Как видит рыба
Как видит рыба
Как видит рыба
Органы чувств. Зрение.
Орган зрения — глаз по своему устройству напоминает фотографический аппарат, причем хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик имеет чечевицеобразную форму и способен изменять свою кривизну, поэтому животные могут приспосабливать зрение к расстоянию.
Хрусталик у рыб шарообразный и не может менять форму. Зрение их перестраивается на различные расстояния при приближении или удалении хрусталика от сетчатой оболочки.
Оптические свойства водной среды не позволяют рыбе видеть далеко. Практически пределом видимости у рыб в прозрачной воде считают расстояние 10—12 м, а ясно рыбы видят не далее 1,5 м.
Лучше видят дневные хищные рыбы, живущие в прозрачной воде (форель, хариус, жерех, щука). Некоторые рыбы видят в темноте (судак, лещ, сом, угорь, налим). У них в сетчатке глаза есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.
Угол зрения рыб очень велик. Не поворачивая тела, большинство рыб способно видеть каждым глазом предметы в зоне около 150° по вертикали и до 170° по горизонтали (рис. 1).
Иначе видит рыба предметы, находящиеся над водой. В этом случае вступают в силу законы преломления световых лучей, и рыба может видеть без искажения лишь предметы, которые находятся прямо над головой— в зените.
Наклонно падающие световые лучи преломляются и сжимаются в угол 97°,6 (рис. 2).
Чем острее угол входа светового луча в воду и ниже предмет, тем более искаженным видит его рыба. При падении светового луча под углом 5—10°, особенно если водная поверхность неспокойна, рыба перестает видеть предмет.
Лучи, идущие от глаза рыбы вне конуса, изображенного на рис. 2, полностью отражаются от водной поверхности, поэтому она представляется рыбе зеркальной.
С другой стороны, преломление лучей позволяет рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом (рис. 3).вне преломления лучей водной поверхностью может увидеть человека.
Рыбы различают цвета и даже оттенки.
Цветовое зрение у рыб подтверждается их способностью изменять окраску в зависимости от цвета грунта (мимикрия). Известно, что окунь, плотва, щука, которые держатся на светлом песчаном дне, имеют светлую окраску, а на черном торфяном дне — более темную.
Особенно ярко выражена мимикрия у различных камбал, способных с изумительной точностью приспосабливать свою окраску к цвету грунта. Если камбалу пустить в стеклянный аквариум, под дно которого подложить шахматную доску, то на спине у нее появятся клетки, подобные шахматным.
В природных условиях камбала, лежащая на галечном дне, настолько сливается с ним, что становится совершенно незаметной для человеческого глаза. В то же время ослепшие рыбы, в том числе и камбала, не меняют своего цвета и остаются темно-окрашенными. Отсюда ясно, что изменение рыбами окраски связано с их зрительным восприятием.
Опыты кормления рыб из разноцветных чашечек подтвердили, что рыбы отчетливо воспринимают все спектральные цвета и могут различать близкие оттенки. Новейшие опыты, основанные на спектрофотометрических методах, показали, что многие виды рыб воспринимают отдельные оттенки не хуже человека.
Методами пищевой дрессировки установлено, что рыбы воспринимают и форму предметов — отличают треугольник от квадрата, куб от пирамиды.
Известный интерес представляет отношение рыб к искусственному свету. Еще в дореволюционной литературе писали о том, что костер, разведенный на берегу реки, привлекает плотву, налимов, сомов и улучшает результаты ловли.
Последние исследования показали, что многие рыбы — килька, кефаль, сырть, сайра — направляются к источникам подводного освещения, поэтому в настоящее время электрический свет используют в промысловой ловле. В частности, этим способом успешно ловят кильку на Каспии, а сайру у Курильских островов.
Попытки применить электрический свет в спортивной ловле пока не дали положительных результатов. Проводились такие опыты зимой в местах скопления окуня и плотвы. Во льду прорубали лунку и ко дну водоема опускали электролампу с рефлектором.
Затем производили ловлю на мормышку с подсадкой мотыля в соседней лунке и в лунке, вырубленной в стороне от источника света. Оказалось, что количество поклевок вблизи лампы меньше, чём вдали от нее. Аналогичные опыты производились при ловле судака и налима ночью; они также не дали положительного эффекта.
Для спортивной ловли рыбы заманчиво использование приманок, покрытых светящимися составами. Установлено, что рыбы схватывают светящиеся приманки. Однако опыт ленинградских рыболовов не показал их преимуществ; обычные приманки рыбы во всех случаях берут охотнее.
Литература по данному вопросу также не убедительна. В ней описываются только случаи поимки рыб на светящиеся приманки, а сравнительных данных о ловле в тех же условиях на обычные приманки не приводится.
В итоге надо считать, что целесообразность использования света и светящихся приманок на ловле еще окончательно не выяснена и необходимо дальнейшее детальное изучение этого вопроса.
Особенности зрения рыб позволяют сделать некоторые выводы, полезные для рыболова. Можно с уверенностью сказать, что находящаяся у поверхности воды рыба не в состоянии видеть стоящего на берегу рыболова далее 8—10 м и сидящего или ловящего взабродку — далее 5—6 м; имеет значение при этом и прозрачность воды.
Практически можно считать, что если рыболов не видит рыбу в воде, когда смотрит на хорошо освещенную водную поверхность под углом, близким к 90°, то и рыба не видит рыболова.
Поэтому маскировка имеет смысл только при ловле на мелких местах или поверху в прозрачной воде и при забросе на небольшое расстояние. Наоборот, предметы снаряжения рыболова, близкие к рыбе (поводок, грузило, сачок, поплавок, лодка), должны сливаться с окружающим фоном.
Наличие слуха у рыб долгое время отрицалось. Такие факты, как подход рыб по звонку к месту кормежки, привлечение сомов ударами по воде особой деревянной колотушкой («клочение» сомов), реакция на свисток парохода, еще мало что доказывали. Возникновение реакции могло объясняться раздражением других органов чувств.
Новейшие опыты показали, что рыбы реагируют на звуковые раздражения, причем эти раздражения воспринимаются и слуховыми лабиринтами, имеющимися в голове рыб, и поверхностью кожи, и плавательным пузырем, играющим роль резонатора.
Какова чувствительность звуковых восприятий у рыб, точно не установлено, но доказано, что они улавливают звуки хуже человека, причем высокие тона рыбы слышат лучше, чем низкие.
Звуки, возникающие в водной среде, рыбы слышат на значительном расстоянии, а звуки, возникающие в воздушной среде, слышат плохо, так как звуковые волны отражаются от поверхности и плохо проникают в воду. Учитывая эти особенности, рыболов должен остерегаться шуметь в воде, но может не опасаться напугать рыбу, громко разговаривая.
Интересно использование звуков в спортивной ловле. Однако вопрос о том, какие звуки привлекают рыб, а какие отпугивают, не изучен. Пока звук используют лишь при ловле сомов, «клочением».
Орган боковой линии.
Орган боковой линии есть только у рыб и земноводных, постоянно живущих в воде. Боковая линия чаще всего представляет собой канал, который тянется вдоль туловища от головы до хвоста. В канале разветвляются нервные окончания, с большой чувствительностью воспринимающие даже самые незначительные водные колебания.
При помощи этого органа рыбы определяют направление и силу течения, ощущают токи воды, образующиеся при смывании подводных предметов, чувствуют движение соседа в стае, врагов или добычи, волнение на поверхности воды. Кроме того, рыба воспринимает и колебания, которые передаются воде извне — сотрясение почвы, удары по лодке, взрывную волну, вибрацию корпуса парохода и т. п.
Подробно изучена роль боковой линии в схватывании рыбой добычи. Многократно поставленные опыты показали, что ослепленная щука хорошо ориентируется и безошибочно схватывает движущуюся рыбку, не обращая внимания на неподвижную.
Слепая щука с разрушенной боковой линией теряет способность ориентации, натыкается на стенки бассейна и. будучи голодной, не обращает внимания на плавающую рыбку.
Учитывая это, рыболов должен вести себя осторожно и на берегу и в лодке. Сотрясение почвы под ногами, волна от неаккуратного движения в лодке могут насторожить и надолго распугать рыбу.
Не безразличен для успеха ловли характер движения в воде искусственных приманок, так как хищники при преследовании и схватывании добычи ощущают создаваемые ею водные колебания. Уловистее, безусловно, окажутся те приманки, которые наиболее полно воспроизводят признаки обычной добычи хищников.
Органы обоняния и вкуса.
Органы обоняния и вкуса у рыб разделены. Органом обоняния у костистых рыб служат парные ноздри, расположенные по обеим сторонам головы и ведущие в носовую полость, выстланную обонятельным эпителием.
В одно отверстие вода входит, а из другого выходит. Такое устройство органов обоняния позволяет рыбе ощущать запахи растворенных или взвешенных в воде веществ, причем на течении рыба может чувствовать запахи только по струе, несущей пахучее вещество, а в тиховодье — только при наличии токов воды.
Орган обоняния слабее всего развит у дневных хищных рыб (щука, жерех, окунь), сильнее — у ночных и сумеречных рыб (угорь, сом, карп, линь).
Вкусовые органы расположены в основном во рту и глоточной полости; у одних рыб вкусовые сосочки находятся в области губ и усов (сом, налим), а иногда расположены по всему телу (сазан). Как показывают опыты, рыбы способны различать сладкое, кислое, гор » кое и соленое. Так же, как и обоняние, чувство вкуса сильнее развито у ночных рыб.
В литературе имеются указания о целесообразности добавлять в прикормку и насадку различные пахучие вещества, будто бы привлекающие рыбу: мятное масло, камфару, анисовые, лавро-вишневые и валерьяновые капли, чеснок и даже керосин.
Неоднократное использование этих веществ в корме не показало сколько-нибудь заметного улучшения клева, а при большом количестве пахучих веществ, наоборот, рыба почти совсем переставала ловиться. Аналогичный результат дали опыты, поставленные над аквариумными рыбами, которые неохотно ели корм, смоченный анисовым маслом, валерьянкой и т. п.
Вместе с тем естественный запах свежей прикормки, особенно конопляного жмыха, конопляного и подсолнечного масла, ржаных сухарей, свежесваренной каши, без сомнения, привлекает рыбу и ускоряет ее подход к кормушке.
Значение тех или иных органов чувств при отыскании пищи различными рыбами показано в табл. 1.
Как видят рыбы?
Как видят рыбы? Видят ли они нас? И кто мы для них? Инопланетяне, для которых обитатели подводного мира только продукт питания, или дружественные пришельцы, изучающие их неведомый и загадочный мир. Жизнь подводных обитателей полна чудесных и удивительных тайн.
Оптические свойства воды не позволяют животному видеть далеко. Хрусталик у рыб не может менять форму и приспосабливать зрение к расстоянию. Острота его зависит от прозрачности воды. Хорошо рыбы могут видеть в прозрачной воде не более чем на расстоянии в 1,5-2 метра, однако различают предметы в пределах 12-15 метров.
А теперь снова вернемся к вопросу, видят ли нас рыбы. Его особенно часто задают рыболовы-любители. Не совсем хорошо, но рыбы могут видеть и надводный мир. По закону преломления световых лучей они сравнительно отчетливо видят без искажения предметы, находящиеся прямо у них над головой, например шлюпку или птицу, пролетающую над водой.
Наклонно падающие лучи преломляются. И чем острее угол и ниже предмет, тем более искаженным он кажется рыбе. Например, рыболов, стоящий на берегу, виден рыбе достаточно хорошо. Но если он присядет, рыба практически не видит его, особенно в неспокойную погоду.
При лове кефали подъемным заводом рыба, попавшая в сетную ловушку, прекрасно видит стенку, преградившую ей путь, и стремится уйти, пытаясь перепрыгнуть через нее. Иногда крупные кефали проводят первоначальную рекогносцировку, незначительно выпрыгивая из воды, оценивая высоту стенки, и только затем делают мощный прыжок.
Оказавшись не в своей среде, на берегу, рыбы не утрачивают способности ориентации. Например, угорь спокойно переползает из одного водоема в другой. Да и попробуйте выбросить живую, только что пойманную крупную рыбу на берег: она сделает все, чтобы оказаться в родной стихии. Рыбы могут не только видеть, но и запоминать увиденное.
Удивительный случай произошел у берегов Пуэрто-Рико. Крупная акула-мако была подстрелена из охотничьего гарпунного ружья. Сделав рывок в сторону моря и освободившись от стрелы, она ринулась к берегу. К изумлению присутствующих, она пыталась схватить незадачливого охотника, стоявшего на берегу, не обращая внимания на находившихся рядом людей.
Хищные рыбы видят намного лучше травоядных. Зоркое зрение им необходимо при выслеживании и преследовании жертв. Особенность зрительного аппарата некоторых рыб позволяет им расчленить движение ускользающей добычи на отдельные фазы и угадать ее направление и скорость, что позволяет молниеносным броском поймать быструю и проворную жертву. Мелкие стайные рыбы видят значительно хуже.
Исследованиями подтверждено, что рыбы различают даже форму предмета, квадрат отличают от треугольника, а куб от пирамиды, чего не могут даже некоторые наземные животные.
Но кто знает, чем еще руководствуются рыбьи самки при выборе партнера для продолжения рода. Многие виды рыб знают в «лицо» выбранных им «мужей» для совместной жизни и не позволяют чужаку вторгнуться в их жизнь и разбить семейное счастье.
Ну а некоторые рыбы, такие как камбала, меняют окраску буквально на ходу в зависимости от цвета грунта и так сливаются с ним, что хищник, проплывая над затаившейся рыбой, не замечает ее. Однако ослепшие рыбы, в том числе и камбала, не меняют свой цвет в зависимости от изменения цвета грунта, и зрительное восприятие в этом случае остается основополагающим.
А другие сияют целиком, словно елочные новогодние игрушки, в свете горящих разноцветных гирлянд. Исследователи, опустившиеся в батискафе на большую глубину, в кромешное царство тьмы, были изумлены открывшимся перед ними чудесным красочным миром. Сверкающие призраки проплывали перед ними, переливаясь многоцветьем.
Какая красота прячется от человеческого взора в бесконечных глубинах океана! Хочется, чтобы человек для подводных жителей был лишь миролюбивым пришельцем, изучающим этот таинственный мир.
Владимир КОРКОШ, ихтиолог, журналист (Керчь).
Что видят рыбы
Что видят рыбы
Глаз — совершенный оптический прибор. Он напоминает фотографический аппарат. Хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик чечевице-образный и может изменять свою кривизну. Это дает возможность приспосабливать зрение к расстоянию.
Под водой человек видит очень плохо. Способность преломлять световые лучи у воды и хрусталика глаза наземных животных почти одинакова, поэтому лучи собираются в фокусе далеко позади сетчатой оболочки. На самой же сетчатке получается неясное размытое изображение.
Хрусталик глаза у рыб шарообразен, он лучше преломляет лучи, но не может менять форму. И все же в какой-то степени рыбы могут приспосабливать зрение к расстоянию. Они достигают этого приближением или удалением хрусталика от сетчатой оболочки с помощью особых мышц.
Практически рыба в прозрачной воде видит не далее чем на 10—12 метров, а ясно — только в пределах полутора метров.
Угол зрения у рыб очень велик. Не поворачивая тела, они могут видеть предметы каждым глазом по вертикали в зоне около 150° и по горизонтали до 170°. Объясняется это расположением глаз по обеим сторонам головы и положением хрусталика, сдвинутого к самой роговице.
Совершенно необычным должен казаться рыбе надводный мир. Без искажения рыба видит лишь предметы, находящиеся прямо над ее головой — в зените. Например, облако или парящую чайку. Но чем острее угол входа светового луча в воду и чем ниже расположен надводный предмет, тем более искаженным кажется он рыбе. При падении светового луча под углом 5—10°, особенно если водная поверхность неспокойна, рыба вообще перестает видеть предмет.
Лучи, идущие от глаза рыбы вне конуса в 97,6°, полностью отражаются от водной поверхности, и она представляется рыбе зеркальной. В ней отражаются дно, водные растения, плавающие рыбы.
С другой стороны, особенности преломления лучей позволяют рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом. Сидящий на берегу человек не увидит рыбу — она скрыта береговым выступом, а рыба увидит человека.
Фантастически выглядят полупогруженные в воду предметы. Вот как, по словам Л. Я. Перельмана, должен представляться рыбам человек, находящийся по грудь в воде: «Для них мы, идя по мелководью, раздваиваемся, превращаемся в два существа: верхнее — безногое, нижнее— безголовое с четырьмя ногами! Когда мы удаляемся от подводного наблюдателя, верхняя половина нашего тела все сильнее сжимается в нижней части; на некотором расстоянии почти все надводное туловище пропадает, — останется лишь одна свободно реющая голова».
Даже опустившись под воду, человеку трудно проверить, как видят рыбы. Невооруженным глазом он вообще ничего четко не увидит, а наблюдая через застекленную маску или из окна подводной лодки, увидит все в искаженном виде. Ведь в этих случаях между глазом человека и водой будет еще и воздух, который обязательно изменит ход световых лучей.
Как видят рыбы предметы, расположенные вне воды, удалось проверить подводной съемкой. С помощью особой фотоаппаратуры были получены снимки, которые полностью подтвердили высказанные выше соображения. Представление о том, каким кажется надводный мир подводным наблюдателям, можно составить, опустив под воду зеркало. При определенном наклоне мы увидим в нем отражение надводных предметов.
Особенности строения глаза рыб, так же как и других органов, зависят прежде всего от условий обитания и образа их жизни.
Зорче других — дневные хищные рыбы: форель, жерех, щука. Это и понятно: они обнаруживают добычу, главным образом, зрением. Хорошо видят рыбы, питающиеся планктоном и донными организмами. У них зрение тоже имеет первостепенное значение для отыскивания добычи.
Наши пресноводные рыбы — лещ, судак, сом, налим— чаще охотятся ночью. Им нужно хорошо видеть в темноте. И природа позаботилась об этом. У леща и судака в сетчатой оболочке глаз находится светочувствительное вещество, а у сома и налима имеются даже специальные пучки нервов, воспринимающие самые слабые световые лучи.
Рыбки аномалопс и фотоблефарон, обитающие в водах Малайского архипелага, пользуются в темноте собственным освещением. Фонарики расположены у них около глаз и светят вперед, совсем как автомобильные фары. Свечение вызывают бактерии, находящиеся в особых колбочках. Фонарики по желанию хозяев могут зажигаться и гаснуть. Аномалопс выключает их, поворачивая светящейся стороной внутрь, а фотоблефарон задергивает фонарики, как шторой, складкой кожи.
От образа жизни зависит и расположение глаз на голове. У многих донных рыб — камбалы, сома, звездочета — глаза расположены в верхней части головы. Это позволяет им лучше видеть врагов и добычу, проплывающих над ними. Интересно, что у камбал в младенческом возрасте глаза расположены так же, как у большинства рыб, — по обеим сторонам головы. В это время камбалы имеют цилиндрическую форму тела, живут в толще воды и кормятся зоопланктоном. Позднее они переходят на питание червями, моллюсками, а иногда и рыбками. И тут с камбалами происходят замечательные превращения: левая сторона начинает у них расти быстрее, чем правая, левый глаз переходит на правую сторону, тело становится плоским, и в конце концов оба глаза оказываются на правой стороне. Закончив превращение, камбалы опускаются на дно и ложатся на левый бок — не зря их метко прозвали лежебоками.
Глаза камбал имеют и другую особенность. Они могут поворачиваться в разные стороны независимо один от другого. Это позволяет рыбам одновременно следить за приближением добычи или врага справа и слева.
В.Сабунаев, «Занимательная ихтиология»
Зрение пресноводных рыб
Новицкий Р. | 15 июля 2005 г.
Для того, чтобы эффективно применять свой рыболовный опыт в противостоянии с обитателями наших водоемов, современный рыболов- любитель или спортсмен обязан обладать немалым багажом знаний, полученных благодаря неоднократным личным наблюдениям или почерпнутых из достоверных научных источников.
В настоящей статье мы продолжаем разговор об органах чувств рыб и их неравнозначной роли в жизни подводных обитателей (см. «СР» №№ 2 и 8 за 2002 г., № 2 за 2003 г. и № 2 за 2004 г.).
Об органах чувств рыб
В истории развития человеческой цивилизации особое внимание изучению рыб начали уделять в IV веке до н. э. Фактически ихтиология как наука о рыбах началась с Аристотеля (384-322 гг. до н. э.), который сделал первые попытки классифицировать огромное разнообразие обитателей царства Нептуна и описывал биологию и анатомию многих видов рыб.
В настоящее время практически любой «литературно подкованный» рыболов, не говоря уже об ученых-ихтиологах, знает, для чего у рыб существует боковая линия, могут ли рыбы слышать или обонять, с помощью чего они отыскивают корм или чувствуют приближение хищника.
Органы чувств рыб способны:
— воспринимать электромагнитные поля в видимой (зрение) и инфракрасной (температурная чувствительность) областях спектра;
— ощущать механические возмущения, или звуковые волны (слух),
— чувствовать силу тяжести (вестибулярная и гравитационная чувствительность) и механическое давление (осязание);
К сенсорным системам рыб можно отнести зрительную, слуховую, вкусовую, обонятельную, осязательную, электрорецепторную сенсорные системы, а также сейсмосенсорную систему, представленную боковой линией, общее химическое чувство.
При помощи зрительных анализаторов рыбы ориентируются в пространстве, находят пищу или избегают хищников, занимают соответствующие экологические ниши, визуально оценивая характер зрительного окружения (Beur, Heuts, 1973).
Популярно о строении глаза рыб
Рыбы видят (воспринимают свет) в водной среде при помощи глаз и особых светочувствительных почек. Особенности видения рыб под водой обусловлены прозрачностью вод, их вязкостью и плотностью, глубиной, скоростями течений, способом жизни и питания.
По сравнению с наземными животными и человеком, рыбы более близоруки. Роговица их глаз плоская, а хрусталик шаровидный. Именно его форма и обуславливает близорукость у рыб. У многих рыб хрусталик может выступать из отверстия зрачка, благодаря чему увеличивается поле зрения.
Вещество хрусталика такой же плотности как и вода, в результате свет, проходя через него, не преломляется и на сетчатке глаза получается четкое изображение.
Сетчатка глаза (внутренняя оболочка) имеет сложное строение, состоит из четырех слоев: пигментного, светочувствительного (так называемые палочки и колбочки) и двух слоев нервных клеток, дающих начало зрительному нерву.
Зрачок практически у всех видов неподвижен, однако камбалы, речной угорь, акулы и скаты в состоянии его сужать и расширять, увеличивая остроту зрения.
Особенности зрения у разных рыб
У большинства рыб движения глаз скоординированы, только у некоторых (зеленушка, калкан, морской язык и др.) они могут двигаться независимо друг от друга. У хищных рыб глаза наиболее подвижны.
Известный американский ученый Роберт Вуд показал, как рыбы могут видеть из воды. По законам преломления световых лучей, предметы, находящиеся на суше, кажутся рыбе выше, чем на самом деле. Если смотреть из воды в сторону берега под углом к вертикали больше чем 45°, то из-за полного внутреннего отражения от поверхности воды наблюдателю (рыбе) становятся видны объекты (рыболов). Стоящий на берегу рыболов представляется ей висящим в воздухе и четко различимым, но сидящего человека рыба не заметит, так как под малым углом наклона лучей к горизонту (менее 45?) наземные объекты ей невидимы.
Подавляющее большинство пресноводных рыб видят максимум на 1 м. В прозрачной воде (например, в наших водохранилищах зимой) рыбы практически могут видеть на расстоянии 10-12 м, однако четко различают предметы, их форму, цвет в пределах 1-1,5 м. При аккомодации глаза с передвижением хрусталика глаз настраивается на расстояние, не превышающее 15 метров. Это предел дальности зрения рыб.
У пелагических планктофагов (белый толстолобик, чехонь) поиск пищи осуществляется практически полностью благодаря зрению.
Сумеречные и ночные рыбы, как было отмечено выше, различать цвета не в состоянии, поэтому рыболовы-спортсмены и любители при экспериментировании с приманками должны уделять особое внимание не цвету приманки, а ее поведению (лобовому сопротивлению, шумовым характеристикам).
Зрительное восприятие рыбами движений. Российские ученые исследовали способности зрительного аппарата рыб восприятия движения. Для этого наблюдали за оптомоторной реакцией рыб на последовательно движущиеся полосы или детали обстановки в течение 1 секунды (определение величины оптических моментов). Были получены следующие результаты.
Тонкое восприятие движения зрительным аппаратом рыб позволяет жертвам уловить начальный момент броска и ускользнуть от хищника. Для мирных рыб сигналом предстоящего броска хищника являются подергивание и вибрирование спинных и грудных плавников, а также всего тела охотника, улавливаемые глазом потенциальной жертвы (Протасов, 1968).
Органы чувств рыб в пищевом поведении рыб
Представляют интерес для рыболова также и экспериментально полученные и проверенные в естественных условиях результаты поочередного функционирования органов чувств рыб при поиске ими кормовых объектов.
Во время «свободного поиска», когда расстояние до кормового объекта превышает 100 м, у рыб «работает» только обоняние, остальные сенсорные системы не задействованы. При приближении к источнику «вкусного» запаха от 100 до 25 м к обонянию подключается слух. На расстоянии от 25 до 5 м рыба пытается найти корм при помощи обоняния, зрения и слуха.
Когда до пищи остается «рукой подать» (от 5 до 1 м), рыба в первую очередь пользуется зрением, затем обонянием и слухом. На расстоянии от 1 до 0,25 м в поиск вовлекаются одновременно зрение, слух, боковая линия, обоняние, наружная вкусовая чувствительность (ощупывание грунта усиками, касания губами, рылом, даже плавниками).
Когда еда «под носом» и расстояние до нее не превышает 0,25 м, рыба «включает» практически все органы чувств: зрение, боковую линию, электрорецепцию, наружную вкусовую чувствительность, общее химическое чувство, осязание. Их совместная работа быстро приводит к обнаружению рыбой корма.
Поведение хищных рыб в зависимости от особенностей зрения
Окуни-ихтиофаги и щуки питаются круглосуточно: днем охотятся за добычей из засады, в сумерках и на рассвете выходят на открытую воду и преследуют жертв. «Сумеречное» питание хищников происходит при освещенности от сотен до десятых долей люксов (вечером) и наоборот (утром). В этот период у окуня и щуки функционирует дневное зрение с максимальной остротой и дальностью видения, а плотные стаи рыб-жертв начинают распадаться, обеспечивая удачную охоту хищникам. С наступлением темноты отдельные рыбешки рассредоточиваются по акватории, верховка и уклейка при падении освещенности ниже 0,01 лк опускаются на дно и замирают. Охота хищных рыб прекращается.
В предутренние часы при освещенности от десятых долей до сотен люксов «избиение младенцев» продолжается до момента, когда рыбы-жертвы образуют плотные оборонительные стаи.
Осенью, в пасмурную и дождливую погоду, когда освещенность изменяется незначительно, молодь мирных рыб образует разреженные оборонительные стаи и хищники могут успешно охотиться на протяжении всего дня, а не только в сумерках. Происходит так называемый «осенний жор» хищника.
Подмечена интересная особенность охоты щуки и окуня на свету и при высокой прозрачности воды. В дневное время эти рыбы выступают как типичные хищники-засадчики: при неудачном захвате добычи из засады они не преследуют ее, чтобы не отпугнуть других потенциальных жертв от места охоты. Те районы, где затаился хищник, обнаруживший азартом свое место укрытия, стайки рыб обходят стороной. Поэтому днем щука или окунь делают четко выверенный и точный бросок только при возможности 100%-го захвата добычи. Решающую роль в удачном броске играет зрение.
Как видят рыбы
Человек получает свыше 90% информации о внешнем мире через зрение – остальные органы чувств выполняют преимущественно вспомогательную функцию. Рыбы тоже видят неплохо, но роль органов зрения в их повседневной жизни не столь велика: они больше полагаются на обоняние, слух, осязание, сейсмосенсорику. Однако роль этого органа чувств нельзя недооценивать: лишенные возможности видеть окружающий мир представители неглубоководной ихтиофауны в естественных условиях существовать не смогут.
Строение глаз пресноводных рыб
Собственно принцип устройства органов зрения у рыб не оригинален: его природа апробировала на большинстве иных позвоночных (амфибиях, птицах, млекопитающих). То есть, глаза большинства рыб устроены примерно, как у человека: свет попадает на радужку, проходит через зрачок и преломляется на хрусталике. В свою очередь, хрусталик подает свет на сетчатку, состоящую из фоторецепторов двух видов (палочек и колбочек). Именно на сетчатке и возникает изображение, которое видит рыба.
Характеристики сетчатки могут быть самыми различными. Палочки, обеспечивающие видимость в условиях плохой освещенности, превалируют в сетчатке ночных и глубокосумеречных рыб. Колбочки, отвечающие за остроту зрения и цветоразличение, преобладают у дневных видов, активные фазы жизни которых проходят в условиях хорошей освещенности.
Основные характеристики зрения рыб
Все рыбы имеют по два глаза, причем у большинства видов они располагаются по обе стороны головы. Исключение составляют некоторые морские виды. В качестве примера можно привести скатов с расположением глаз, близким к фронтальному, либо камбал – удивительных плоскотелых рыб, органы зрения которых расположены на одной, «верхней» стороне. Движения глаз скоординированы, то есть вращать ими, подобно хамелеонам, знакомые нам пресноводные рыбы неспособны.
А теперь давайте разбираться, что именно способны видеть рыбы в различных условиях, и чем их восприятие отличается от привычного нам. Среди наиважнейших характеристик зрительного восприятия представителей пресноводной ихтиофауны (в том числе, и аквариумных рыбок) следует отметить:
Рассмотрим каждый из пунктов подробнее, делая упор на практические моменты.
Угол зрения
Угол зрения – одна из важнейших характеристик визуального восприятия, имеющая, помимо чисто научного, и практическое значение для рыболова. Более всего интересно, как воспринимает рыба человека, находящегося на берегу.
Эти законы работают при рассмотрении представителями ихтиофауны подводных объектов, но над водой претерпевают существенные изменения. В воздухе свет преломляется иначе, посему большую роль играет трафик на границе «вода-воздух».
Нужно учитывать и угол падения света: чем он меньше (на закате или рассвете), тем хуже рыба различает расположенные на берегу объекты. А если на поверхности поднимется хоть какая-то волна, надводные объекты станут для обитателей воды и вовсе неразличимыми.
Цветоразличение
Ихтиологи дифференцируют пресноводных рыб по образу жизни на светолюбивых и ночных (между ними лежит масса промежуточных сумеречных видов). Не будем заострять внимание на научной классификации, просто скажем: дневные виды различают цвета очень неплохо (некоторые видят оттенки практически наравне с человеком), ночные рыбы видят мир преимущественно в черно-белом цвете, но способны различать контуры объектов практически в полной темноте.
Вследствие этого, дневные и сумеречно-дневные (в их сетчатке больше колбочек) рыбы привыкают полагаться на зрение, глубокосумеречные и ночные (практически лишенные колбочек) – на иные органы чувств.
Это значит, что при охоте на сумеречно-дневных окуня или щуку принципиален цвет приманки, в то время как при ловле судака или сома эта характеристика роли не играет – главное, звуковые эффекты и движение. Впрочем, если приманка резко контрастирует по цвету с окружением (например, белая или желтая), тот же судак среагирует на нее с большей долей вероятности, чем на темноокрашенную модель.
Однако нужно учитывать, что практически все рыбы способны видеть поляризованный (то есть, отраженный) свет. Это важно как для мирных стайных представителей ихтиофауны, так и для хищников, реагирующих на отблески чешуи потенциальной добычи. Этим объясняется эффективность некоторых блесен на простейшей равномерной проводке. Различают рыбы и ультрафиолет. А вот электрический свет представители пресноводной ихтиофауны, в большинстве случаев, не жалуют. Экспериментальным путем доказано, что при ловле в ночное время того же окуня поклевок в освещенной зоне значительно меньше, нежели в неосвещенной.
О способности рыб различать цвета свидетельствует и их стремление к мимикрии: они предпочитают держаться на участках, где их окраска сливается с окружающей средой. Самый показательный пример – камбала. Наверное, все слышали, что она может менять цвет чешуи в зависимости от окраски донной поверхности, на которой она лежит. Камбала способна мимикрировать даже под шахматную доску! Так вот, стоит лишить эту рыбу возможности видеть окружающий мир, как ее способность к мимикрии сразу же пропадает!
Вывод: в яркую одежду лучше не одеваться, ибо все необычайное, выбивающееся из общей картины, воспринимается рыбой настороженно. Особенно это важно при рыбалке в светлое время суток.
Расстояние
Хрусталик округлой формы определяет и прочие особенности зрения представителей ихтиофауны. Иногда он выступает за роговицу, что способствует расширению угла обзора, но ничуть не улучшает остроту зрения.
В большинстве своем, рыбы более близоруки, чем млекопитающие. Впрочем, человек без маски под водой тоже не может похвастаться соколиным зрением: дистанция распознавания объектов и четкость изображения существенно страдают из-за особенностей водной среды. Какие-то рыбы видят лучше (преимущественно дневные), какие-то хуже, но чемпионов в соответствующей номинации среди них нет.
А теперь немного цифр. Большинство рыб способно различать контуры объектов на расстоянии в 10-12 метров (при прозрачной воде и хорошем освещении). Однако рассмотреть детали (форму, цвет и прочие характеристики) они могут лишь на в десяток раз меньшем расстоянии. Например, сантиметровый объект окунь увидит за 5 метров, но детально рассмотреть его сможет на куда более близком расстоянии.
Дифференциация объектов
Выяснено, что рыбы могут различать и группировать объекты по внешним признакам (впрочем, здесь речь идет, скорее, об интеллектуальных кондициях, нежели о зрении рыб). В ходе пищевой дрессировки было выяснено, что они вполне способны отличить куб от пирамиды или шар от, например, цилиндра.
Выяснено также, что некоторые рыбки способны внешне различать членов своей группы (сельдь, окунь и так далее), а узнавать хищника «в лицо» и вовсе необходимо для выживания. Кстати говоря, некоторые тропические рыбки выбирают партнеров раз и на всю жизнь: они способны узнать их из тысяч себе подобных.
Как правило, все объекты, что видит рыба, сразу же классифицируются в ее мозгу и попадают в определенную категорию. Незначимые объекты отсекаются, остальные подразделяются на потенциально опасные (вызывающие настороженность либо немедленное бегство) и привлекательные (связанные с пищей, совместным «проживанием» либо размножением).
Вывод: идеальный вариант для рыболова – быть отнесенным к группе нейтральных, не представляющих опасности, объектов. То есть, не стоит выделяться на фоне окружающей визуальной и звуковой среды.
Восприятие движения
Недвижимые объекты рыба воспринимает хуже – это вам расскажет любой спиннингист. Именно активность потенциальной добычи вынуждает хищника на атаку. В данном случае важно все: и блеск чешуи, и траектория движения, и прочие визуальные эффекты. Для их усиления хороши и дополнительные звуковые эффекты. Этим объясняется успех охоты на судака со всяческими «погремушками», привлекательность воблеров с «чавкающими» эффектами, широкое применение «квока» для охоты на сома.
Однако и мирная рыба способна увидеть угрожающего ей хищника и вовремя ретироваться из опасного сектора. Она распознает начало атаки по характерному подергиванию плавников, предваряющему атаку хищника.
Скорость и детализация реакции рыб на движение обуславливается особенностями зрения и нервной системы. Некоторые представители ихтиофауны (уклея, карась) реагируют на движение менее детально, чем человек, окунь и лещ – почти вдвое детальнее и быстрее. Кстати, знаменитая «зубастая торпеда» (то есть, щука) воспринимает движение примерно так же, как и человек.
Доказано, что сытая и утомленная рыба имеет более замедленную реакцию на движение, голодная и отдохнувшая – быструю. Этим объясняется механика знаменитого преднерестового жора: рыба голодна и отлично реагирует на движущиеся приманки.
Особенности поведения рыб в зависимости от зрения
Рассмотрим обусловленное особенностями зрения поведение наиболее популярных хищников наших водоемов.
Окунь и щука способны охотиться практически круглосуточно, но с разной интенсивностью и степенью успеха. Летом наиболее продуктивными для них являются рассветные и вечерние часы, когда эти рыбы максимально ясно видят потенциальную добычу. Это приблизительно по 3-4 часа эффективной охоты. Ночью освещенность падает, а потенциальная добыча уходит из поля зрения, становясь практически неразличимой.
С судаком дело обстоит несколько иначе. Благодаря присутствию в сетчатке особого вещества, гуанина, эти рыбы способны видеть практически в полной темноте. А вот цвета пресноводная треска практически не различает, да и остротой зрения не отличается, так как колбочек в ее сетчатке откровенно маловато.
Интересные факты о рыбах с «особенным» строением глаз
А теперь давайте поговорим об особенностях зрения некоторых представителей ихтиофауны. Эти сведения вряд ли будут полезны на рыбалке, так как они касаются преимущественно экзотических рыб, но для общего развития представляют определенную ценность.
Надеемся, что эта публикация помогла вам узнать множество малоизвестных сведений о представителях ихтиофауны. Порой даже хорошо знакомые виды рыб способны искренне удивлять бывалых рыболовов, что уж говорить об упомянутых здесь покрытых чешуей оригиналах!
Мир глазами рыбы: как видит рыба и важен ли цвет приманки?
Роль зрения для подавляющего большинства подводных обитателей чрезвычайно высока. Наряду с другими органами чувств, зрение позволяет рыбам получать информацию об окружающей среде, обеспечивать контакт между особями своего вида, а также определять пищевую активность.
Но жизнь в водной среде накладывает свой отпечаток на зрительную способность рыб. Вода, обладая большей плотностью по сравнению с воздухом, способна не только рассеиватель и поглощать солнечный свет, но и преломлять его. Поэтому оптические свойства воды не позволяют рыбе видеть далеко. В прозрачной воде, четкость зрения не превышает 2 метров, а способность различать предметы редко превышает 10 метров.
Зрение рыб. Как видят рыбы?
В отличие от человека, рыбы обладают монокулярным зрением, вследствие расположения глаз по бокам головы. Но в то же время, такое расположение позволяет воспринимать свет не только спереди, но и с боков, а также сверху или снизу. Поэтому угол обзора получается очень широким. Увеличению угла обзора также способствует возможность рыб двигать глазами в разных направлениях и даже независимо друг от друга.
Различают ли рыбы цвета и формы?
Вместе с тем, у рыб есть и бинокулярное зрение. Но оно возможно только в ограниченном поле, там, где пересекаются углы обзора каждого глаза. Именно в этом диапазоне угла обзора, рыба не только ясно видит предметы и их форму, но и различает цвета.
У многих рыб спектр цветового восприятия крайне широк. Некоторые рыбы различают цвета и оттенки даже в ультрафиолетовом диапазоне.
Способность рыб различать цвета и форму важна как с точки зрения пищевой деятельности, так и с точки зрения защиты от хищников. Если бы, например, камбала не вынуждена была подстраиваться под цвет дна для охоты и защиты, стала бы она это делать?
Важен ли цвет приманки? Какой цвет приманки нужно выбирать?
Все цвета по разному воспринимаются в воде. Это зависит от прозрачности и освещённости воды.
Известно, что чем глубже, тем меньше проникает света. Но на самом деле, в этом разрезе, стоит говорить: «чем глубже, тем меньше видимый диапазон цвета».
Спектр светопроницаемости в воде
Из школьной программы по физике, мы знаем, что каждый оттенок цвета характеризуется определённой длиной световой волны. Чем короче длина этой волны, тем глубже она проникает. Поэтому наименее универсальным в зависимости от освещённости будет являться красный цвет. Красный и его оттенки будут хорошо различаться только в прозрачной и хорошо освещённой воде. Это следует знать любителям ловли на красного опарыша и мотыля. Хотя, конечно, эти насадки обладают ещё и запахом, на который освещённость не влияет.
Видимый для многих рыб диапазон цветов варьируется от инфракрасного до ультрафиолетового. Чтобы понимать какой цвет рыба лучше видит в зависимости от освещённости воды, достаточно вспомнить распределение цветов в радуге: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый. Конечно, это образное восприятие. Существует ещё тысячи оттенков, и каждый из них является переходным между перечисленными цветами и так или иначе расположен в цветовой гамме радуги.
Любителям ловли в ночное время и на глубине, особенно подо льдом, можно рекомендовать приманки различных синих и фиолетовых оттенков, а также приманки, обладающие ультрафиолетовым свечением. Но как это узнать?
Ультрафиолетовый фонарик
Если есть возможность, нужно посмотреть на свечение приманок при ультрафиолетовом освещении. Для этого существуют специальные ультрафиолетовые фонари.
Ультрафиолетовый фонарик. Приманки keitech и блесна blue fox в ультрафиолете
Чем ярче светится приманка, тем лучше она будет различима в условиях плохой освещённости.
Отдельно нужно сказать про белый цвет. Белый цвет включает в себя весь спектр электромагнитного излучения. Наряду с чёрным и оттенками серого, белый цвет является ахроматическим. Но если чёрный цвет поглощает все цветовые волны, то белый отражает. Поэтому белый цвет, с точки зрения выбора приманки для разных уровней освещённости, будет являться наиболее универсальным. Это также справедливо и для уровня прозрачности воды.
В непрозрачной и мутной воде, цвет приманки будет играть такую же определённую роль. Лучшим выбором будут те цвета, которые контрастируют с цветом воды, вызванную различными факторами ( цветение водорослей, осадки, волны, характер грунта и т.д). Конечно, рыба может клюнуть и в том случае, когда цвет приманки совпадает с цветом воды, но тогда в большей степени сыграют свою роль другие органы чувств.
Если рыбалка происходит в условиях хорошей освещённости и прозрачности воды, то выбор цвета приманки не так важен. Лучшим выбором при активном клёве будут так называемые естественные цвета. Они не будут отвлекать и настораживать хищника. Но в то же время, если хищная рыба пассивна, то яркий и необычный цвет, может привлечь её внимание. Поэтому так важно экспериментировать и менять формы и цвета приманок.
Какие рыбы видят лучше?
У разных видов рыб, зрение настроено по разному. Например, у некоторых глубоководных видов зрение может отсутствовать практически полностью ввиду отсутствия его необходимости в условиях темноты. Хотя другие обитатели морских глубин, наоборот развили особое зрение и адаптировали его к кромешной тьме. У рыб, найденных в водоёмах пещер, зрение вообще было полностью редуцировано.
Но с практической точки зрения нас больше интересует зрение «наших» пресноводных объекты ловли.
Судака целенаправлено ловят ночью. Фото — https://www.instagram.com/volkifish/
Лучше всего видят и различают цвета рыбы, живущие в чистой и прозрачной воде, такие как форель, хариус, ленок, жерех, щука и некоторые другие. У таких рыб как судак, сом, налим, угорь хорошо развито ночное зрение. Если посветить фонарём на судака, то можно увидеть его светящиеся глаза. Кстати, светящиеся глаза говорят о хорошем ночном зрении и у наземных животных.
Многие активные хищные рыбы имеют хорошую двигательную зрительную реакцию. Поэтому для защиты, некоторые рыбы образуют косяки и стаи (мальки), другие развили быстроходность или, наоборот, способны сохранять неподвижность. Чтобы спастись от хищников, мирные рыбы должны издали увидеть приближающуюся опасность, вследствие чего любая подвижность крупных объектов, силуэтов и теней вызывают у них защитную реакцию.
Таким образом, для большинства рыб зрение является важным органом чувств (наряду с боковой линией), а для некоторых видов играет первостепенную роль.
Зрение рыбы – как видит рыба?
Зрение рыбы, как она видит, в статье кроткий экскурс, рыбаку это важно знать.
Много уже было сказано и показано о том, что рыбалка – это целый комплекс знаний и умений, благодаря которым можно рассчитывать на хороший улов. Именно знаний поведения рыбы, её физиологических особенностей и поведенческой реакции. Что обычно наблюдаю я в рыболовном магазине, когда начинающий рыбак советуется с продавцом по поводу предстоящей рыбалки и приобретения снастей? Чаще всего, клиенту просто продают снасти, делая акцент на новинки, на самые передовые разработки, благодаря которым человек останется с уловом. И люди покупают массу всего, порой даже совершенно не нужных снастей, поверив в то, что рыбалка для них будет удачной. Но, если бы всё было так просто.
Можно прийти на водоем оснащенным по последнему слову «техники», и так же с пустым садком через какое-то время уйти. В чем причина? А причин множество – это и умение правильно выбрать место, и правильно настроить снасть, подобрать наживку и насадки и ещё много чего. Но одним из главных правил, которым почему-то многие рыбаки пренебрегают, является то, что они не учитывают факта наличия зрения у рыбы.
Как видит рыба
Рыбак подходит к берегу, готовит снасть, прикармливает место, делает заброс, но результат его почему-то не радует. А на самом деле, всё очень легко объяснить. Просто, когда Вы подходили к берегу, рыба Вас заметила, а всё «новое» на берегу настораживает и пугает трофейный экземпляр, который в данном примере предпочитает «перейти» на другое место или затаиться в укрытии. Рыбак должен понимать, что водная среда создает определенные условия для зрения рыбы – она прекрасно видит практически всё, что расположено спереди, с боков, и сверху. Естественно, под определенным углом, т.е. есть так называемые «слепые» участки, где рыба не в состоянии что-либо разглядеть.
Но следует понимать, что рыба в состоянии изменить свое положение в воде (что она и делает), тем самым изменив угол обзора и получив необходимую информацию. В общем случае, все предметы расположенные над рыбой, она видит и различает прекрасно, а по мере смещения объекта к линии горизонта и удаления его от рыбы – зрительное восприятие ухудшается. Именно поэтому, когда Вы решили обловить перспективное место, не стоит сразу подходить к берегу и стараться сделать заброс, как можно дальше. В этой ситуации нужно сначала попробовать обловить прибрежную территорию, не подходя к берегу, а уже после, когда Вы убедились, что рыбы рядом нет, можно тихонько подойти к берегу и аккуратно облавливать интересный участок дальше.
Рыба видит то, что скрыто
Интересно, что благодаря преломляющему свойству воды, рыба способна видеть объекты, которые как бы скрыты от неё. Например, находясь ниже горизонтали береговой линии, рыба видит человека, который подходит к берегу, когда угол светового луча превысит значение в 40-50 градусов к водной глади.
Тишина
Но, даже если рыбак присел на берегу, затаился и рыба его не видит, нужно соблюдать тишину, так как в этом случае рыба ощущает вибрации боковой линией, которая играет очень важную роль в жизни рыб. Эти нюансы нужно учитывать рыбаку и использовать в рыбалке. Например, если рыбак одет в яркую одежду и сразу приближается к берегу, он будет замечен рыбой, а необычный цвет её насторожит. С другой стороны, если одеться в камуфляжную одежду (в соответствии с временем года), медленно приближаться к берегу, идти против течения (так как хищные рыбы часто «стоят» головой против течения), с хвоста рыбы, и не топать (так как вибрации рыба улавливает боковой линией), то шансы поймать щуку, например, увеличиваются в разы.
Несколько правил для рыбаков
В статье я не стал рассказывать о строении глаза рыбы и других физиологических моментах, так как для рядового рыбака достаточно знать всего лишь несколько правил:
Соблюдая эти простые правила, можно хоть как-то «сделать» шаг к успешной рыбалке, не прибегая к каким-то хитрым методикам и уловкам.
Как видит рыба
Оптические свойства водной среды не позволяют рыбе видеть далеко. Практически пределом видимости у рыб в прозрачной воде считают расстояние 10—12 м, а ясно рыбы видят не далее 1,5 м. Некоторые рыбы видят в темноте (судак, лещ, сом, угорь, налим). У них в сетчатке глаза есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.
Чем острее угол входа светового луча в воду и ниже предмет, тем более искаженным видит его рыба. При падении светового луча под углом 5—10°, особенно если водная поверхность неспокойна, рыба перестает видеть предмет.
Лучи, идущие от глаза рыбы вне конуса, полностью отражаются от водной поверхности, поэтому она представляется рыбе зеркальной.
С другой стороны, преломление лучей позволяет рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом. Вне преломления лучей водной поверхностью может увидеть человека.
Характерные особенности рыбьего зрения: близорукость; возможность видеть в нескольких направлениях одновременно. По последним данным, углы зрения рыб накладываются один на другой, и это позволяет им видеть перед собой бинокулярно, значит, они могут точно определять расстояние до увиденного предмета.
Цветовое зрение у рыб подтверждается их способностью изменять окраску в зависимости от цвета грунта (мимикрия).
Опыты кормления рыб из разноцветных чашечек подтвердили, что рыбы отчетливо воспринимают все спектральные цвета и могут различать близкие оттенки. Новейшие опыты, основанные на спектрофотометрических методах, показали, что многие виды рыб воспринимают отдельные оттенки не хуже человека.
Как видят рыбы?
Рыбы по своей природе близоруки. Большинство рыб ясно различает предметы в пределах одного-двух метров, а максимальная дальность зрения у них не превышает 15 метров. Дело в том, что природные воды имеют довольно низкую прозрачность, поэтому глаза рыб не приспособлены к дальнему видению. Зато на близком расстоянии рыбы видят хорошо. Некоторые рыбы обладают очень острым зрением на расстоянии до 5 см от глаз.
Хищные рыбы (таймень, щука), ориентирующиеся на свою добычу при помощи органов зрения, обладают относительно хорошим зрением. Они различают предметы на расстоянии 10-15 метров.
У леща, карася и линя, обитающих в мутной воде, ведущих стайный образ жизни и отыскивающих корм с помощью органов обоняния и осязания, зрение довольно слабое.
У рыб есть цветовое зрение. Рыбы многих видов различают примерно те же цвета, что и человек. И даже более тонко реагируют на оттенки голубого, синего и фиолетового цветов. Пескарь, приученный получать корм из красной миски, всегда легко отыскивает ее из многих таких же мисок других цветов.
У многих рыб на внутренней поверхности сосудистой оболочки имеется отражательный слой клеток (тапетум), наполненных блестящими кристалликами гуанина. Его роль заключается в том, что он не пропускает световые лучи к тканям, лежащим позади сетчатки,и возвращает их повторно на сетчатку. Это усиливает возможность глаза в условиях слабой освещенности.
У некоторых сверхглубоководных рыб, обитающих на очень больших глубинах в полной темноте, глаза редуцируются.
Такой хороший обзор рыба имеет благодаря строению глаз и их расположению по бокам головы.
Глаза рыбы не имеют век, так что они никогда не закрываются.
Физика в мире животных: «четырехглазые» рыбы и их «оптические приборы»
Глубоководные рыбы семейства Опистопроктовых известны давно. Впервые их описали более ста лет назад. На первый взгляд, это ничем не примечательная рыба, которая живет там, где царит почти полная тьма. Зачем обитателям таких мест глаза? И все же, большинство представителей видов этого семейства могут видеть, и довольно неплохо. Это возможно благодаря оригинальному строению их глаз.
Они имеют трубчатую форму, и направлены вверх. У рыб это не такое уж и редкое явление — например, вверх направлены и глаза аквариумной рыбки телескопа. Но глаза у Опистопроктовых тубулярные, а не круглые. Они напоминают телескоп, а не глазное яблоко. И строение этого телескопа очень необычное.
Дело в том, что каждый глаз разделен. Часть глаза, которая обращена наверх, получает изображение того, что находится сверху, что логично. Вторая часть глаза направлена вниз. Для фокусировки изображения здесь используется зеркальная поверхность. Свет, попадая на внутреннюю часть второй половинке глаза, отражается и фокусируется. Зеркало имеет очень необычную природу, это пластинки серебристых кристаллов, которые расположены в виде чешуек, прилегающих друг к другу.
Ученые считают, что кристаллы зеркала глаза рыбы — это гуанин. Благодаря гуанину блестит и чешуя рыб. Расположены кристаллы-чешуйки в несколько слоев в определенном порядке, благодаря чему угол расположения чешуек изменяется по мере удаления от центра «зеркала». Ученые провели моделирование принципа действия такого глаза, и оказалось, что размещение кристаллов в зеркале позволяет получать рыбке четко сфокусированное изображение. Нижняя половинка помогает рыбе наблюдать за люминесцирующими на глубине организмами. Поднимаясь в слои, где света немного больше, рыба может видеть все, что происходит над ней, перед ней и по бокам. У этих рыб практически круговое зрение.
На фотографии выше (рыбка здесь показана сверху) заметно отражение света от тубулярных глаз. А вот дивертикулярные глаза, которые смотрят вниз, не блестят. Они бы отражали свет только в одном случае — если бы рыбку фотографировали снизу. «Зеркало» во вторичных, дивертикулярных глазах помогает рыбам семейства получать четкое изображения того, что попадает в поле зрения. Благодаря своим глазам рыба может поймать даже слабо люминесцирующую добычу, или же быстро распознать врага и скрыться.
Семейство опистопроктовых включает 6 родов с 10 видами. Ряд видов встречаются очень редко, некоторых из них обнаружили случайно. Например, виды Rhynchohyalus, Dolichopteryx, Winteria, Bathylychnops известны всего по 3-5 экземплярам. Большинство представителей семейства обитают в тропических и умеренно теплых водах Мирового океана. Они предпочитают жить на глубине от 200 до 2500 метров.
Несколько похожим строением своего органа зрения обладает и другая рыба, вида Anableps anableps (четырехглазка). Она обитает не на глубине, как представители семейства Опистопроктовых, а практически на поверхности. Причем большую часть времени рыба проводит сразу в двух средах — водной и воздушной. Ее глаз при этом разделен водной поверхностью на две части. Верхняя часть находится в воздухе, а вторая половина — под водой.
Строение глаза помогает рыбке видеть все, что происходит над водой, а также то, что происходит в воде. Глаз ее разделен на две части слоем эпителиальной ткани. Даже хрусталик имеет необычную форму, он имеет яйцевидную форму и может получать изображения сразу из двух источников. Некоторое представление о строении глаза рыбы могут дать бифокальные очки, линзы которых также разделены на две части.
Верхняя часть глаза рыбы защищена особой полосой радужной оболочки, которая не позволяет слишком ярким солнечным лучам ослепить рыбку. У этих рыб разделяется не только роговица глаза, но и глазное дно, которое образовано сетчаткой. Часть хрусталика, находящаяся в этой части глаза, несколько приплюснута, что позволяет дать неискаженное изображение. В нижней половинки глаза хрусталик выпуклый и утолщенный, что также дает точную картину происходящего вокруг, без искажений. И в воде, и в воздухе четырехглазка видит все без искажений. И все благодаря особому строению глаза и хрусталика.
Кстати, рыбке приходится часто полностью опускать голову в воду, чтобы не допустить пересыхания верхней половинки глаза. Благодаря двойному глазу Anableps anableps может видеть добычу в воздухе (она питается насекомыми), а хищника — в воде. Кроме того, рыбка сразу уплывает, если к воде подходит какое-то животное или человек. Всего четырехглазок три вида. Они обитают в пресных и солоноватых водах Центральной и Южной Америки.
Как видят рыбы
Глаз рыбы
Поле зрения рыбы
Предметы, находящиеся над поверхностью воды, рыба способна видеть через так называемое «зрительное окно», Это окно равняется окружности на поверхности воды, образованной углом в 97,6° с вершиной, расположенной в точке нахождения рыбы. Через это окно рыбы видят от зенита до горизонта во всех направлениях. Это полусферическое зрительное поле содержит все предметы, находящиеся над плоскостью, касательной к поверхности воды у края окна. Но искажение и яркость предметов весьма различны. Предметы, находящиеся прямо над головой, кажутся больше (они воспринимаются рыбой почти без искажений), и следует помнить об этом при ловле пугливых рыб. По мере опускания предмета по меридиану воздушной полусферы к горизонту, его изображение будет уменьшаться как в ширину, так и в длину, и в то же время искажаться, хотя линейное расстояние от рыбы до предмета неизменно. Предмет становится видимым более смутно в связи с тем, что лучи, образующие с поверхностью воды все меньший угол, сильно отражаются от поверхности и только частично попадают в глаз рыбы.
«Зрительное окно» зрения рыбы
В отличие от прочих животных, у рыбы глаз имеет эллипсоидную форму и снабжен плоской роговицей. Преломляющая сила глаза зависит не только от кривизны роговицы и хрусталика, но и от свойств материала, из которого они состоят, а роговица у рыб, как и у человека, не способна в воде преломлять световые лучи.
Конечно, калькулятор и компьютер на рыбалку брать не надо, лучше внимательнее присмотреться к тому, как и чем питаются рыбы
Оказывается, рыбьи глаза способны идентифицировать большинство геометрических фигур. На выбор рыбой пищевых приманок значительное влияние оказывает их форма, Ихтиологами применялись приманки примерно одинакового размера следующих форм: шар. конус, треугольник квадрат, параллелепипед, червеобразная звезда и т. д. Все предлагаемые формы, за исключением заезды, воспринимались рыбами положительно. Вероятно, необычное формы звезды их отпугивает, так как даже очень голодные рыбы избегали хватать ее. А воспринимают ли рыбы цвет? Прежде считали, что различение цветов в воде невозможно. Но еще в середине XX в. Карл Фриш успешно вырабатывал условные рефлексы пескаря на определенный цвет, давая корм всегда в красной мисочке с одновременным выкладыванием пустых черной, серой и белой мисок. Очень скоро пескари научились подплывать прямо к красной миске. Было доказано, что для цветового зрения рыбам служат колбочки.
Но это все ученые. А что же говорят рыболовы? Например, насадку с красным червем окуни берут охотнее, чем с белым, а белугу, наоборот, привлекает белый цвет. Раньше на Каспийском море существовал браконьерский лов белуги «на каладу». На большие крючки насаживались куски белой клеенки в форме треугольника. Возможно, что белуга принимает насадку за белую ракушку и берет ее. Издавна рыболовы окрашивают свои сети в малозаметные для рыб цвета. К сожалению, на наличие цветового зрения исследованы на сегодняшний день не все виды рыб, но точно известно, что цвета различают речная минога, мойва, треска, пикша, сайда, полосатая зубатка, подкаменщик, камбала-ерш, кефаль, хамса, ставрида, морской и речной налим барабулька, лещ, щука, речной окунь, золотой карась, линь, сазан, речной угорь, ушастый окунь, гольян и некоторые другие рыбы. Еще было установлено, что рыбы, выращенные на разных кормах, предпочитают разные цвета пищи. Кстати, не забывайте, что рыбы, очутившиеся на берегу, не утрачивают способности видеть. Угорь переползает из одного водоема в другой. Выброшенные на берег лосось или щука свои движения направляют так, чтобы снова очутиться в водоеме. Так что будьте аккуратны и не разбрасывайте рыб вдоль берега, а то добыча вам только хвостом махнёт!
Как видят и чем слышат рыбы, зрение у рыб
Как рыбы смотрят на окружающий их подводный мир, каким его видят? Как его слышат и ощущают? Как реагируют на рыболовные приманки? На эти важные вопросы и попытаемся в популярной и доступной форме ответить в этой статье.
Зрение, безусловно, чрезвычайно важное для рыб чувство. Вот тот же налим – ночной, и как многие думают, слепой хищник. Да, глазки у него маленькие и зрение далеко не орлиное, зато палочек в сетчатке в несколько раз больше, чем колбочек. Не все знают, что это такое?
Зрение рыб: палочки и колбочки
Палочки – это клетки сетчатки, которые отвечают за сумеречное зрение, воспринимая свет малой интенсивности, в то время как колбочки функционируют только при ярком свете. Колбочки способны воспринимать цвета, палочки – нет. Тот же налим не совсем дальтоник, в сетчатке его глаз присутствуют колбочки, только очень мелкие, и их, конечно, поменьше, чем у карпа или щуки. Зато палочек – в двадцать раз больше, чем у карликового сома, тоже, кстати, сумеречной рыбы (вот у него со зрением настоящие проблемы – дальше своего носа не видит ни в темноте, ни на свету), и в пятнадцать раз больше, чем у щуки.
Зимой подо льдом в воде света меньше, чем летом; зрение рыбе помогает мало. Так как же ориентироваться в пространстве рыбам, которые сохраняют активность и в суровую зимнюю пору? Существует специальный механизм перераспределения палочек, колбочек и пигментных клеток в рыбьем глазу, позволяющий зрению адаптироваться к перемене светового режима. Суть этого механизма такова: клетки перераспределяются таким образом, что при ярком освещении на передний план выходят колбочки, а в темноте – палочки. Еще в палочках присутствует зрительный пурпур – близкий родственник нашего родопсина. Он тоже отвечает за чувствительность глаза к освещению, но наиболее интенсивно поглощает лучи в сине-зеленой части спектра, то есть, приспособлен к работе именно под водой.
Большинство рыб прекрасно различают цвета. Хотя когда-то считалось, что для этих созданий характерна полная цветовая слепота. Это ошибочное мнение основывалось на том, что рыбам наиболее яркой кажется сине-зеленая, а не желтая часть спектра. Такое же восприятие характерно для людей, страдающих цветовой слепотой. Вот по аналогии с этим и решили, что и рыбы такие же. Но на самом деле большинство этих подводных обитателей отлично различают цвета!
Множество опытов, проведенных учеными в разное время, доказывают, что у рыб можно выработать условный рефлекс на цвет. Красненькие там чашечки с едой или синенькие – все это рыбы четко понимают и различают, и плывут куда им нужно. Кстати, у некоторых представителей рыбьего семейства, кроме глаз, имеются светочувствительные клетки, разбросанные по поверхности тела – на загривке, например, или на боках.
Чем слышат рыбы
Зрение, даже очень хорошее, не может помочь подводным обитателям в кромешной темноте. И в таком случае рыба полагаются на слух и другие чувства. Хотя еще сто лет назад полагали, что рыбы абсолютно глухие существа. Но теперь известно, что это далеко не так. Слух рыбе в жизни просто необходим: он предупреждает об опасности, подсказывает о проплывающей мимо пище. Некоторые рыбы умеют даже разговаривать: скрипят, трещат, похрюкивают, щелкают… Одни разговаривают, другие слушают. Эти существа обладают отличным слухом, причем почти музыкальным (могут различать даже тон музыкального инструмента). Рыбу даже можно научить приплывать на свист, как собаку!
Рыбы слышат все, что происходит на берегу рядом с водой. Не зря опытные рыболовы стараются вести себя тихо на берегах водоемов.
В голове у рыб имеется образование, именуемое лабиринтом. Это два перепончатых мешочка с отростками, заключенные в хрящевую капсулу. Верхняя часть конструкции отвечает за равновесие, нижняя – за слух. Вот при помощи этого лабиринта, да еще в какой-то степени плавательного пузыря, они и улавливают звук. Рыбье ухо примитивное, гораздо примитивнее, чем у тех же кошек, однако оно замечательно различает, тон звука, тембр голоса и даже отдельные слова. Однако, несмотря на тонкость и «музыкальность», слух рыб мало помогает ориентироваться подо льдом, в темноте. Силу звука, тембр, тон – это пожалуйста, но что касается точного направления звука – увы! С определением направления звука у рыб почему-то возникают проблемы. Только если источник звука где-то рядом.
Обоняние и вкус рыбы
Нос рыбы с четырьмя ноздрями. Но наиболее важны для рыб, конечно, чувства хеморецепции, а именно обоняние и вкус. Опять же, люди когда-то считали, что обонятельные рецепторы могут анализировать только газообразные вещества, и поэтому рыбы лишены способности чувствовать запахи. Как же они жестоко ошибались!
В нашем понимании рыбы нюхают носом. Парные обонятельные органы рыб имеют по два отверстия – для входа и выхода воды. Вот поэтому они имеют по две ноздри с каждой стороны – чтобы вода свободно циркулировала по полостям, выстланным чувствительными клетками. Вода, направляемая специальными клапанами, обычно просто втекает в нос во время движения. Но рыбы могут и пристально принюхиваться, расширяя и сужая обонятельные мешочки, шевеля ноздрями – совсем как охотничья собака, учуявшая добычу.
Воду через нос могут прогонять и специальные реснички, выстилающие полость мешочков. Обоняние играет разную роль в жизни определенных видов рыб. Есть некоторые представители, которые, охотясь или разыскивая пищу при ярком свете дня, полагаются в первую очередь на зрение, к примеру, щука. Сумеречные рыбы, в свою очередь, руководствуются преимущественно либо вкусом (карп, линь), либо нюхом (сом, угорь).
Что касается вкуса, то рыба отлично понимает что ест. Хотя многие из нас, до сих пор считают, что нюх и вкус у этих подводных обитателей – одно и то же чувство, поскольку жить приходится в воде. Но нельзя одно подменять другим: на вкус и запах у рыбы реагируют абсолютно разные рецепторы, за их восприятие отвечают абсолютно разные доли мозга. Обонятельные рецепторы – в носу, вкусовые – во рту, что тут непонятного? Тут все как у людей. Кроме того, вкусовые сосочки у некоторых рыб расположены еще и на губах, усиках, щеках, голове и даже на боках! А еще рыбы прекрасно различают вкус – горький или сладкий, или соленый.
Также наиважнейшим органом чувств у рыб, особенно при полной темноте, является боковая линия. Это полноценный орган, реагирующий на малейшие колебания воды. С его помощью хищник чувствует шевеление жертвы в траве, а жертва – осторожное движение подкрадывающегося хищника; рыба ощущает и мощное течение, и легкий шепот волн, бьющих в берег, хлесткие удары ветра по поверхности озера и веселые капли грибного дождика. Кстати, боковой линией хищник ощущает и колебания рыболовных приманок, причем в очень мутной воде, даже тех из них, которые практически не имеют собственной игры, те же поролоновые приманки.
Читайте также
Одна из самых уловистых насадок для леща – мастырка. Готовится она сложнее, чем обычное тесто, но результаты стоят потраченных усилий. Кроме леща, на эту оригинальную приманку клюет карась, карп, густера, плотва и другие карповые.
Рассмотрим четыре основных типа геометрии шпули спиннинговой катушки – глубокую (Classic), неглубокую (Air Spool), длинноконусную с правильным конусом (Long Cast), с обратным конусом (ABS).
Голавля и язя принято называть белыми хищниками. Внешне эти рыбы очень схожи. Чем отличается язь от голавля – внешнй вид, места обитания и предпочтения.
lsvsx
Всё совершенно иначе!
Истина где-то посередине. Так давайте подгребать к ней не теряя достоинства.
Пробовали ли вы когда-нибудь делать такой простой опыт: обыкновенное увеличительное стекло опустить в воду и попытаться рассматривать через него погруженные на дно предметы?
Обязательно попробуйте, и вы заметите довольно неожиданное явление: в воде увеличительное стекло почти ничего не увеличивает. А теперь погрузите в воду стекло уменьшительное (двояковогнутое) – и вдруг окажется, что оно также утратит при этом в значительной степени свои уменьшительные свойства.
Ещё страннее будет результат опыта, если вы проделаете его не с водой, а с растительным маслом: здесь получится как раз обратное тому, к чему мы привыкли – двояковыпуклое стекло обязательно будет уменьшать все предметы, а двояковыгнутое – увеличивает их. Отчего бы это могло быть?
Если вы вспомните основной закон преломления лучшей света, то все эти чудеса перестанут удивлять вас своей неожиданностью и странностью. Двояковыпуклая чечевица в воздухе увеличивает только потому, что стекло сильнее преломляет свет, нежели окружающий её воздух.
Если бы мы могли изготовить такую чечевицу из алмаза, то она увеличивала бы ещё заметнее, потому что преломляющая способность алмаза больше, нежели стекла. Но разница между преломляющими свойствами стекла и воды сравнительно невелика; именно поэтому, поместив стеклянную чечевицу в сосуд с водой, вы увидите, что лучи света, преломляясь в стекле, не испытывают большого уклонения в своём следовании.
Именно поэтому под водой стандартное увеличительное стекло увеличивает гораздо слабее, чем в воздухе, а стекло уменьшительное – гораздо слабее уменьшает. А если взять растительное масло, то окажется что оно преломляет лучи света сильнее, чем обычное увеличительное стекло – отсюда и происходит то странное, на первый взгляд, явление, что в этой жидкости увеличительные стёкла уменьшают, а уменьшительные – увеличивают. Итак, достаточно погрузить оптическое стекло в воду, чтобы оно в значительной степени утратило свои оптические свойства.
Если мы погрузим в воду не одно стекло, а сложную комбинацию стёкол, то есть целый оптический прибор, то там он окажется совершенно непригодным. А так как наш глаз – не что иное как оптический прибор, то ясно, что в воде глаз не может так служить своей цели, как в воздухе. Теперь вы понимаете, что зрение у рыбы должно быть какое-то совершенно особенное, и что здесь есть над чем задуматься. Другими словами, тот факт, что рыбы живут не в воздухе, а в воде, то есть в среде, сильнее воздуха преломляющей свет, один этот факт уже создаёт для них особые оптические явления, о которых мы обычно даже не подозреваем.
Более всего любопытно рассмотреть такой вопрос: как именно рыбы видят нас? И вообще – в каком виде представляется водным существам наш наземный мир? Один выдающийся американский учёный прошлого столетия – Роберт Вуд – в какой-то момент весьма серьёзно задался изучением этой области. Он соорудил очень простой прибор, дающий возможность фотографировать предметы в таком виде, в каком они должны рисоваться подводным существам. Прибор этот очень прост, и его может изготовить кто угодно. Это обыкновенный фотоаппарат без объектива, но наполненный водой так, что эти лучи, прежде чем достичь светочувствительной пластинки, должны пройти через слой воды 10-15 сантиметров толщиной. С помощью этого крайне простого прибора можно сделать совершенно любопытные фотографии. Например, можно снять из-под воды круг людей, стоящих возле небольшого пруда.
Любопытным в этой фотографии будет то, что рыба со дна пруда видит всего человека с головы до ног, а не только верхнюю часть его туловища. Раньше чем вы успеете подойти к берегу, рыба уже видит вас – интересное обстоятельство, о котором мы обычно и не подозреваем. Объяснение этого кажущегося парадокса кроется опять-таки в законе преломления света.
Если бы пруд был наполнен не водой, а воздухом, то со дна бассейна можно было бы видеть только те предметы, которые находятся в пространстве между дном и любой точкой на линии, простирающейся от дна вверх по касательной к кромке берега пруда. Другое дело, если пруд наполнен водой – тогда рыба может со дна видеть предметы, находящиеся несколько ниже кромки берега пруда за пределами воды. Луч преломляется на поверхности воды недалеко от кромки, и вследствие этого край пруда не заслоняет от рыбы предметов, находящихся на берегу.
Другими словами – горизонт видимости для рыбы гораздо шире, чем мы обыкновенно думаем, и это небесполезно запомнить всем любителям рыбной ловли. Другое неожиданное следствие закона преломления – это искажение формы всех подводных и вообще вневодных предметов для обитателей водного мира. Например, прямые линии современного железнодорожного моста, переброшенного через реку, рисуются рыбам в виде дуг.
Останавливаться на причинах этого оптического феномена мы не станем – всякий, знакомый с физикой, может сам доискаться этих причин, построив ход лучшей света для такого случая. Напомним только, что и нам плоское дно небольшого пруда кажется сильно вогнутым вследствие преломления. По той же самой причине и ровный ряд людей, которые, к примеру, стоят возле аквариума, рыбам, обитающим в нём, должен казаться весьма по иному – люди словно стоят не шеренгой на прямой линии, как в действительности, а дугой, которая обращена своей выпуклостью к глазу рыбы. Нечто подобное получилось бы, между прочим, и при отражении ровной шеренги в выпуклом зеркале.
Наконец отметим ещё одну особенность подводной оптики: рыба и всякое вообще подводное существо всегда видит вверху себя светлый круг, а совершенно не границы пруда, как можно было бы подумать (кроме тех случаев, когда рыба находится очень близко от берега). Это опять-таки проистекает из законов преломления света: построив ход лучей и приняв во внимание существование так называемого «предельного угла» и полного внутреннего отражения, вы убедитесь в том, что это должно быть именно так. И весьма любопытно при этом отметить, что чем ближе рыба к поверхности воды, тем меньше становится видимый светлый круг над её головой. И наоборот – с погружением рыбы глубже в воду размеры этого круга значительно увеличиваются. Таковы некоторые особенности подводной оптики, о которых многие до сих пор даже не подозревали, несмотря на то, что их можно было, на основании законов преломления света, предвидеть заранее, и без всяких опытов.
Работы в этом направлении ведутся уже давно. Можно также говорить о теоретическом интересе, какой эти исследования представляют для многочисленных любителей естествознания, так как расширяют знания обычных людей об условиях подводной жизни. Ну и, естественно, эти исследования имеют и огромное практическое значение – для водолазного зрения, подводного плавания и даже для рыболовства.
К примеру, любой водолаз или аквалангист должен быть хорошо осведомлён об о всех особенностях подводного зрения, чтобы не поддаться в самый неподходящий момент какой-либо оптической иллюзии, неправильно истолковав искаженные изображения подводных предметов; такая ошибка может подчас стоить ему жизни. Точно также и капитан подводного корабля должен считаться со своеобразными условиями подводного зрения для того, чтобы правильно ориентироваться.
Наконец, рыболов-охотник, подстерегающий рыбу и расставляющий для неё сети, будет действовать гораздо успешнее, став, так сказать, на точку зрения преследуемых.
Глаз — совершенный оптический прибор. Он напоминает фотографический аппарат. Хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик чечевице-образный и может изменять свою кривизну. Это дает возможность приспосабливать зрение к расстоянию.
Хрусталик глаза у рыб шарообразен, он лучше преломляет лучи, но не может менять форму. И все же в какой-то степени рыбы могут приспосабливать зрение к расстоянию. Они достигают этого приближением или удалением хрусталика от сетчатой оболочки с помощью особых мышц.
Практически рыба в прозрачной воде видит не далее чем на 10—12 метров, а ясно — только в пределах полутора метров.
Угол зрения у рыб очень велик. Не поворачивая тела, они могут видеть предметы каждым глазом по вертикали в зоне около 150° и по горизонтали до 170°. Объясняется это расположением глаз по обеим сторонам головы и положением хрусталика, сдвинутого к самой роговице.
Совершенно необычным должен казаться рыбе надводный мир. Без искажения рыба видит лишь предметы, находящиеся прямо над ее головой — в зените. Например, облако или парящую чайку. Но чем острее угол входа светового луча в воду и чем ниже расположен надводный предмет, тем более искаженным кажется он рыбе. При падении светового луча под углом 5—10°, особенно если водная поверхность неспокойна, рыба вообще перестает видеть предмет.
Лучи, идущие от глаза рыбы вне конуса в 97,6°, полностью отражаются от водной поверхности, и она представляется рыбе зеркальной. В ней отражаются дно, водные растения, плавающие рыбы.
С другой стороны, особенности преломления лучей позволяют рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом. Сидящий на берегу человек не увидит рыбу — она скрыта береговым выступом, а рыба увидит человека.
Как видят рыбы предметы, расположенные вне воды, удалось проверить подводной съемкой. С помощью особой фотоаппаратуры были получены снимки, которые полностью подтвердили высказанные выше соображения. Представление о том, каким кажется надводный мир подводным наблюдателям, можно составить, опустив под воду зеркало. При определенном наклоне мы увидим в нем отражение надводных предметов.
Особенности строения глаза рыб, так же как и других органов, зависят прежде все-го от условий обитания и образа их жизни.
Зорче других — дневные хищные рыбы: форель, жерех, щука. Это и понятно: они обнаруживают добычу, главным образом, зрением. Хорошо видят рыбы, питающиеся планктоном и донными организмами. У них зрение тоже имеет первостепенное значение для отыскивания добычи.
Наши пресноводные рыбы — лещ, судак, сом, налим — чаще охотятся ночью. Им нужно хорошо видеть в темноте. И природа позаботилась об этом. У леща и судака в сетчатой оболочке глаз находится светочувствительное вещество, а у сома и налима имеются даже специальные пучки нервов, воспринимающие самые слабые световые лучи.
Сетчатка глаза судака блестящая, богатая гуанином — веществом, которое, отражая даже самый слабый свет, делает глаз этой рыбы чувствительнейшим прибором. Дальнего света звезд этому хищнику вполне достаточно, чтобы прекрасно видеть; сильный же свет его просто слепит, пугает, и судак, разумеется, стремится уйти от такой неприятности.
Как правило, мальки стремятся к свету. Оно и понятно. Питаются-то ведь планктоном, а планктон — на свету! Подрастая, некоторые меняют привычки. Мировой океан с сокрушительным аппетитом пожирает свет. Подсчитано: если солнце в зените, а море гладкое, 98 процентов энергии прямых лучей, коснувшихся поверхности, поглощается водой. Это количество, конечно, уменьшается при склонении светила, но ведь над морем необъятный небосвод с массой рассеянного света. Он тоже поглощается.
Три четверти планеты — Мировой океан. Этот гигант потребляет столько света, что пока никакая ЭВМ не способна выразить его в числах. Большая часть лучистой энергии идет на согрев воды. Остальное силится сделать светлым хмурое царство Нептуна.
Некоторые рыбы различают цвета: узнайте, какие именно
Водные обитатели не умеют говорить, но хорошо плавают, слышать звуки и даже порой имеют хорошее зрение. А какие виды умеют различать цвета, в каком спектре, рассмотрим в данной статье.
Какие рыбы различают цвета
На протяжении многих лет, ученные считали, что парафилетическая группа не имеет цветного зрения. Их мир черно – белый, как у многих представителей фауны. Но порядка 6 – 7 десятков лет проведенные исследования показали: «могут видеть цветовое многообразие, намного мощнее человеческого общества. Исключениями являются донные, глубоководные представители». Спектр восприятия включает ультрафиолет и поляризация.
@ Telesh — depositphotos.com
Подтверждением цветового зрения стала способность менять окрас под окружающую среду. Это позволяет, спасаться от хищников либо успешно проводить охоту. Даже живущие в аквариуме питомцы стремятся отразить оттенки окружающей среды. Мимикрией, а именно изменением внешнего цветового вида славятся:
Светлое песчаное дно провоцирует на выработку светлой окраски, а черное торфяное дно выдает темные оттенки. Если слепнут, то перестают применять мимикрию. Ученые считаю: «это подтверждает гипотезу, что рыбные семейства умеют видеть, различать цвета, маскироваться под них».
Проведение эксперимента с кормлением из разноцветных чашек, подтвердило умение воспринимать спектральные оттенки. Отмечено исследователями: «воспринимаются формы предметов: треугольники, квадраты, кубы, пирамиды».
@ vladvitek — depositphotos.com
Различается внешний вид объекта. Что касается искусственного цвета, костры, горящие на берегах, привлекут:
Сколько цветов видят
На восприятие цвета влияют условия обитания, прозрачность воды, интенсивность солнечных лучей. Видимый солнечный спектр доступен не всем разновидностям. Так как происходит искажение на водной глади. Крайняя часть спектра воспринимается единым тоном. В связи с этим, рыбы не видят разницы между фиолетовыми, голубыми, синими, красными тонами.
@ 41330 — pixabay.com
В то же время, происходит разделение зеленых, желтых, оранжевых тонов. Цвета, не воспринимаемые зрением, различаются по яркости, что не делает рыб дальтониками. При выборе приманки, важно учитывать данные факты. В сетчатке рыбьих глаз, имеет от двух до пяти колбочек. Благодаря чему воспринимается дневной, интенсивный свет и цветовой оттенок. Дневные рыбы воспринимают обширный спектр цветов, а ночные обитатели водного пространства имеет меньшее восприятие.
На глубоководье зрение снижено до черных и белых цветов, либо полностью отсутствует. Там нет солнечного света, только кромешная тьма, нет нужды иметь спектральное зрение. Природа наделила обитателей чутьем.
В заключение, стоит отметить, выбор приманки зависит от вида рыбы, условий ее обитания и прогноза погоды. Так как под влиянием всех факторов, меняется цветовое отражение, приманка может не сработать, как ожидалось рыболовом. Использование ультрафиолетовых приспособлений, можно значительно увеличить улов. Так как многие рыбы воспринимают его особо остро и быстро реагируют. Обитатели вод анализируют окружающее пространство, под углом в 97 градусов.
Как почувствовать себя на рыбалке, будто рыба в воде? С точки ЗРЕНИЯ рыбы.
Как рыба видит под водой? Довольно интересная тема.
Сетчатка глаза у рыбы имеет схожее с глазом человека строение.
Но при этом рыба видит намного хуже, в ее поле зрения попадают предметы на небольшом расстоянии и в довольно узком, конусообразном секторе обзора.
Рыба видит обоими глазами в разных направлениях одновременно, но чтобы сфокусировать взгляд на конкретном предмете, рыбе необходимо, так сказать, повернуться к нему «лицом» — чтобы этот предмет оказался в поле зрения обоих глаз.
У рыб зрение цветное. Опытным путем удалось выяснить, что некоторые виды рыб способны различать более двадцати цветов. У некоторых рыб есть свои «любимые» цвета и этим пользуются опытные рыболовы, используя приманки соответствующих расцветок. Такими приманками могут быть цветные блесны и воблеры. Например, красная или салатовая ниточка, пучок из разноцветных ниток, пластиковая вставочка на самой блесне в виде чешуйки-лепестка.
Некоторые рыболовы-любители, знающие о пристрастиях рыб к определенным цветам, сами изготавливают металлические блесны и красят их в соответствующий цвет. Красят, естественно, не краской (!), а очень специальными методами. Вот тут-то и пригождается знание химии, о котором я упоминал в предыдущей своей статье.
Хищные рыбы видят лучше. Мирные же рыбы, такие как ряпушка или уклейка, имеют довольно слабое зрение и плохо различают цвета в воде. Но зрение, как таковое, не является для жизни рыбы самым важным. Рыба имеет целый ряд «приспособлений», чтобы чувствовать себя комфортно под водой и «видеть» не только глазами, но и почти всем телом. Рыба, потерявшая зрение или с ослабленным зрением из-за глазных паразитов, вовсе не обречена, и у нее не меньше шансов на выживание, чем у полностью здоровых особей.
Рыба может ориентироваться под водой по запахам. Дело в том, что ноздри у рыб устроены так, что вода, проходя через них, попадает на специальные нервные клетки, воспринимающие запахи. Так же, как и способность видеть, способность улавливать запахи у разных рыб разная. Та же щука, например, плохо различает запахи, но зато имеет отличное зрение.
Говоря о запахах, стоит упомянуть о том, что, как и к цветам, у рыб есть предпочтения и отвращение к определенным запахам. Рыба не любит, например, запах табака, пота, бензина (масла, мазута…), не любит запаха животных, питающихся рыбой, не любит запахи некоторых растений. Это обстоятельство также необходимо учитывать на рыбалке. Для того, чтобы не отпугнуть рыбу, предварительно стоит вымыть руки и не курить во время контакта с прикормками и наживкой.
Для перемещения и охоты под водой рыбой используется боковая линия. Я знал, «как это работает», а вот за термином пришлось забраться в специализированную литературу. В общих чертах принцип действия выгладит так: вдоль туловища у рыбы расположен главный канал, который соприкасается с водой через отверстия в чешуйках. Чувствительные нервные клетки боковой линии воспринимают информацию о давлении воды и ее температуре, после чего передают информацию в головной мозг рыбы.
Звук в воде распространяется раз в пять быстрее, чем в воздухе, поэтому рыбе порой трудно определить направление звука. Но даже слепая рыба, благодаря улавливаемым колебаниям способна «безаварийно» перемещаться в воде, умело обходя неподвижные предметы. Подвижные предметы рыбе заметить проще. Боковая линия помогает ей определять направление течения воды, местонахождение добычи, поддерживать связь со своими соплеменниками.
У рыбы нет ушей в привычном для нас понимании этого слова. У нее есть внутреннее ухо, которое получает информацию о звуках. Плавательный пузырь улавливает звуковые колебания в воде, затем эти колебания передаются на внутреннее ухо рыбы посредством мелких косточек скелета, а затем уже в головной мозг. Внутреннее ухо «слышит», в основном, колебания низкой частоты, а высокочастотные звуки рыба улавливает все той же боковой линией.
Зная о том, как рыба «видит», можно под нее подстраиваться и в значительной мере хитрить при рыбной ловле!
Как рыбы видят цвета. Важен ли цвет приманки
По поводу того, как рыба видит в воде цвет приманок и видит ли она его вообще в рыболовных кругах всегда ведутся споры. Одни утверждают, что цвет важен только на малых глубинах и в чистой воде, другие говорят, что рыбы видят мир в чёрно-белом цвете и для их поимки важны только форма приманки и её анимация.
Я сам часто наблюдал картину, когда при ловле окуня на глубине более девяти метров работали только блёсны и балансиры определённых цветов. Например, в некоторые дни полосатый хищник отлично клевал на приманки жёлтого цвета, а рыболовы использовавшие приманки других цветов не могли похвастаться хорошим уловом. Казалось бы, как на такой глубине, да ещё и под толстым слоем льда и снега рыба различает цвет приманки? Или это просто совпадение, а основополагающими факторами клёва являются форма, размер и игра приманки? Попробуем разобраться.
За время своего долгого существования рыбы отлично приспособились к жизни в воде. Они прекрасно слышат с помощью внутреннего уха, с помощью боковой линии могут обнаружить добычу или избежать встречи с врагом. Химические соединения, содержащиеся в воде, рыбы используют для идентификации других представителей своего вида, определения времени размножения, поиска пищи и обнаружения хищников. У рыб развито отличное обоняние, которое во много раз превосходит обоняние человека. Но как же обстоят дела со зрением и распознаванием цветов?
При попадании света в воду его интенсивность быстро уменьшается, а цвет изменяется. Эти изменения называются затуханием. Затухание является результатом двух процессов: рассеяния и поглощения.
Рассеяние света вызвано частицами или другими мелкими объектами, взвешенными в воде — чем больше частиц, тем больше рассеяние. Поэтому в местах впадения рек и ручьёв, в заливах с илистым дном и т.д. из-за большего количества взвешенного материала свет обычно проникает на меньшую глубину. В относительно чистой воде свет проникает на большую глубину.
В мутной воде рыба распознаёт цвета значительно хуже
Величина поглощения различна для разных длин волн света; другими словами, различные цвета поглощаются по-разному. Более длинные волны, такие как красный и оранжевый, поглощаются очень быстро и проникают в воду на гораздо меньшую глубину, чем более короткие синие и фиолетовые волны.
Поглощение также ограничивает расстояние, на которое свет проникает в воду. На расстоянии около трёх метров будет поглощено примерно 60 процентов всего света и почти весь красный свет. На глубине десяти метров поглощается около 85 процентов общего света и весь оранжевый и желтый свет. Это имеет прямое отношение к тому, как рыба воспринимает приманку. На глубине более трёх метров красная приманка кажется серой, а с увеличением глубины она в конечном итоге становится черной. С увеличением глубины тускнеющий свет становится голубоватым и, в конечном итоге, черным, когда поглощаются все остальные цвета.
Поглощение или фильтрация цвета также работает в горизонтальном направлении. Итак, опять же, красная приманка, которая находится всего в нескольких метрах от рыбы, кажется серой. Аналогично, другие цвета также меняются с расстоянием. Чтобы цвет был виден, на него должен падать свет того же цвета, а затем отражаться в направлении рыбы. Если вода уже ослабила или отфильтровала цвет, этот цвет будет казаться серым или черным. Нужно заметить, что флуоресцентные цвета ведут себя несколько иначе.
Учёные и сегодня не знают, что именно видят рыбы и какие образы достигают их мозга. Большинство исследований зрения рыб проводится либо путем физического или химического исследования различных частей их глаз, либо путем определения того, как лабораторные рыбы реагируют на различные изображения. Делать широкие обобщения о зрении рыбы осложняется тем фактом, что разные виды могут обладать разными зрительными способностями и что лабораторные результаты могут не отражать того, что происходит в реальном подводном мире.
Физические исследования глаз и сетчатки рыб показывают, что большинство из них могут получать четко сфокусированное изображение, обнаруживать движение и обладать хорошей способностью к определению контраста. Ограниченное число экспериментов показало, что для того, чтобы рыба могла распознавать цвета, необходим минимальный уровень освещенности. Еще одно открытие, но требующее дополнительного изучения, заключается в том, что некоторые виды рыбы предпочитают определенный цвет.
Большинство рыб обладают достаточно хорошим зрением, однако для поиска добычи обычно используют свой слух, боковую линию и обоняние, а зрение только в заключительной атаке.
Рыбы, живущие в мелких водоёмах, ведущие дневной образ жизни способны воспринимать более широкий спектр цветов. Ночные и глубоководные рыбы такой возможности не имеют. Например, судак воспринимает цветовой спектр намного беднее кормящихся на мелководье плотвы и окуня. А сом вообще видит мир в чёрно-белом цвете.
Важный момент, который следует помнить: большинство видов рыб обнаруживают свою добычу, видя контраст корма на различных цветных фонах. Уровень или тип контраста зависит от многих факторов: времени суток, типа дна, прозрачности воды, облачной или солнечной погоды и даже от времени года.
Цвета под водой
Содержание
Использование правильных цветов приносит результаты
Cуществует множество вопросов и предположений о цветах под водой, и у меня ушло немало времени, чтобы разобраться в этом вопросе путем исследований и подводных испытаний.
Первый самый важный вопрос, интересующий рыболова – что рыба видит под водой? Может ли она различать цвета? Возможно ли различать цвета под водой? Эти и подобные вопросы занимают умы всех рыболовов, использующих искусственные приманки, и я тому не исключение!
Итак, для понимания процесса восприятия цветового под водой необходимо ответить на два вопроса:
Свет распространяется под водой иначе, нежели в воздухе
Все это началось много лет назад с того, что я обратил внимание на то, как изменяется цвет под водой. Основополагающим выводом из исследований по поглощению света в дистиллированной воде было то, что с увеличением глубины первым поглощается красный, оранжевый, желтый, зеленый и последним синий цвет. На нескольких рыболовных выставках я обсуждал этот вопрос и вынужден признать, что в приведенных выше выводах имеются некоторые забавные исключения в отношении желтого и зеленого цветов. Эти цвета, кажется, обладают значительно большей видимостью под водой, нежели другие. В то время я не мог объяснить это явление.
Наиболее яркие цвета в ультрафиолетовом свете очень хороши для ловли на больших глубинах. Я уже знал о «загадочном желтом и зеленом», но не мог найти разницу между различными оттенками желтого и зеленого. Я знал о том, что в прозрачной воде синий и фиолетовый цвета проникают очень глубоко в толщу воды, а позже узнал о флуоресценции и великолепной видимости этих цветов под водой. Быстро осознав какую разницу представляют обычные и флуоресцентные цвета, я начал использовать последние на своих приманках. Немного времени потребовалось для того чтобы выяснить, что самые уловистые мои приманки при слабом освещении обладали высокой контрастностью, особенно флуоресцентные цвета. У меня была приманка ярко окрашенная в оранжево-зеленый цвет с желтоватым оттенком. Я решил провести ее испытания в Швеции, где в рацион щуки входит сельдь. Можете верить или нет, но флуоресцентная оранжевая приманка оказалась самой уловистой в немного темной воде. Все мои коллеги были сбиты с толку, потому что обычно для щуки мы использовали черно-белые и сине-фиолетовые приманки, естественных цветов сельди, которой кормилась щука.
Мой коллега Йорг нашел еще одну флуоресцентную оранжевую приманку, которая также оказалась очень удачной.
Щука, на флуоресцентную оранжевую приманку | С оранжевой Йорг тоже не без улова! |
Ультрафиолетовый свет помог мне с легкостью определить лучшие из цветов для ловли при плохой видимости, причем те приманки, которые выглядели не так хорошо под ультрафиолетовым светом, оказались моими самыми уловистыми в чистой воде. С тех пор при мне всегда находится ультрафиолетовая лампа, помогающая мне выбрать приманку наилучших цветов.
При дневном свете | В ультрафиолетовом свете |
Я также провел эксперименты с видимостью цветов под водой. Первые погружения я сделал в Индонезии. Окружающие смеялись, глядя на меня ныряющего под воду с набором приманок.
Исходный цвет | Глубина 5 метров | Глубина 15 метров | Глубина 25 метров |
Морская вода в большинстве случаев более прозрачная, чем пресная, поэтому я также немного поэкспериментировал в озере у себя дома. Цветовая палитра опускалась на глубину более 3 метров. С увеличением глубины наблюдалось значительное изменение в видимости цветов.
Цветовая палитра | Глубина 1 метр | Глубина 2 метра | Глубина 3 метра | Глубина 5 метров |
Флуоресценция потрясающее свойство
Обычные цвета отражают свет только с определенной длинной волны, флуоресцентные же цвета светятся очень ярко если на них падает обычный свет и кажется, в большинстве случаев, при одинаковом освещении под водой, флуоресцентные цвета обладают лучшей видимостью нежели обычные. Каждый раз, когда мне приходится ловить в темной воде, я предпочитаю флуоресцентные приманки. Они также являются прекрасным выбором при ловле на очень больших глубинах.
Не только флуоресценция! Имейте в виду, что в воде содержится большое количество частиц, которые оказывают влияние на поглощение света в воде. Я узнал, что растворенные органические вещества, фитопланктон и взвешенные твердые частицы значительно влияют на абсорбцию света. По большей части в наших водоемах обычный желтый и зеленые цвета обладают лучшей по сравнению с другими цветами видимостью в летнее время, поскольку в воде находится большое количество органики. Возможно, этим объясняется резкая смена предпочтений в цвете приманок у наших хищников осенью. В этот время года наиболее уловистыми становятся приманки розового и оранжевого цветов.
Что видит рыба
От биологов я узнал, что глаз рыбы очень похож на глаз человека. Для определения света у рыб на сетчатке имеются палочковидные и колбочковидные зрительные клетки. Палочки являются зрительными рецепторами сетчатки, которые функционируют при низком освещении. Колбочки являются зрительными рецепторами сетчатки, которые наилучшим образом функционируют при относительно ярком освещении. Количество колбочек становится меньшим к периферии сетчатки. Колбочки менее чувствительны к свету, чем палочки (которые поддерживают зрение при слабых уровнях освещения), но позволяют различать цвета. На данный момент было проведено несколько научных исследований по восприятию цвета рыбами, благодаря которым мы знаем, что бoльшая часть рыб, обитающих в неглубоких пресноводных водоемах, может различать цвета. Цветовое зрение может отличатся от вида к виду. К сожалению, я не смог найти информации по цветовому зрению у щук и маски. В любом случае, полученные знания позволили мне сделать несколько выводов: