строительных работ определение высоты помогает вычислить необходимое количество материалов, а также определить, насколько точно сделаны откосы и проемы. Часто для построения выкроек требуется иметь представление о свойствах

У многих людей, несмотря на хорошие оценки в школе, при построении обычных геометрических фигур возникает вопрос о том, как найти высоту треугольника или параллелограмма. Причем является самым сложным. Это происходит потому, что треугольник может быть острым, тупым, равнобедренным или прямоугольным. Для каждого из существуют свои правила построения и расчета.

Как найти высоту треугольника, в котором все углы острые, графическим способом

Если все углы у треугольника острые (каждый угол в треугольнике меньше 90 градусов), то для нахождения высоты необходимо сделать следующее.

Высота в треугольнике с тупым углом

Теперь рассмотрим, как найти высоту треугольника, если один (больше 90 градусов). В этом случае высота, проведенная из тупого угла, будет внутри треугольника. Остальные две высоты будут находиться за пределами треугольника.

Как найти высоту равнобедренного треугольника

У такой фигуры есть две равные стороны и основание, при этом углы, находящиеся при основании, также являются равными между собой. Это равенство сторон и углов облегчает построение высот и их вычисление.

Сначала нарисуем сам треугольник. Пусть стороны b и c, а также углы β, γ будут соответственно равными.

Теперь проведем высоту из вершины угла α, обозначим ее h1. Для эта высота будет одновременно биссектрисой и медианой.

Как найти высоту прямоугольного треугольника

У прямоугольного треугольника определить высоты намного проще, чем у других. Это происходит потому, что сами катеты составляют прямой угол, а значит, являются высотами.

Для построения третьей высоты, как обычно, проводится перпендикуляр, соединяющий вершину прямого угла и противоположную сторону. В итоге для того, чтобы треугольника в данном случае, требуется только одно построение.

Почти никогда не получится определить все параметры треугольника без дополнительных построений. Эти построения являются своеобразными графическими характеристиками треугольника, которые помогают определить величину сторон и углов.

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя сторонами составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, не стандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Как узнать высоту треугольника

Рис. 1. Высота тупоугольного треугольника.

Как правило, высота треугольника имеет обозначение буквой h. Так же обозначается высота и в других фигурах.

Как найти высоту треугольника?

Существует три стандартных способа нахождения высоты треугольника:

Через теорему Пифагора

Этот способ применяется для равносторонних и равнобедренных треугольников. Разберем решение для равнобедренного треугольника, а потом скажем, почему это же решение справедливо для равностороннего.

Дано : равнобедренный треугольник АВС с основанием АС. АВ=5, АС=8. Найти высоту треугольника.

Как узнать высоту треугольника

Рис. 2. Рисунок к задаче.

Для равнобедренного треугольника важно знать, какая именно сторона является основанием. Это определяет боковые стороны, которое должны быть равны, а так же высоту, на которую действую некоторые свойства.

Свойства высоты равнобедренного треугольника, проведенной к основания:

Высоту обозначим, как ВD. DС найдем как половину от основания, так как высота точкой D делит основание пополам. DС=4

Высота это перпендикуляр, значит ВDС – прямоугольный треугольник, а высота ВН является катетом этого треугольника.

Любой равносторонний треугольник является равнобедренным, только основание у него равно боковым сторонам. То есть, можно использовать тот же порядок действий.

Через площадь треугольника

Этим способом можно пользоваться для любого треугольника. Чтобы им воспользоваться, нужно знать значение площади треугольника и стороны, к которой проведена высота.

Высоты в треугольнике не равны, поэтому для соответствующей стороны получится вычислить соответствующую высоту.

Через тригонометрическую функцию

Третий способ подойдет, если известна сторона и угол при основании. Для этого придется воспользоваться тригонометрической функцией.

Как узнать высоту треугольника

Рис. 3. Рисунок к задаче.

Угол известен, как и сторона. Выразим высоту треугольника:

Значение косинуса в общем случае берется из таблиц Брадиса, но значения тригонометрических функций для 30,45 и 60 градусов – табличные числа.

Что мы узнали?

Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.

Тест по теме

Оценка статьи

Прежде всего, треугольник – это геометрическая фигура, которая образуется тремя, не лежащими на одной прямой, точками, которые соединены тремя отрезками. Чтобы найти, чему равна высота треугольника, необходимо, в первую очередь, определить его тип. Треугольники различаются величиной углов и количеством равных углов. По величине углов треугольник может быть остроугольным, тупоугольным и прямоугольным. По числу равных сторон выделяют равнобедренный, равносторонний и разносторонний треугольники. Высота – это перпендикуляр, который опущен на противоположную сторону треугольника из его вершины. Как найти высоту треугольника?

Как найти высоту равнобедренного треугольника

Как найти высоту равностороннего треугольника

Как найти высоту разностороннего треугольника

Как найти высоту прямоугольного треугольника

Треугольник называется остроугольным в случае, если все его углы острые. В таком случае все три высоты располагаются внутри остроугольного треугольника. Треугольник называется тупоугольным при наличии одного тупого угла. Две высоты тупоугольного треугольника находятся вне треугольника и падают на продолжение сторон. Третья сторона находится внутри треугольника. Высота определяется при помощи все той же теоремы Пифагора.

Источник

Как найти высоту треугольника

Здравствуйте!
Помогите! Как найти высоту треугольника? Есть ли какие-то специальные формулы для высоты?
Спасибо!

Давайте разберемся как найти высоту треугольника.
Но прежде вспомним — что же такое высота треугольника?
Высотой называют перпендикуляр, который выходит из любой вершины треугольника и заканчивается на противоположной его стороне.
Если один из углов треугольника является тупым, то перпендикуляр из двух вершин проводится на продолжение сторон такого треугольника.
Высот у треугольника можно провести три (по количеству его вершин). А пересекаются все высоты треугольника в одной точке, которую называют ортоцентром.
Для нахождения длины высоты треугольника существует несколько формул, которые мы и рассмотрим.

Формула 1.
Высоту можно найти через длины сторон треугольника:

Как узнать высоту треугольника

Здесь p — полупериметр, который находят по формуле:

Как узнать высоту треугольника

По большому счету основанием в этой формуле считается третья сторона треугольника, к которой проведена высота.

Формула 2.
Формула применяется, если известны одна боковая сторона и угол при основании, который прилегает к этой стороне:

Как узнать высоту треугольника

Формула 3.
Формулу удобно использовать, если известно основание треугольника и его площадь:

Как узнать высоту треугольника

Формула 4.
При известных боковых сторонах треугольника и радиусе описанной окружности:

Источник

Что такое высота треугольника

Определение высоты треугольника

Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на прямую, которая содержит его противоположную сторону.

Как узнать высоту треугольника

Как узнать высоту треугольника

Любую высоту можно найти из соотношений:

Примеры решения задач

Как узнать высоту треугольника

которая в наших обозначениях запишется следующим образом:

$$A H=A B \cdot \sin \angle B$$

Подставим в последнее равенство исходные данные, получим

$$A H=2 \sqrt <2>\cdot \sin 45^<\circ>$$

Как узнать высоту треугольника

Решение. Для нахождения высоты треугольника, воспользуемся формулой

Источник

Как высчитать высоту треугольника зная его стороны

Высота треугольника это перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону, или на ее продолжение (сторона, на которую опускается перпендикуляр, в данном случае называется основанием треугольника).

В тупоугольном треугольнике две высоты падают на продолжение сторон и лежат вне треугольника. Третья внутри треугольника.

В остроугольном треугольнике все три высоты лежат внутри треугольника.

В прямоугольном треугольнике катеты служат высотами.

Как узнать высоту треугольника

Все три высоты всегда пересекаются в одной точке, называемой Ортоцентр. В тупоугольном треугольнике ортоцентр лежит вне треугольника. В Остроугольном – внутри треугольника. В прямоугольном треугольнике, совпадает с вершиной прямого угла.

Высота треугольника опущенная на сторону a обозначается буквой h a и через три стороны треугольника выражается формулой:

Как узнать высоту треугольника

Здесь опять стороны противоположные вершинам A, B и С обозначаются, соответственно, a (отрезок BC), b(отрезок AC) и с(отрезок AB).
Расчет высоты, опущенной на сторону с:

где S — площадь треугольника, которую, зная длины всех трех сторон, можно найти по формуле Герона, смотри Расчет площади треугольника по формуле Герона

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как узнать высоту треугольника

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Как узнать высоту треугольника

Формула длины через сторону и два угла (по теореме синусов), ( a):

Как узнать высоту треугольника

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Как узнать высоту треугольника

c – гипотенуза

Формулы для катета, ( a ):

Как узнать высоту треугольника

Формулы для катета, ( b ):

Как узнать высоту треугольника

Формулы для гипотенузы, ( c ):

Как узнать высоту треугольника

Как узнать высоту треугольника

Как узнать высоту треугольника

Как узнать высоту треугольника

Как узнать высоту треугольника

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Как узнать высоту треугольника

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Как узнать высоту треугольника

Как узнать высоту треугольника

Как узнать высоту треугольника

Как узнать высоту треугольника

4. Найти длину высоты треугольника

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

Как узнать высоту треугольникаH – высота треугольника

a – сторона, основание

b, c – стороны

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, ( H ):

Как узнать высоту треугольника

Формула длины высоты через сторону и угол, ( H ):

Как узнать высоту треугольника

Формула длины высоты через сторону и площадь, ( H ):

Как узнать высоту треугольника

Формула длины высоты через стороны и радиус, ( H ):

Источник

Как найти высоты треугольника

Как узнать высоту треугольника

Постройте треугольник с заданными параметрами. Вам известны либо два угла треугольника и сторона между ними, либо угол и длина двух сторон, между которыми он находится, либо три стороны.

Вспомните, что такое высота. Это перпендикуляр, проведенный из угла треугольника к его противоположной стороне. Возьмите угольник и проведите такие перпендикуляры ко всем сторонам треугольника. Обозначьте высоты буквой h с соответствующими сторонам треугольника индексами a,b,c.

Как узнать высоту треугольника

Вычислите длину всех сторон треугольника и все его углы по теоремам синусов и косинусов.

Вычислите высоту, опущенную из заданного угла, по формуле: высота, опущенная из угла С, равна произведению синуса любого другого угла на длину прилежащей к нему стороны.

Источник

Узнаем как найти высоту треугольника? Формула расчета

Для решения многих геометрических задач требуется найти высоту заданной фигуры. Эти задачи имеют прикладное значение. При проведении строительных работ определение высоты помогает вычислить необходимое количество материалов, а также определить, насколько точно сделаны откосы и проемы. Часто для построения выкроек требуется иметь представление о свойствах геометрических фигур.

У многих людей, несмотря на хорошие оценки в школе, при построении обычных геометрических фигур возникает вопрос о том, как найти высоту треугольника или параллелограмма. Причем определение высоты треугольника является самым сложным. Это происходит потому, что треугольник может быть острым, тупым, равнобедренным или прямоугольным. Для каждого из видов треугольников существуют свои правила построения и расчета.

Как найти высоту треугольника, в котором все углы острые, графическим способом

Если все углы у треугольника острые (каждый угол в треугольнике меньше 90 градусов), то для нахождения высоты необходимо сделать следующее.

Далее для каждого вида треугольника будем использовать те же обозначения сторон, углов, высот и вершин треугольников.

Высота в треугольнике с тупым углом

Теперь рассмотрим, как найти высоту треугольника, если один угол тупой (больше 90 градусов). В этом случае высота, проведенная из тупого угла, будет внутри треугольника. Остальные две высоты будут находиться за пределами треугольника.

Пусть в нашем треугольнике углы α и β будут острыми, а угол γ – тупой. Тогда для построения высот, выходящих из углов α и β, надо продолжить противоположные им стороны треугольника, чтобы провести перпендикуляры.

Как найти высоту равнобедренного треугольника

У такой фигуры есть две равные стороны и основание, при этом углы, находящиеся при основании, также являются равными между собой. Это равенство сторон и углов облегчает построение высот и их вычисление.

Сначала нарисуем сам треугольник. Пусть стороны b и c, а также углы β, γ будут соответственно равными.

Теперь проведем высоту из вершины угла α, обозначим ее h1. Для равнобедренного треугольника эта высота будет одновременно биссектрисой и медианой.

Далее построим две другие высоты: h2 для стороны b и угла β, h3 для стороны c и угла γ. Эти высоты будут равными по длине.

Для основания можно сделать только одно построение. Например, провести медиану – отрезок, соединяющий вершину равнобедренного треугольника и противоположную сторону, основание, для нахождения высоты и биссектрисы. А для вычисления длины высоты для двух других сторон можно построить только одну высоту. Таким образом, чтобы графически определить, как вычислить высоту равнобедренного треугольника, достаточно найти две высоты из трех.

Как найти высоту прямоугольного треугольника

У прямоугольного треугольника определить высоты намного проще, чем у других. Это происходит потому, что сами катеты составляют прямой угол, а значит, являются высотами.

Для построения третьей высоты, как обычно, проводится перпендикуляр, соединяющий вершину прямого угла и противоположную сторону. В итоге для того, чтобы узнать, как найти высоту треугольника в данном случае, требуется только одно построение.

Источник

Как определить высоту треугольника с помощью тригонометрии?

Аналогично, как найти основание и высоту треугольника?

Похожие страницы:Блог

Какие есть 3 вида налогов?

Как найти среднюю точку между двумя точками?

Как вы делаете кадровые прогнозы?

Как найти начальную скорость, зная только время?

Как найти высоту треугольника по углу места? Примеры угла возвышения

Решение: учитывая, что PR=8 единиц и ∠QPR=45°. Чтобы найти высоту здания (QR), мы можем использовать угол формула высоты tanθ=QR/PR. Следовательно, высота здания равна 8 единицам.

Как найти высоту треугольника, если известны основание и площадь?

тогда как найти высоту треугольника по углам?

Sohcahtoa только для прямоугольных треугольников? Q: Sohcahtoa только для прямоугольных треугольников? В: Да, это относится только к прямоугольным треугольникам. … A: У прямоугольного треугольника гипотенуза всегда противоположна углу 90 градусов и является самой длинной стороной.

Какова формула Сохкахтоа?

Что означает Sohcahtoa? «СОХКАТОА» — полезная мнемоника для запоминания определений тригонометрические функции синуса, косинуса и тангенса т. е. синус равен противоположному по гипотенузе, косинус равен прилежащему по гипотенузе, а тангенс равен противоположному по прилежащему, (1) (2)

Как найти высоту двух углов?

Как найти высоту угла подъема и депрессии?

Как найти высоту через угол и длину?

Измерьте длину высоты. Для двух углов, противоположных высоте, используйте синус (противоположная сторона, разделенная гипотенузой) найти углы.

Как найти высоту треугольника 45 45 90?

Как найти высоту треугольника с двумя углами и одной стороной?

Как найти высоту равнобедренного треугольника? Мы можем найти высоту по разделение равнобедренного треугольника на два прямоугольных треугольника и последующее применение теоремы Пифагора к одному из них. h = 13.20 (до 2 д. п.) Теперь мы знаем высоту треугольника и можем использовать ее, чтобы вернуться назад и найти площадь равнобедренного треугольника.

Как найти высоту не прямоугольного треугольника?

Как вычислить высоту непрямоугольного треугольника – Quora. Любой треугольник имеет 3 высоты. Если вы хотите просто измерить высоту, просто опустите перпендикуляр из вершины на противоположную сторону. И измерьте длину перпендикуляра, который дает вам одну высоту.

Как измерить рост человека?

Как найти высоту треугольника, если известны основание и гипотенуза?

Как найти высоту треугольника, зная угол и гипотенузу?

Как написать косеканс?

Что такое закон синуса и косинуса? Чтобы решить треугольник, нужно найти длины каждой из его сторон и всех его углов. Правило синусов используется, когда нам дано либо а) два угла и одна сторона, или б) две стороны и угол, не заключенный между ними. Правило косинусов используется, когда нам даны либо а) три стороны, либо б) две стороны и угол между ними.

Как найти недостающую сторону треугольника?

Источник

Высота в треугольнике формула – Высота треугольника | Формулы и расчеты онлайн

Высота треугольника Формула

Высота треугольника Формула. Здравствуйте! Также для вас здесь представлены формулы медианы и биссектрисы в треугольнике. Выражены указанные элементы через стороны треугольника.

Стоит отметить, что данные формулы используются при решении задач в курсе геометрии довольно редко. Всё-таки необходимость в них иногда возникает. Поэтому будет хорошо, если вы о их существовании будете знать, может быть и пригодится. Итак! Рассмотрим треугольник:

Как узнать высоту треугольника

Формула медианы треугольника:

Формула биссектрисы треугольника:

Формула высоты треугольника:

С уважением, Александр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Категория: Формулы Теория | Формулы

Подготовка к ОГЭ по математике. Полный курс!

Школа репетиторов Анны Малковой!

Онлайн-обучение, подготовка к ЕГЭ и ОГЭ по предметам!

Замучили боль и скованность в мышцах спины?

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

Все формулы высоты прямого угла в прямоугольном треугольнике

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.

H — высота из прямого угла

a, b — катеты

с — гипотенуза

c1 , c2 — отрезки полученные от деления гипотенузы, высотой

α, β — углы при гипотенузе

Формула длины высоты через стороны, (H):

Подробности Автор: Administrator Опубликовано: 09 октября 2011 Обновлено: 16 мая 2017

Элементы треугольника. Высота | Подготовка к ЕГЭ по математике

Категория: ПланиметрияСправочные материалы

Елена Репина 2013-04-16 2013-07-29

Определение

Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника.

Как узнать высоту треугольника

Свойства

1. Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон

Как узнать высоту треугольника

2. Высоты треугольника (или их продолжения) пересекаются в одной точке, называемой ортоцентром

Как узнать высоту треугольника

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному

Как узнать высоту треугольника

4. В остроугольном треугольнике две его высоты отсекают от него подобные треугольники

Как узнать высоту треугольника

Некоторые формулы, связанные с высотой треугольника

где — площадь треугольника, — длина стороны треугольника, на которую опущена высота

Автор: egeMax | Нет комментариев

Как определить высоту треугольника 🚩 определение высоты треугольника 🚩 Математика

Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону. Длину высоты можно определить двумя путями. Первый — из площади треугольника. Второй — рассматривая высоту как катет прямоугольного треугольника.

Как узнать высоту треугольника

Первый способ найти высоту – через площадь треугольника. Площадь треугольника вычисляется по формуле: S = 1/2 ah, где (a) – сторона треугольника, h – высота, построенная к стороне (а). Из этого выражения найдите высоту: h = 2S/a. Если в условии даны длины трех сторон треугольника, найдите площадь по формуле Герона: S = (p*(p-a)*(p-b)*(p-c))^1/2, где p – полупериметр треугольника; а, b, с – его стороны. Зная площадь, вы можете определить длину высоты к любой стороне. Например, в задаче указан периметр треугольника, в который вписана окружность с известным радиусом. Рассчитайте площадь из выражения: S = r*p, где r – радиус вписанной окружности; p – полупериметр. Из площади вычислите высоту к стороне, длина которой вам известна. Площадь треугольника также можно определить по формуле: S = 1/2ab*sina, где а, b – стороны треугольника; sina – синус угла между ними.

Еще один случай – известны все углы треугольника и одна сторона. Используйте теорему синусов: a/sina = b/sinb = с/sinc = 2R, где a, b, c – стороны треугольника; sina, sinb, sinc – синусы углов, противолежащих этим сторонам; R – радиус окружности, которую можно описать вокруг треугольника. Найдите сторону b из соотношения: a/sina = b/sinb. Затем рассчитайте площадь аналогично шагу 4.

Второй способ вычислить высоту – применить тригонометрические зависимости для прямоугольного треугольника. Высота в остроугольном треугольнике делит его на два прямоугольных. Если известна сторона, противолежащая основанию (а), и угол между ними, примените выражение: h = b*sina. В формула немного меняется: h = b*sin(180-a) или h = — c*sina.

Как узнать высоту треугольника

Если вам даны противолежащий высоте угол и длина отрезка AH, который высота отсекает от основания, используйте зависимость: BH = (AH)*tga.

Также, зная длины отрезка AH и стороны АВ, найдите высоту ВН из теоремы Пифагора: BH = (AB^2 – BC^2)^1/2.

Не получили ответ на свой вопрос?
Спросите нашего эксперта:

Высота прямоугольного треугольника | Треугольники

Высота прямоугольного треугольника, проведенная к гипотенузе, может быть найдена тем или иным способом в зависимости от данных в условии задачи.

Длина высоты прямоугольного треугольника, проведенной к гипотенузе, может быть найдена по формуле

или, в другой записи,

где BK и KC — проекции катетов на гипотенузу (отрезки, на которые высота делит гипотенузу).

Высоту, проведенную к гипотенузе, можно найти через площадь прямоугольного треугольника. Если применить формулу для нахождения площади треугольника

(половина произведения стороны на высоту, проведенную к этой стороне) к гипотенузе и высоте, проведенной к гипотенузе, получим:

Отсюда можем найти высоту как отношение удвоенной площади треугольника к длине гипотенузы:

Так как площадь прямоугольного треугольника равна половине произведения катетов:

То есть длина высоты, проведенной к гипотенузе, равна отношению произведения катетов к гипотенузе. Если обозначить длины катетов через a и b, длину гипотенузы — через с, формулу можно переписать в виде

Так как радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы, длину высоты можно выразить через катеты и радиус описанной окружности:

Поскольку проведенная к гипотенузе высота образует еще два прямоугольных треугольника, ее длину можно найти через соотношения в прямоугольном треугольнике.

Из прямоугольного треугольника ABK

Из прямоугольного треугольника ACK

Длину высоты прямоугольного треугольника можно выразить через длины катетов. Так как

по теореме Пифагора

Если возвести в квадрат обе части равенства:

можно получить еще одну формулу для связи высоты прямоугольного треугольника с катетами:

Высота в прямоугольном треугольнике

Определение и формулы высоты в прямоугольном треугольнике

В прямоугольном треугольнике высоты, опущенные из вершин острых углов, совпадают с катетами треугольника, а высота, опущенная из вершины прямого угла на гипотенузу, делит треугольник на два треугольника, подобных исходному и подобных друг другу.

где и – проекции катетов на гипотенузу.

Площадь треугольника можно найти по формуле

Примеры решения задач

ПРИМЕР 1

ЗаданиеВ прямоугольном треугольнике высота делит гипотенузу на отрезки см и см. Найти катеты треугольника.
РешениеНайдем квадрат длины высоты пользуясь формулой
РешениеПусть катет см, а см (рис. 2). Тогда по теореме Пифагора гипотенуза

Площадь прямоугольного треугольника равна половине произведения катетов, т.е.

Высоту найдем по формуле

Ответсм

Читайте также:

Медиана в прямоугольном треугольнике

Соотношение между сторонами и углами треугольника

Центр окружности описанной около треугольника

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *