Как высчитать сторону треугольника зная 2 стороны
Как высчитать сторону треугольника зная 2 стороны
Стороны треугольника
Свойства
Зная стороны треугольника, можно найти все остальные его параметры по выведенным для треугольника формулам, просто подставив их значения. Периметр треугольник будет представлять собой сумму всех его сторон, а площадь выводится по формуле Герона, как квадратный корень из произведения полупериметра на его разность с каждой стороной по очереди, и деленному на два. P=a+b+c S=√(p(p-a)(p-b)(p-c)/2)
Все углы в треугольнике, зная стороны, можно найти через теорему косинусов. (рис.75) cosα=(b^2+c^2-a^2)/2bc
В произвольном треугольнике также есть три медианы m (делящие противоположную сторону пополам), три биссектрисы l (делящие угол пополам) и три высоты h (перпендикуляры из угла к стороне или ее проекции). Все их можно вычислить, имея в распоряжении значения трех сторон. Формула медианы, которая опущена на сторону c.(рис.75.1) m_c=√(2a^2+2b^2-c^2 )/2
Найти медиану, опущенную на сторону a или b, можно заменив необходимые стороны в формуле так, чтобы сторона, поделенная медианой пополам, была со знаком «–». m_a=√(2b^2+2c^2-a^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2
Формула биссектрисы, которая выходит из угла γ и опущена на сторону с. (рис.75.2) l_c=√(ab(a+b+c)(a+b-c))/(a+b)
Чтобы найти биссектрисы, которые выходят из двух других углов, нужно преобразовать формулу аналогично формуле медианы, где противоположная сторона со знаком «–». l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)
Формула высоты, которая опущена на сторону a, b или c видоизменяется таким образом, чтобы в знаменателе была нужная сторона.(рис.75.3) h_a=(2√(p(p-a)(p-b)(p-c) ))/a h_b=(2√(p(p-a)(p-b)(p-c) ))/b h_c=(2√(p(p-a)(p-b)(p-c) ))/c
Также в любом треугольнике можно провести среднюю линию, которая также как медиана обозначается буквой m, поэтому для их разделения, будем использовать заглавную M для средней линии. Средняя линия параллельна той стороне, которая выбрана основанием треугольника, и равна ее половине. Среди свойств средней линии можно отметить, что боковые стороны она делит на две равные части, поэтому если начертить все три средние линии в треугольнике, то получится еще один треугольник, подобный первому, в два раза меньше. (рис. 75.7) M_a=a/2 M_b=b/2 M_c=c/2
В каждый треугольник можно вписать окружность и описать ее вокруг него. Центр вписанной в треугольник окружности будет находиться на пересечении его биссектрис, а радиус будет опущен под прямым углом к любой стороне и его формула выводится также по Герону. (рис.75.5) r=√(((p-a)(p-b)(p-c))/p)
Центр описанной вокруг произвольного треугольника окружности находится на пересечении его медиатрисс (срединных перпендикуляров, радиус опущен в любую вершину или угол, и вычисляется по следующей формуле. (рис.75.6) R=abc/(4√(p(p-a)(p-b)(p-c)))
Как найти стороны прямоугольного треугольника
Онлайн калькулятор
Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
Введите их в соответствующие поля и получите результат.
Найти гипотенузу (c)
Найти гипотенузу по двум катетам
Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?
Формула
следовательно: c = √ a² + b²
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:
c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см
Найти гипотенузу по катету и прилежащему к нему острому углу
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?
Формула
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:
c = 2 / cos(60) = 2 / 0.5 = 4 см
Найти гипотенузу по катету и противолежащему к нему острому углу
Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?
Формула
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:
c = 2 / sin(30) = 2 / 0.5 = 4 см
Найти гипотенузу по двум углам
Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.
Найти катет
Найти катет по гипотенузе и катету
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?
Формула
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:
Найти катет по гипотенузе и прилежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?
Формула
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:
b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см
Найти катет по гипотенузе и противолежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?
Формула
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:
a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см
Найти катет по второму катету и прилежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?
Формула
Пример
Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:
b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см
Найти катет по второму катету и противолежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?
Формула
Пример
Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:
Все формулы для треугольника
1. Как найти неизвестную сторону треугольника
Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.
Формула длины через две стороны и угол (по теореме косинусов), ( a ):
Формула длины через сторону и два угла (по теореме синусов), ( a):
2. Как узнать сторону прямоугольного треугольника
Есть следующие формулы для определения катета или гипотенузы
Формулы для катета, ( a ):
Формулы для катета, ( b ):
Формулы для гипотенузы, ( c ):
3. Формулы сторон равнобедренного треугольника
Вычислить длину неизвестной стороны через любые стороны и углы
Формулы длины стороны (основания), (b ):
4. Найти длину высоты треугольника
Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).
Формула длины высоты через стороны, ( H ):
Формула длины высоты через сторону и угол, ( H ):
Формула длины высоты через сторону и площадь, ( H ):
Формула длины высоты через стороны и радиус, ( H ):
Две стороны и угол треугольника
Свойства
Зная две стороны в треугольнике и угол между ними, можно с помощью теоремы косинусов вычислить третью сторону треугольника. Для этого нужно извлечь квадратный корень из суммы квадратов известных сторон и разности с их удвоенным произведением на косинус угла между ними. (рис.76) a^2=b^2+c^2-2bc cosα a=√(b^2+c^2-2bc cosα )
Угол β или γ можно рассчитать через ту же теорему косинусов, зная две, образующие их стороны, при этом один из них – последний, проще найти, отняв два известных от 180 градусов. cosβ=(a^2+c^2-b^2)/2ac=(b^2+c^2-2bc cosα+c^2-b^2)/(2c√(b^2+c^2-2bc cosα ))=(2c^2-2bc cosα)/(2c√(b^2+c^2-2bc cosα ))=(c-b cosα)/√(b^2+c^2-2bc cosα ) cosγ=(a^2+b^2-c^2)/2ab=(b^2+c^2-2bc cosα+b^2-c^2)/(2b√(b^2+c^2-2bc cosα ))=(b-c cosα)/√(b^2+c^2-2bc cosα )
Медиана треугольника рассчитывается по вполне однозначной формуле, тогда как если нужно найти медианы через две стороны и угол между ними, то требуются преобразования. m_a=√(2b^2+2c^2-a^2 )/2=√(2b^2+2c^2-b^2-c^2+2bc cosα )/2=√(b^2+c^2+2bc cosα )/2 m_b=√(2a^2+2c^2-b^2 )/2=√(2b^2+2c^2-4bc cosα+2c^2-b^2 )/2=√(b^2+4c^2-4bc cosα )/2 m_c=√(2a^2+2b^2-c^2 )/2=√(2b^2+2c^2-4bc cosα+2b^2-c^2 )/2=√(4b^2+c^2-4bc cosα )/2
Для расчета биссектрис в произвольном треугольнике также существуют стандартные формулы, из которых только одна может быть преобразована и упрощена для двух сторон и угла между ними. l_c=√(ab(a+b+c)(a+b-c))/(a+b) l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)=√(bc((b-c)^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-a^2 ) )/(b+c)=√(bc(b^2+2bc+c^2-b^2-c^2+2bc cosα ) )/(b+c)=(bc√(2(1+cosα ) ))/(b+c)
Чтобы найти высоту, нужно знать все три стороны в треугольнике. Подставив их в формулу так, чтобы сторона, на которую опущена искомая высота была в знаменателе, рассчитываются их величины. h_a=(2√(p(p-a)(p-b)(p-c) ))/a h_b=(2√(p(p-a)(p-b)(p-c) ))/b h_c=(2√(p(p-a)(p-b)(p-c) ))/c
Вычислить среднюю линию треугольника можно, зная лишь ту сторону, которой она параллельна, так как сторона будет в два раза больше. В случае с неизвестной стороной, можно подставить в формулу радикал,выведенный по теореме косинусов. M_a=a/2=√(b^2+c^2-2bc cosα )/2 M_b=b/2 M_c=c/2
На пересечении биссектрис в треугольнике расположен центр окружности, которую можно в него вписать. Радиус такой окружности рассчитывается по следующей формуле(рис.75.5) r=√(((p-a)(p-b)(p-c))/p)
Центр описанной вокруг треугольника окружности в свою очередь расположен в точке пересечения медиатрисс, и его формула значительно видоизменена в сравнении с радиусом вписанной окружности. (рис.75.6) R=abc/(4√(p(p-a)(p-b)(p-c)))
Как посчитать стороны равнобедренного треугольника
Онлайн калькулятор
Чтобы вычислить длины сторон равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):
Введите их в соответствующие поля и получите результат.
Как посчитать сторону a равнобедренного треугольника
Если известна сторона b и угол α
Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол α?
Формула
Пример
Если сторона b = 10 см, а ∠α = 30°, то:
Если известна сторона b и угол β
Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол β?
Формула
Пример
Если сторона b = 10 см, а ∠β = 30°, то:
a = 10 /2⋅sin 15 = 10/(2⋅0.2588) = 19.31см
Если известна сторона b и высота h
Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и высота h?
Формула
Пример
Если сторона b = 10 см, а высота h = 20 см, то:
a = √ 1 /10 2 + 20 2 = √ 0.01+400 = 20.61см
Как посчитать сторону b (основание) равнобедренного треугольника
Если известна сторона a и угол α
Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол α?
Формула
Пример
Если сторона a = 10 см, а ∠α = 30°, то:
b = 2⋅10⋅cos 30° = 2⋅10⋅0.8660 = 17.32см
Если известна сторона a и угол β
Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол β?
Формула
Пример
Если сторона a = 10 см, а ∠β = 40°, то:
Если известна сторона a и высота h
Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и высота h?
Формула
Пример
Если сторона a = 10 см, а высота h = 5 см, то:
Находим сторону треугольника, если две другие известны тремя способами, формулы
Например, часто необходимо найти сторону треугольника, если две другие известны. Треугольники бывают равнобедренными, равносторонними и неравносторонними.
Он-лайн расчет треугольника
Бот, по заданным трем параметрам, выведет все рассчитанные значения в одной таблице. Угол между ними 55 градусов. Определить все возможные параметры треугольника. Как Вы обозначите стороны на своем рисунке неважно.
Он-лайн калькулятор плоских треугольников. Далее справа, в зависимости от метода расчета, введите длины сторон и величину углов. После следует нажать на кнопку «Рассчитать».
Ее суть заключается в том, что квадрат гипотенузы равен сумме квадратов катетов. В евклидовой геометрии данное соотношение является ключевым. Теорема косинусов.
Площадь фигуры можно найти как по формуле Герона, так и по утверждению, что она равна половине произведению катетов. При угле, который равен 30о, следует помнить, что противолежащий катет будет равен 1/2 самой большой стороны.
Все углы в треугольнике, зная стороны, можно найти через теорему косинусов.
По длине двух сторон и по значению угла между ними
Используем указанную ранее формулу и получаем: Z в квадрате =4+16-2*2*4*cos60=20-8=12. Длина неизвестной стороны составляет 3,46 сантиметра.
Причина в том, что значение синуса угла при вершине треугольника не определяет однозначно самого угла. Например, три стороны однозначно определяют треугольник с точностью до отражения. Пусть для определённости известны длины сторон a,b <\displaystyle a,b>и угол γ <\displaystyle \gamma >между ними. Этот вариант задачи всегда имеет единственное решение. Прямоугольный сферический треугольник полностью определяется двумя элементами, остальные три находятся при помощи мнемонического правила Непера или из нижеприведенных соотношений. По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших кругов.
В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c.
Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения.
Признаки равенства фигур
Ранее мы рассмотрели идеальный вариант, когда нужно определить длину гипотенузы. Если же в задаче неизвестна длина одного из катетов, то, опираясь на указанную теорему, можно вывести производную формулу. Путем простых математических операций получаем Z в квадрате = 4 + 9 = 13. Значит, Z примерно равен 3,6 сантиметрам. Если же исключить возведение значений в квадрат, то получится, что Z=2+3=5 сантиметров, что не соответствует истине.
Эта формула следует из определения периметра, который является длиной ломаной линии, ограничивающей площадь фигуры. Известная площадь треугольника (S) потребует использования трех формул. Они выражают зависимость сторон этих фигур от острых углов и гипотенузы. Первоначально формула ее нахождения была выведена из соотношений длин сторон в прямоугольном треугольнике. Замкнутая геометрическая фигура из трех углов ненулевой величины называется треугольником.
В повседневной жизни встречается масса предметов, имеющих форму треугольника.
Следует помнить, что при угле большем девяносто градусов, косинус угла принимает отрицательное значение. Этот нюанс нельзя оставлять без внимания, иначе полученный ответ будет неверным. A х b)/ sinB, где А и В — углы с известными числовыми значениями, а b — сторона, также имеющая в задании. При выполнении задания, следует быть очень внимательным, ведь в условии задачи может быть указан равнобедренный треугольник или равносторонний, что намного облегчит решение.
Мало кто не знаком с фразой «Пифагоровы штаны во все стороны равны». Среди математиков треугольник со сторонами 3, 4, 5 (см, м и т. д.) называется «египетским».
В разделе Домашние задания на вопрос как зная 2 стороны треугольника найти третью? Ответ от Temnblu AngelЕсли был бы известен угол между ними, то можно было бы воспользоваться теоремой косинусов. Ответ от Аванез КирпикинОтложи отрезок длиной 16, из его конца проведи окружность с радиусом 20, а из начала с радиусом 16, в точке пересечения окружностей вершина треугольника.
Формулы треугольника
Для расчёта всех основных параметров треугольника воспользуйтесь калькулятором.
Виды треугольников
Две стороны, образующие прямой угол, называются катетами (АС и АВ), а сторона, противолежащая прямому углу, называется гипотенузой (ВС).
Свойства треугольника, применимые к любому треугольнику:
Признаки равенства треугольников
|
Где: | AB,BC,AC – стороны треугольника |
h – высота треугольника | |
α, β, γ– углы треугольника | |
P – полупериметр | |
AC – основание треугольника |
Площадь произвольного треугольника
Площадь треугольника по формуле Герона
Площадь треугольника по углу и двум сторонам
Площадь треугольника по двум углам и стороне
Площадь прямоугольного треугольника по катетам
Площадь равнобедренного треугольника
Площадь равностороннего треугольника
Стороны треугольника
Где: | AB,BC,AC – стороны треугольника |
h – высота треугольника | |
α, β, γ– углы треугольника | |
P – полупериметр | |
AC – основание треугольника |
Сторона треугольника по двум сторонам и углу
Сторона треугольника по стороне и двум углам
Сторона прямоугольного треугольника
Сторона прямоугольного треугольника по теореме Пифагора.
Сторона равнобедренного треугольника
Высота треугольника
Высота – это перпендикуляр, выходящий из любой вершины треугольника, к противоположной стороне или её продолжению для треугольника с тупым углом. Высоты треугольника пересекаются в одной точке
Высота на сторону АС, hAC
Высота на сторону AB, hAB
Высота на сторону BC, hBC
Формула длины высоты через сторону и угол
Высота на сторону АС, hAC
Высота на сторону AB, hAB
Высота на сторону BC, hBC
Формула длины высоты через сторону и площадь
Высота на сторону АС, hAC
Высота на сторону AB, hAB
Высота на сторону BC, hBC
Формула длины высоты через стороны и радиус
Высота на сторону АС, hAC
Высота на сторону AB, hAB
Высота на сторону BC, hBC
Формулы высоты из прямого угла в прямоугольном треугольнике
Где: | AB,AC – катеты треугольника |
BC – гипотенуза треугольника | |
BD, DC – отрезки полученные от деления гипотенузы, высотой | |
α, β– углы треугольника |
Формула длины высоты через гипотенузу и острые углы
Формула длины высоты через катет и угол
Формула длины высоты через составные отрезки гипотенузы
Биссектрисы в треугольнике
Биссектриса – это отрезок, который делит угол пополам из которого выходит. Точка пересечения всех трех биссектрис треугольника совпадает с центром вписанной окружности.
Длина биссектрисы через две стороны и угол
Длина биссектрисы через полупериметр и стороны
Длина биссектрисы через три стороны
Длина биссектрисы через стороны и отрезки, на которые делит биссектриса
Формула длины биссектрис в прямоугольном треугольнике
Где: | AB,AC – катеты треугольника |
BC – гипотенуза треугольника | |
β, γ– острые углы треугольника |
Длина биссектрисы из прямого угла, через катеты.
Длина биссектрисы из прямого угла, через гипотенузу и угол
Длина биссектрисы через катет и угол
Длина биссектрисы через катет и гипотенузу
Длина биссектрисы равнобедренного треугольника
Где: | AB,BC – равные стороны треугольника |
AC – основание треугольника | |
α – равные углы при основании треугольника | |
β – угол образованный равными сторонами треугольника |
Длина биссектрисы через стороны и угол, равнобедренного треугольника
Длина биссектрисы через стороны, равнобедренного треугольника
Длина биссектрисы равностороннего треугольника
Медиана в треугольнике
Медиана – это отрезок, который выходит из вершины и делит противоположную сторону пополам. Медиана делит треугольник на два равных по площади треугольника.
Длина медианы через три стороны
Длина медианы через две стороны и угол между ними
Длина медианы в прямоугольном треугольнике, выходящая из прямого угла.
Длина медианы в прямоугольном треугольнике, выходящая из прямого угла, равна радиусу описанной окружности, а середина гипотенузы является центром описанной окружности
Длина медианы через катеты
Длина медианы через катет и острый угол
Описанная окружность
Радиус описанной окружности произвольного треугольника по сторонам
Радиус описанной окружности равностороннего треугольника по стороне или высоте
Радиус описанной окружности равнобедренного треугольника по сторонам
Радиус описанной окружности прямоугольного треугольника по катетам
Длина окружности, L
Площадь окружности, S
Вписанная окружность
Радиус вписанной окружности произвольного треугольника по сторонам
Радиус вписанной окружности в равносторонний треугольник
Радиус вписанной окружности равнобедренного треугольник
Радиус вписанной окружности в прямоугольном треугольнике
Он-лайн расчет треугольника
Он-лайн калькулятор плоских треугольников. Расчет треугольника по трем сторонам, двум сторонам и углу между, а так же двум углам и прилегающей к ним стороне.
Для начала выберете требующийся вам метод расчета треугольника нажав на одну из трех кнопок. Далее справа, в зависимости от метода расчета, введите длины сторон и величину углов. После следует нажать на кнопку “Рассчитать”.
Если вы заметили ошибку или у вас есть предложения по улучшению работы калькулятора расчета треугольника сообщите нам, пожалуйста, об этом. Написать можно прямо на этой странице ниже в комментариях или воспользовавшись формой контакты
В градусах 60минут. А у вашего сайты в градусе 100 минут.( считает минуты до ста и прибавляет градус). Могут быть большие погрешности. Исправьте пожалуйста
спасибо…
подумаем, как исправить 🙂
как скачать именно такой калькулятор для расчета треугольника спасибо отлично
боюсь, что никак
калькулятор работает только на сайте
Можно на телефоне воспользоватся функцией на телефоне в гугле “Добавить на главный экран” и у вас в понели телефона появится ярлык – ссылка, и вас будет перекижывать на этот сайт;) удачи!
Это десятичные градусы, после точки идут не минуты, а десятые градуса, так что всё правильно. Для расчёта здесь нужно перевести минуты в градусы, поделив на 60, и прибавить полученное к числу градусов, например, 60°30′ = 60,5°
Большое Человеческое Спасибо.
после запятой не минуты а сотые доли градуса, 60 умножте на то что после запятой и получите минуты.
Часто пользовался. Перестал работать… 🙁
спасибо что подсказали! сейчас должно работать..
В треугольнике только первый угол определяет по времени начертания и только одну сторону с ее углами. Сторона не определяют размеров углов /Шпаков А.А. Начальная методология. М., 458 с., 3013 г./..
На практике, нужно учитывать еще и толщину материала. К примеру, треугольник из рейки толщиной 30.
Цены бы небыло такой проге. 🙂
А как рассчитать длину катетов, в равнобедренном прямоугольном треугольнике, по длине гипотенузы?
площадь прямоугольного треугольника равна 64см2,найти его катеты если один из них в 2 раза больше другого
А как насчёт тройки a, b и альфа?
Спасибо огромное!! Очень помогли в работе. Удобный и понятный интерфейс
А где найти алгоритм для решения более сложной задачи- решить треугольник по углу пересечения биссектрис
Можно ли рассчитать треугольник с точностью хотя бы до тысячных. Решение с большими цифрами приводит к очень большой погрешности. Даже сумма углов треугольника не получается 180.
Не работает. При нажатии на кнопку “Рассчитать” просто ничего не происходит. “Опера”.
Да вроде работает.. и в опере..
Чет не работает. Никакой реакции на кнопку “Рассчитать” в режиме “2 угла(по 80*)+сторона(60)”
у меня работает.. все норм..
Большое спасибо за сайт! Очень помогает.
а как рассчитать углы в неправильном шестиугольнике по сторонам?
пробовала разбить его на треугольники, но получается известны только 2 стороны.
Спасибо.
Помогите расчитать объем бетона в кубах. длина 36.200мм ширина 8.800мм толщина по ширине с отметки А 150мм идет до отметки Б 60мм.
Здравствуйте! А можно сделать точность указание углов до тысячной доли?
Мне необходимо рассчитать секунды!
Спасибо большое! Економия времени и труда
И все таки в Опере не работает…
Спасибо! Не думал что так просто все можно подсчитать!
для прямоугольного треугольника калькулятор не работает. Проверяю стороны по теореме Пифагора расхождение сумм квадратов катетов и квадрата гипотенузы более чем в два раза!
У меня все нормально считает. В треугольнике прямой угол есть?
Делаю лестницы. Размеры 3-5-7 метров. Очень удобно считать наклон размеры стутенек. И изменять какие-то размеры без всяких заморочек. Спасибо
Спасибо, очень помогли.
помогите рассчитать гипотенузу в прямоугольном треугольнике, если угол А равен 10 градусам, а основание (прилегающий катет в) равно 12 метрам
не понимаю ничего…..прямоугольный треугольник один катет есть, угол есть какой длины другорй катет. помогите
Не самый лучший калькулятор.
Как найти третью сторону треугольника — формулы и расчеты
В геометрии первая фигура, которую школьники начинают изучать, это треугольник. Он является одним из самых распространенных и простых замкнутых объектов. Знание свойств фигуры и необходимых теорем позволяет решать разные задачи о том, как найти третью сторону треугольника на плоскости.
Фигура из шести элементов
Под геометрическим элементом полагают какой-либо объект, который имеет определенную меру и является составляющей частью некоторой фигуры. Например, для сферы основными образующими элементами являются радиус и центр.
Как известно, треугольник — это фигура, которая состоит из трех отрезков и такого же количества вершин. При этом все отрезки попарно пересекаются. Из определения фигуры следует, что ее образуют два типа элементов, общее количество которых составляет 6:
Обычно треугольник обозначают большими латинскими буквами, например, ABC, PQM и так далее. Каждая буква — это название вершины (точка пересечения двух отрезков). AB, BC и CA, которые являются длинами сторон, принято обозначать маленькими латинскими буквами по названию противоположных им вершин, то есть c, a и b, соответственно.
Дополнительные отрезки
Несмотря на всю простоту построения фигуры, она обладает большим количеством дополнительных элементов, которые ее могут определять. Среди них самыми важными являются следующие:
Виды треугольников
Разработана достаточно развитая классификация рассматриваемых фигур. Главными ее пунктами являются значения углов треугольника и взаимоотношение между его отрезками. Так, если в фигуре все углы острые, то она называется остроугольной. Если же один из углов больше 90 °, то треугольник полагается тупоугольным. Чаще всего в задачах рассматривают следующие виды:
Основные свойства и понятия
Треугольник является одной из самых изученных фигур в геометрии. Для него известны многие теоремы, которые с успехом используются при решении задач. Существует два основных свойства фигуры, которые следуют из характеристик евклидового пространства:
Помимо названных свойств, следует знать о треугольнике еще такое понятие, как подобие. Его суть состоит в том, что одна из рассматриваемых фигур является точной копией в миниатюре другой. Для подобных треугольников все углы равны попарно, а все три стороны относятся соответственно попарно друг к другу с одним и тем же коэффициентом подобия.
Еще одной полезной характеристикой рассматриваемой фигуры является ее качество (CT). Вычисляется оно по следующей формуле:
CT = (a + b — c)*(b + c — a)*(c + a — b)/(a*b*c).
Величина CT лежит в пределах от 0 до 1. Она показывает степень близости фигуры к равностороннему, то есть к наиболее симметричному объекту. Если CT 0,5, то фигура характеризуется, как имеющая хорошее качество.
Величина CT применяется для алгоритмов, которые разделяют какую-либо изучаемую геометрическую поверхность на сетку треугольников. Если в этой сетке генерируется много низкокачественных фигур, то будет велика ошибка аппроксимации рассматриваемой величины.
Важные теоремы
Знание теорем для рассматриваемой фигуры позволяет понять, как найти сторону, зная 2 стороны треугольника. Прежде всего применяются две базовые теоремы:
К этим двум теоремам следует добавить еще два важных равенства, которые связаны с именами древнегреческих философов.
Первое выражение базируется на знаменитой теореме Пифагора, которая устанавливает связь между длинами двух катетов (меньшие стороны) и гипотенузы (большая сторона) в треугольнике с прямым углом. Если гипотенузу обозначить буквой c, тогда будет выполняться следующее равенство:
Если известные любые две стороны, то для определения третьей достаточно взять под квадратный корень соответствующую сумму или разницу квадратов.
Вторая из дополнительных теорем носит название философа Аполлония Пергского. Соответствующее ей математическое выражение выглядит так:
Здесь Mc — это медиана, проведенная к стороне c из вершины C. Это равенство также называют в математике теоремой медианы.
Примеры решения задач
После того как изучены и рассмотрены основные понятия, свойства и теоремы для различного рода треугольников, можно переходить к решению геометрических задач. Поскольку для этого требуется в большинстве случаев знать значения тригонометрических функций, рекомендуется воспользоваться либо соответствующими таблицами, либо инженерным калькулятором.
Задачи школьного курса с треугольниками, как правило, не являются сложными. Они решаются благодаря однократному применению какого-либо свойства или теоремы.
Квадрат и его диагональ
Пусть дан квадрат, сторона которого составляет 11 см. Необходимо определить половину длины его диагонали.
Эту геометрическую задачу проще всего решить, если увидеть, что две смежные стороны исходной фигуры и ее диагональ образуют прямоугольный треугольник, который к тому же является равнобедренным. Каждая из равных сторон в нем имеет длину 11 см и является катетом. Диагональ c — это гипотенуза. Применяя пифагорову теорему, можно получить следующее равенство:
c = (11 2 + 11 2 )^0,5 ≈ 15,556 см.
Поскольку половина диагонали в два раза меньше гипотенузы, то искомым ответом на задачу будет число c/2 ≈ 7,778 см.
Две высоты и угол
Дан треугольник ABC. Известно, что при вершине C угол составляет 37 °. Из вершин A и B проведены высоты к сторонам этого треугольника, их длины составляют h1 = 10 см и h2 = 8 см, соответственно. Необходимо узнать длину стороны фигуры, которая лежит против угла C.
Из условия задачи можно найти длины сторон AC и BC. Для этого следует увидеть, что каждая из высот с двумя другими сторонами треугольника образует прямоугольную фигуру. Воспользовавшись тригонометрическими равенствами, можно получить следующие результаты:
Против угла C лежит сторона AB, которую следует найти. Получается, что известны две стороны треугольника (AC и BC) и угол между ними. Остается применить теорему косинусов, чтобы получить ответ:
AB = (AC 2 + BC 2 — 2*AC*BC*cosC)^0,5 = (16,616 2 + 13,293 2 — 2* 16,616 * 13,293 *cos (37 °))^0,5 ≈ 10 см.
Полученный результат свидетельствует о том, что высота h1 совпадает со стороной AB с рассчитанной точностью, то есть исходный треугольник являлся прямоугольным.
Таким образом, для нахождения стороны треугольника, если известны две другие его стороны или иные отрезки, следует воспользоваться теоремами. Основными из них являются теорема косинусов и синусов, а также Пифагора и Аполлония.
Два угла и сторона треугольника C
Свойства
Можно также найти сразу две другие высоты треугольника, опущенные на стороны b и c соответственно. (рис. 76.2) h_b=a sinβ h_c=a sinγ
Третий угол можно найти, зная, что сумма всех углов в треугольнике равна 180 градусам. α=180°-β-γ
Теперь, зная все стороны, углы и высоты, можно найти все остальные параметры треугольника. Вычислить периметр можно, сложив все три стороны, а площадь – умножив половину любой стороны на опущенную на нее высоту. P=a+b+c S=(ah_a)/2
Если провести в треугольнике медианы, то каждая из них разделит сторону, на которую она опущена, на две равные части. Для того, чтобы вычислить медиану в треугольнике, необходимо знать все три стороны. Формула медианы заключается в том, чтобы сложить удвоенные квадраты двух нетронутых сторон, отнять квадрат стороны, на которую опущена медиана, извлечь из этого выражения квадратный корень и разделить его на два. (рис. 75.1) m_c=√(2a^2+2b^2-c^2 )/2 m_a=√(2b^2+2c^2-a^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2
Чтобы найти биссектрисы треугольника, которые делят пополам его углы, также необходимо знать все три стороны треугольника. Формула биссектрисы выглядит немного сложнее, чем формула медианы, но достаточно проста в расчетах. (рис.75.2) l_c=√(ab(a+b+c)(a+b-c))/(a+b) l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)
Средняя линия треугольника – это прямая, проведенная параллельно одной из его сторон. Ее особенность заключается в том, что она делит стороны на которые опирается на две равные части, и сама равна половине стороны, ей параллельной. (рис.75.7) M_a=a/2 M_b=b/2 M_c=c/2
Также в произвольном треугольнике через стороны можно найти радиус окружности, которую можно вписать в треугольник или описать около него. Радиус вписанной окружности будет начинаться в точке пересечения биссектрис треугольника и опускаться на любую из сторон под прямым углом. Радиус описанной окружности начинается в точке пересечения медиатрисс треугольника и заканчивается в любой из его вершин. (рис. 75.5, 75.6) r=√(((p-a)(p-b)(p-c))/p) R=abc/(4√(p(p-a)(p-b)(p-c)))
Стороны равнобедренного треугольника
Свойства
Равнобедренный треугольник имеет две равные по значению боковые стороны a и основание b. Это позволяет рассчитать любые параметры треугольника, необходимые для решения задачи. Периметр равнобедренного треугольника равен удвоенной боковой стороне в сумме с основанием. (рис.88.1) P=2a+b
Высота, проведенная к основанию равнобедренного треугольника, делит его на два конгруэнтных прямоугольных треугольника, с половиной основания в качестве второго катета и боковой стороной как гипотенузой. Такая высота одновременно является и медианой и биссектрисой. Найти ее можно по теореме Пифагора из прямоугольного треугольника. (рис.88.2) h_b=m_b=l_b=√(a^2-(b/2)^2 )=√(4a^2-b^2 )/2
Остальные две высоты равны друг другу и считаются через формулу с произведением разностей полупериметров и сторон, где приравнены боковые стороны. (рис.88.8) h_a=(b√((4a^2-b^2)))/2a
Зная высоту, найти площадь равнобедренного треугольника можно, подставив полученное выражение в формулу, по которой площадь равна половине основания, умноженной на его высоту. S=hb/2=(b√(4a^2-b^2 ))/4
Углы в равнобедренном треугольнике распределяются следующим образом – углы при основании друг другу конгруэнтны, также как и боковые стороны, а в сумме все три угла дают 180 градусов, поэтому найти их можно двумя видами разности. α=(180°-β)/2 β=180°-2α
Если ни один из углов не дан, но есть все стороны, то можно воспользоваться теоремой косинусов, чтобы найти любой угол. cosα=(b^2+c^2-a^2)/2bc=(b^2+a^2-a^2)/2ba=b^2/2ba=b/2a cosβ=(a^2+a^2-b^2)/(2a^2 )=(2a^2-b^2)/(2a^2 )
Медиана и биссектриса, опущенные на основание, вычисляются по формуле высоты, приведенной выше, а оставшиеся две медианы (равно как и две биссектрисы) равны друг другу, поскольку строятся на равных боковых сторонах. Вычислить медиану можно, упростив формулу произвольного треугольника. (рис. 88.3) m_a=√(2a^2+2b^2-a^2 )/2=√(a^2+2b^2 )/2
В формуле биссектрисы аналогично приравниваются боковые стороны, и ее становится возможным вычислить по упрощенной схеме. (рис. 88.4) l_a=√(ab(2a+b)(a+b-a) )/(a+b)=(b√(a(2a+b) ))/(a+b)
Средняя линия равнобедренного треугольника, параллельная основанию, равна его половине, а средние линии, параллельные боковым сторонам, равны между собой и также равны половинам самих боковых сторон. (рис. 88.5) M_b=b/2 M_a=a/2
Радиус окружности, вписанной в равнобедренной треугольник, является производной формулы для произвольного треугольника, и рассчитать его можно, зная боковую сторону и основание. (рис. 88.6) r=b/2 √((2a-b)/(2a+b))
Радиус окружности, описанной вокруг равнобедренного треугольника, также выводится из общей формулы и выглядит упрощенно следующим образом. (рис. 88.7) R=a^2/√(4a^2-b^2 )
Как найти сторону треугольника, зная сторону и угол
Способы нахождения длины стороны
Рассматриваемая фигура обладает достаточно большим количеством геометрических свойств, которые имеют математическое выражение в виде формул. Также для нее применимы особенности тригонометрических функций и общие формулы для треугольников общего типа. Весь этот набор равенств можно использовать для нахождения любой неизвестной стороны прямоугольной фигуры. Чаще всего встречаются задачи следующего типа:
Если внимательно прочитать условие задачи, то можно увидеть, что сама высота является одним из катетов, поскольку опущена она на основание не из прямого, а из острого угла. Пусть катет a = 8 см. Сторона b вычисляется по формуле для площади:
b = 2*S/a = 2*60/8 = 15 см.
Определить гипотенузу легко по формуле Пифагора:
c = (a 2 + b2)^0,5 = (82 + 152)^0,5 = 17 см.
Как найти стороны прямоугольного треугольника
Чтобы посчитать стороны прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:
Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
Введите их в соответствующие поля и получите результат.
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов:
следовательно: c = √a² + b²
Пример
Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:
c = √3² + 4² = √9 + 16 = √25 = 5 см
Найти катет по гипотенузе и прилежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?
Найти катет по гипотенузе и противолежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?
Найти катет по второму катету и противолежащему к нему острому углу
Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?
По двум сторонам и углу между ними. Параметры треугольника
Вы ввели следующие параметры треугольника |
Рассчитанный треугольник и его свойства (в условных единицах) |
Итак, если у нас есть треугольник вида
и известны строны a, b и угол между ними, то однозначно определяется неизвестная третья сторона, по формуле
Далее, можем по этой же формуле находить оставшиеся неизвестными два угла. Например для угла в точке A формула будет такой:
Бот, по заданным трем параметрам, выведет все рассчитанные значения в одной таблице.
Длина одной стороны 8 единиц, другой 14 единиц. Угол между ними 55 градусов.
Определить все возможные параметры треугольника.
В геометрии желательно или мысленно или на бумаге прорировать Ваш исходный треугольник, что бы Вы понимали что где находится и что надо найти. В противном случае, непонимание условия задачи влечет за собой неспособность её решить.
Как Вы обозначите стороны на своем рисунке неважно. Поэтому и поля ввода имеют свободный вид, то есть можно написать a=8 или с=8
Ввод же угла прост и вводится
Вы ввели следующие параметры треугольника |
Рассчитанный треугольник и его свойства (в условных единицах) |
A = 35.150232566068 B = 89.849767433932 C = 55 S = 45.872514480183 a = 8 b = 14 c = 11.468168042777 ha = 11.468128620045 hb = 6.5532163543118 hc = 7.9999724993696 ma = 12.155634048814 mb = 6.9827959392127 mc = 9.8549622239589 p = 16.734084021388 |
Еще один пример
Решим классическую задачу сторона a=4 сторона b=3 а угол межд ними 90 градусов
так и запишем. Получим ответ.
Вы ввели следующие параметры треугольника |
Рассчитанный треугольник и его свойства (в условных единицах) |
A = 53.130102354156 B = 36.869897645844 C = 90 S = 6 a = 4 b = 3 c = 5 ha = 3 hb = 4 hc = 2.4 ma = 3.605551275464 mb = 4.2720018726587 mc = 2.5 p = 6 |
Получили что это прямоугольный треугольник.
Кто попал впервые на эту страницу смогут сразу не понять, что за обозначения означают те, или иные символы.
Ниже представлен список, для соответствия.
Площадь треугольника S
Высота ha на сторону a
Высота hb на сторону b
Высота hc на сторону c
Медиана ma на сторону a
Медиана mb на сторону b
Медиана mc на сторону c
Координаты вершин (xa,ya) (xb,yb) (xc,yc)
Свойства равнобедренного треугольника
Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 5 теорем.
Теоремы помогут доказать, что треугольник равнобедренный, а не какой-нибудь ещё. Давайте приступим.
Теорема 1. В равнобедренном треугольнике углы при основании равны.
Мы выяснили, что AС — основание равнобедренного треугольника. Поскольку боковые стороны треугольника равны AB = СB, то и углы при основании — равны. ∠ BАC = ∠ BСA. Изи!
Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Чтобы доказать все эти теоремы, вспомним, что такое биссектриса, медиана и высота.
Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.
Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.
Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH
Медиана — линия, которая соединяет вершину треугольника с серединой противолежащей стороны.
Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».
В данном треугольнике медианой является отрезок BH.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону.
Высотой в представленном равнобедренном треугольнике является отрезок BH.
Доказательство теорем 2, 3, 4 будет коллективным, поскольку из определений видно, что биссектриса, медиана и высота равнобедренного треугольника — это одно и то же.
А вот и доказательство:
Вуаля, сразу три теоремы доказаны.
Теорема 5: Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны (третий признак равенства треугольников).
Дано два Δ ABC = Δ A1B1C1.
Чтобы доказать равенство треугольников, мысленно наложите один треугольник на другой так, чтобы стороны совпали. Точка A должна совпасть с точкой А1, точка B должна совпасть с точкой B2, точка С — с точкой С1.
Если все стороны совпадают — треугольники равны, а теорема доказана.
Примеры решений практических задач
1) решить треугольник по двум сторонам и противолежащему углу, т.е. углу между ними. Даны стороны а = 12 см, b = 8 см, угол=60°. Для того, чтобы решить задачу, требуется указать в онлайн-форме на данной странице условия задачи. В поле для стороны «a» указывается 12, в поле для стороны «b» ставится 8, в поле для углов «A» указывается 60. Нажать «Решить».
В ходе решения задачи получаем ответ: сторона c = 13,8 см; угол B = 35,2644° = 35°15’52” = 35°16′ = 0,1959π = 0,6155 rad; угол C = 84,7356° = 84°44’8” = 84°44′ = 0,4708π = 1,4789 rad; Периметр = 33,8 см; Полупериметр = 16,9 см; Площадь = 47,7984 см2; Высота ha = 7,9664 см; Высота hb = 11,9496 см; Высота hc = 6,9273 см; Медиана ma = 9,5513 см; Медиана mb = 12,2958 см; Медиана mc = 7,5107 см; Радиус окружности R, описанной около треугольника = 6,9291 см; Радиус окружности r, вписанной в треугольник = 2,8283 см. Таким образом, был найден угол треугольника по двум сторонам и углу.
2) как найти угол треугольника, зная его стороны или решите треугольник по трем сторонам. Даны три стороны a = 2 см, b = 3 см, c = 4 см. В поле онлайн-формы «a» ставим 2, в поле «b» указываем 3, в поле «c» ставим 4. Далее следует нажать «Решить».
Используя теорему косинусов, получаем угол A = 28,955° = 28°57’18” = 28°57′ = 0,1609π = 0,5054 rad; угол B = 46,5675° = 46°34’3” = 46°34′ = 0,2587π = 0,8128 rad; угол C = 104,4775° = 104°28’39” = 104°29′ = 0,5804π = 1,8235 rad; Периметр = 9 см; Полупериметр = 4,5 см; Площадь = 2,9046 см2; Высота ha = 2,9046 см; Высота hb = 1,9364 см; Высота hc = 1,4523 см; Медиана ma = 3,3912 см; Медиана mb = 2,7839 см; Медиана mc = 1,5811 см; Радиус окружности R, описанной около треугольника = 2,0657 см; Радиус окружности r, вписанной в треугольник = 0,6455 см.
Таким образом, были найдены все углы треугольника.
3) решить треугольник по двум углам и стороне. В треугольнике ABC сторона a = 5 см, два угла B = 30°, C = 45°. Ответ: сторона b = 2,59 см; сторона c = 3,66 см; угол A = 105° = 0,5833π = 1,8326 rad; Периметр = 11,25 см; Полупериметр = 5,625 см; Площадь = 4,5785 см2; Высота ha = 1,8314 см; Высота hb = 3,5355 см; Высота hc = 2,5019 см; Медиана ma = 1,9488 см; Медиана mb = 4,1857 см; Медиана mc = 3,537 см; Радиус окружности R, описанной около треугольника = 2,588 см; Радиус окружности r, вписанной в треугольник = 0,814 см.
Фигура из шести элементов
Под геометрическим элементом полагают какой-либо объект, который имеет определенную меру и является составляющей частью некоторой фигуры. Например, для сферы основными образующими элементами являются радиус и центр.
Как известно, треугольник — это фигура, которая состоит из трех отрезков и такого же количества вершин. При этом все отрезки попарно пересекаются. Из определения фигуры следует, что ее образуют два типа элементов, общее количество которых составляет 6:
Обычно треугольник обозначают большими латинскими буквами, например, ABC, PQM и так далее. Каждая буква — это название вершины (точка пересечения двух отрезков). AB, BC и CA, которые являются длинами сторон, принято обозначать маленькими латинскими буквами по названию противоположных им вершин, то есть c, a и b, соответственно.
Дополнительные отрезки
Несмотря на всю простоту построения фигуры, она обладает большим количеством дополнительных элементов, которые ее могут определять. Среди них самыми важными являются следующие:
Виды треугольников
Разработана достаточно развитая классификация рассматриваемых фигур. Главными ее пунктами являются значения углов треугольника и взаимоотношение между его отрезками. Так, если в фигуре все углы острые, то она называется остроугольной. Если же один из углов больше 90 °, то треугольник полагается тупоугольным. Чаще всего в задачах рассматривают следующие виды:
Основные свойства и понятия
Треугольник является одной из самых изученных фигур в геометрии. Для него известны многие теоремы, которые с успехом используются при решении задач. Существует два основных свойства фигуры, которые следуют из характеристик евклидового пространства:
Помимо названных свойств, следует знать о треугольнике еще такое понятие, как подобие. Его суть состоит в том, что одна из рассматриваемых фигур является точной копией в миниатюре другой. Для подобных треугольников все углы равны попарно, а все три стороны относятся соответственно попарно друг к другу с одним и тем же коэффициентом подобия.
Еще одной полезной характеристикой рассматриваемой фигуры является ее качество (CT). Вычисляется оно по следующей формуле:
CT = (a + b — c)*(b + c — a)*(c + a — b)/(a*b*c).
Величина CT лежит в пределах от 0 до 1. Она показывает степень близости фигуры к равностороннему, то есть к наиболее симметричному объекту. Если CT 0,5, то фигура характеризуется, как имеющая хорошее качество.
Величина CT применяется для алгоритмов, которые разделяют какую-либо изучаемую геометрическую поверхность на сетку треугольников. Если в этой сетке генерируется много низкокачественных фигур, то будет велика ошибка аппроксимации рассматриваемой величины.
Важные теоремы
Знание теорем для рассматриваемой фигуры позволяет понять, как найти сторону, зная 2 стороны треугольника. Прежде всего применяются две базовые теоремы:
К этим двум теоремам следует добавить еще два важных равенства, которые связаны с именами древнегреческих философов.
Первое выражение базируется на знаменитой теореме Пифагора, которая устанавливает связь между длинами двух катетов (меньшие стороны) и гипотенузы (большая сторона) в треугольнике с прямым углом. Если гипотенузу обозначить буквой c, тогда будет выполняться следующее равенство:
Если известные любые две стороны, то для определения третьей достаточно взять под квадратный корень соответствующую сумму или разницу квадратов.
Вторая из дополнительных теорем носит название философа Аполлония Пергского. Соответствующее ей математическое выражение выглядит так:
Здесь Mc — это медиана, проведенная к стороне c из вершины C. Это равенство также называют в математике теоремой медианы.
Примеры решения задач
После того как изучены и рассмотрены основные понятия, свойства и теоремы для различного рода треугольников, можно переходить к решению геометрических задач. Поскольку для этого требуется в большинстве случаев знать значения тригонометрических функций, рекомендуется воспользоваться либо соответствующими таблицами, либо инженерным калькулятором.
Задачи школьного курса с треугольниками, как правило, не являются сложными. Они решаются благодаря однократному применению какого-либо свойства или теоремы.
Квадрат и его диагональ
Пусть дан квадрат, сторона которого составляет 11 см. Необходимо определить половину длины его диагонали.
Эту геометрическую задачу проще всего решить, если увидеть, что две смежные стороны исходной фигуры и ее диагональ образуют прямоугольный треугольник, который к тому же является равнобедренным. Каждая из равных сторон в нем имеет длину 11 см и является катетом. Диагональ c — это гипотенуза. Применяя пифагорову теорему, можно получить следующее равенство:
c = (11 2 + 11 2 )^0,5 ≈ 15,556 см.
Поскольку половина диагонали в два раза меньше гипотенузы, то искомым ответом на задачу будет число c/2 ≈ 7,778 см.
Две высоты и угол
Дан треугольник ABC. Известно, что при вершине C угол составляет 37 °. Из вершин A и B проведены высоты к сторонам этого треугольника, их длины составляют h1 = 10 см и h2 = 8 см, соответственно. Необходимо узнать длину стороны фигуры, которая лежит против угла C.
Из условия задачи можно найти длины сторон AC и BC. Для этого следует увидеть, что каждая из высот с двумя другими сторонами треугольника образует прямоугольную фигуру. Воспользовавшись тригонометрическими равенствами, можно получить следующие результаты:
Против угла C лежит сторона AB, которую следует найти. Получается, что известны две стороны треугольника (AC и BC) и угол между ними. Остается применить теорему косинусов, чтобы получить ответ:
AB = (AC 2 + BC 2 — 2*AC*BC*cosC)^0,5 = (16,616 2 + 13,293 2 — 2* 16,616 * 13,293 *cos (37 °))^0,5 ≈ 10 см.
Полученный результат свидетельствует о том, что высота h1 совпадает со стороной AB с рассчитанной точностью, то есть исходный треугольник являлся прямоугольным.
Таким образом, для нахождения стороны треугольника, если известны две другие его стороны или иные отрезки, следует воспользоваться теоремами. Основными из них являются теорема косинусов и синусов, а также Пифагора и Аполлония.
Стороны равностороннего треугольника
Свойства
В равностороннем треугольнике все стороны и все углы равны. Стороны меняют свое значение в зависимости от размеров треугольника, а углы всегда равны 60 градусам. Зная сторону равностороннего треугольника можно вычислить все остальные его параметры по упрощенным формулам. Периметр равностороннего треугольника равен утроенной стороне, а площадь – квадрату стороны, умноженному на отношения корня из трех к четырем. (рис. 97.1) P=3a S=(√3 a^2)/4
Все высоты в равностороннем треугольнике совпадают с медианами и биссектрисами, и все между собой равны. Это значительно упрощает расчеты, так как объединяет их все в одну формулу. Ее проще всего рассчитывать как высоту, так как она является катетом в прямоугольном треугольнике с заданными углами. (рис. 97.2) h=m=l=(√3 a)/2
Поскольку все стороны такого треугольника равны между собой, соответственно, их средние линии также равны и представляют собой половину стороны a. (рис.97.3) M=a/2
Центр вписанной окружности в равносторонний треугольник совпадает с центром описанной окружности, так как все высоты являются одновременно медианами, биссектрисами и медиатриссами и пересекаются в одной точке. Отрезок, соединяющий центр со стороной перпендикуляром, является радиусом вписанной окружности, а отрезок, соединяющий центр с вершиной угла – радиусом описанной окружности. Оба они зависят только от стороны треугольника и выражаются следующими формулами. (рис.97.4,97.5) R=a/√3 r=a/(2√3)
Как находить стороны треугольника
По двум сторонам и углу между ними
Если известны длины двух сторон треугольника и величина угла между ними, то найти длину третьей стороны можно воспользовавшись теоремой косинусов: квадрат длины стороны треугольника равняется сумме квадратов длин двух его других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Отсюда имеем:
с=√(а²+b²-2аb*cosC), где
а и b – длины известных сторон,
С – величина угла, заключенного между этими сторонами (противолежащего искомой стороне),
с – длина искомой стороны.
Пример 1.
Дан треугольник со сторонами 10 см и 20 см и углом между ними равным 60 градусов. Найти длину стороны.
Решение.
По вышеприведенной формуле получаем:
с=√(10²+20²-2*10*20*cos60º)=√(500-200)=√300
3,83
Ответ: длина стороны треугольника
Как находить стороны треугольника
Произвольный треугольник
Фигура с тремя углами является самым простым замкнутым объектом в геометрии. В общеобразовательных школах ее изучению уделяют наибольшее время, поскольку многие основные геометрические свойства заложены именно в ней. Построить ее несложно, для этого необходимо взять три точки на плоскости так, чтобы они не располагались на одной прямой. После этого следует попарно соединить их прямыми отрезками.
Треугольник произвольного типа состоит из следующих элементов:
Для рассматриваемой фигуры всегда справедливы три важных математических соотношения между ее длинами сторон и углами. Эти соотношения часто используют для решения разнообразных задач. К ним относятся следующие:
Как найти сторону треугольника — в помощь школьнику :
Есть несколько способов решения этой геометрической задачи. Они описаны в статье.
При помощи сторон и углов
Итак, первый способ нахождения сторон треугольника — это по нескольким сторонам и углу между ними (и аналогично с углами и одной прилежащей стороной). Данный способ подойдет для старшей школы, так как здесь используются такие понятия, как синус, косинус, квадрат числа и корень.
Для того чтобы найти сторону, скажем, a, необходимо вычислить квадратный корень из суммы квадрата b, c и вычесть из нее двойное произведение косинуса угла a на стороны b и c. То есть, для того, чтобы облегчить вид формулы и пояснить, как найти сторону треугольника произвольной формы, можем написать следующее: a=(b*b+c*c-2*b*c*cos»альфа»)^(1/2).
Тогда, опираясь на обозначения, получим следующее: a=(b*sin»альфа»)/sin»бета»=(b*sin»альфа»)/sin(«альфа»+»гамма»)=(b*sin(«бета»+»гамма»))/sin»бета». Вот таким мудреным способом можно найти неизвестную сторону произвольного треугольника.
Равнобедренный треугольник
Что такое равнобедренный треугольник? Сам по себе он имеет две одинаковые стороны и так называемое основание. Стороны-близнецы обозначим буквой a, основание — b. Стало быть, раз у треугольника есть два «бедра» одной величины, то и углы на «фундаменте» тоже будут одинаковыми. Их назовем «альфа».
Для того чтобы ответить, как найти сторону равнобедренного треугольника, необходимо ввести еще одну величину — угол, образованный между равными «бедрами».Так как он располагается напротив b, то назвать его лучше всего «бета». Здесь при поиске неизвестных сторон можно пользоваться несколькими формулами. Давайте же посмотрим, какими именно.
Первые две — это те, по которым можно вычислить длину стороны основания равнобедренного треугольника. Основана она на знаниях ученика о синусах и косинусах.Итак, выглядят наши вычисления следующим образом: b=2*a*sin(«бета»/2)=a*(2-2*cos»бета»)^(1/2) или же b=2*a*cos»альфа». Легко все и просто. Особенно, если «набить руку» и попрактиковаться.
Какую именно запись нужно использовать? Все зависит от поставленной задачи и условий. Конечно же, можно произвести проверку вычислений по всем формулам, если у вас есть абсолютно все данные. Теперь можем двигаться дальше.
Прямоугольный треугольник
Наверное, каждый школьник, который только начал изучение геометрии, знает, что такое прямоугольный треугольник. С первого взгляда в данной фигуре нет ничего особенного, сложного и непонятного. Но вот когда «теряются» данные о той или иной стороне сего геометрического объекта, начинаются проблемы.
Дело все в том, что вопрос: «Как найти сторону прямоугольного треугольника?» — затрагивает не только понятия синуса и косинуса, а еще и тангенсов углов. Таким образом, вычисления становятся намного сложнее и больше. Итак, сначала обозначим два катета нарисованного прямоугольного треугольника через a и b.
Углы, лежащие напротив этих сторон, как и принято было прежде, назовем «альфа» и «бета» соответственно. Нашей гипотенузой будет служить сторона c. Угол, лежащий против него, нам не понадобится — он будет прямым. Вариантов вычислений тут несколько. Первый называется классическим. Для катета a формулы выглядит как: a=c*cos»бета»=c*sin»альфа»=b*tg»альфа».
Значит, будем иметь следующее: a=(c*c-b*b)^(1/2), b=(c*c-a*a)^(1/2), c=(b*b+a*a)^(1/2). Вот простой и незамысловатый ответ на вопрос, как найти сторону треугольника. Не пугайтесь огромных вычислений.
Итоги
Итак, сегодня мы разобрались, как найти сторону треугольника, и выучили много новых формул. Для того чтобы лучше их запомнить, запишите их на какую-нибудь бумажку, по которой потом будет проще учить все наизусть. Не стоит пугаться «страшных» цифр и больших вычислений. Все проще, чем кажется.
Теорема о средней линии треугольника
Теорема о средней линии треугольника звучит так:
Средняя линия треугольника параллельна основанию и равна его половине. А так выглядит формула нахождения средней линии треугольника:
По условию нам дано, что MA = MB, NA = NC
Рассмотрим два образовавшихся треугольника ΔAMN и ΔABC.
(по второму признаку подобия треугольников).
△ABC, то Следовательно, ВС = 2МN. Значит, доказано, что средняя линия равна половине основания.
Параллельность средней линии и соответствующего ей основания доказана.
Пример 1. В треугольнике ΔABC AB = 8, BC = 7, CA = 5, точки M, K, N — середины сторон AB, BC, CA соответственно. Найти периметр ΔMNK.
Соединим середины сторон треугольника ΔABC и получим его средние линии, которые образуют треугольник ΔMNK. Найдем их длины по теореме о средней линии:
Ответ: периметр треугольника ΔMNK равен 10.
Пример 2. В прямоугольном треугольнике АВС есть две средние линии: MN и NP, равные 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.
Площадь треугольника равна половине произведения основания на высоту. Так как треугольник прямоугольный, то его площадь найдем как половину произведения катетов:
Так как MN — средняя линия, то по теореме о средней линии она равна половине катета AC:
Значит, AC = 2MN = 2 × 3 = 6.
Так как NP — средняя линия, то по теореме о средней линии она равна половине катета BC:
Значит, BC = 2NP = 2 × 4 = 8.
Тогда найдем площадь большого треугольника, используя формулу, указанную выше:
S = ½ × 6 × 8 = ½ × 48 = 24.
Ответ: площадь большого прямоугольного треугольника равна 24.
Свойства сторон треугольника
Треугольник имеет важные свойства и характеристики.
Треугольник устойчив на любой своей стороне — то есть чтобы вывести его из состояния равновесия надо приложить силу.
Решение: согласно свойству сторон треугольника, получим:
Таким образом, третья сторона треугольника может быть в диапазоне от 4 до 10 см. Или в целых числах ее длина может быть 5, 6, 7, 8 или 9 см.
Правило существования треугольника
Используя свойство сторон треугольника мы можем определить существует ли треугольник с определенными сторонами.
Например, существует ли треугольник с длинами сторон 3, 7 и 15 см?
Решение: проверим по свойству сторон треугольника: складываем две самые короткие стороны 3 и 7 см: 3+7=10, а 10 7 — треугольник с такими длинами сторон существует.
Важные теоремы
Знание теорем для рассматриваемой фигуры позволяет понять, как найти сторону, зная 2 стороны треугольника. Прежде всего применяются две базовые теоремы:
Первое выражение базируется на знаменитой теореме Пифагора, которая устанавливает связь между длинами двух катетов (меньшие стороны) и гипотенузы (большая сторона) в треугольнике с прямым углом. Если гипотенузу обозначить буквой c, тогда будет выполняться следующее равенство:
Если известные любые две стороны, то для определения третьей достаточно взять под квадратный корень соответствующую сумму или разницу квадратов.
Вторая из дополнительных теорем носит название философа Аполлония Пергского. Соответствующее ей математическое выражение выглядит так:
Здесь Mc — это медиана, проведенная к стороне c из вершины C. Это равенство также называют в математике теоремой медианы.
Примеры решения задач
После того как изучены и рассмотрены основные понятия, свойства и теоремы для различного рода треугольников, можно переходить к решению геометрических задач. Поскольку для этого требуется в большинстве случаев знать значения тригонометрических функций, рекомендуется воспользоваться либо соответствующими таблицами, либо инженерным калькулятором.
Задачи школьного курса с треугольниками, как правило, не являются сложными. Они решаются благодаря однократному применению какого-либо свойства или теоремы.
Квадрат и его диагональ
Пусть дан квадрат, сторона которого составляет 11 см. Необходимо определить половину длины его диагонали.
Эту геометрическую задачу проще всего решить, если увидеть, что две смежные стороны исходной фигуры и ее диагональ образуют прямоугольный треугольник, который к тому же является равнобедренным. Каждая из равных сторон в нем имеет длину 11 см и является катетом. Диагональ c — это гипотенуза. Применяя пифагорову теорему, можно получить следующее равенство:
c = (11 2 + 11 2 )^0,5 ≈ 15,556 см.
Поскольку половина диагонали в два раза меньше гипотенузы, то искомым ответом на задачу будет число c/2 ≈ 7,778 см.
Две высоты и угол
Дан треугольник ABC. Известно, что при вершине C угол составляет 37 °. Из вершин A и B проведены высоты к сторонам этого треугольника, их длины составляют h1 = 10 см и h2 = 8 см, соответственно. Необходимо узнать длину стороны фигуры, которая лежит против угла C.
Из условия задачи можно найти длины сторон AC и BC. Для этого следует увидеть, что каждая из высот с двумя другими сторонами треугольника образует прямоугольную фигуру. Воспользовавшись тригонометрическими равенствами, можно получить следующие результаты:
Против угла C лежит сторона AB, которую следует найти. Получается, что известны две стороны треугольника (AC и BC) и угол между ними. Остается применить теорему косинусов, чтобы получить ответ:
AB = (AC 2 + BC 2 — 2*AC*BC*cosC)^0,5 = (16,616 2 + 13,293 2 — 2* 16,616 * 13,293 *cos (37 °))^0,5 ≈ 10 см.
Полученный результат свидетельствует о том, что высота h1 совпадает со стороной AB с рассчитанной точностью, то есть исходный треугольник являлся прямоугольным.
Таким образом, для нахождения стороны треугольника, если известны две другие его стороны или иные отрезки, следует воспользоваться теоремами. Основными из них являются теорема косинусов и синусов, а также Пифагора и Аполлония.
Стороны треугольника формулы – Онлайн калькулятор: Длина стороны треугольника
Как найти неизвестную сторону треугольника
Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.
a, b, c — стороны произвольного треугольника
α, β, γ — противоположные углы
Формула длины через две стороны и угол (по теореме косинусов), (a):
* Внимательно, при подстановке в формулу, для тупого угла (α>90), cosα принимает отрицательное значение
Опубликовано: 11 октября 2011 Обновлено: 16 мая 2017
Все формулы сторон равнобедренного треугольника
Вычислить длину неизвестной стороны через любые стороны и углы
b — сторона (основание)
a — равные стороны
α — углы при основании
β — угол образованный равными сторонами
Формулы длины стороны (основания), (b):
В настоящий момент времени есть несколько различных способов решения такой задачи. И каждый способ отличается от предыдущего не только формулой, по которой производится расчет, но и исходными данными, которые необходимы для вычисления.
Способы нахождения сторон треугольника
Итак, самым простым и логичным ответом на вопрос: как находить стороны треугольника, является то, что необходимо найти решение по формуле. В зависимости от исходных данных, формулы могут быть самыми разными. Обычно необходимую сторону треугольника можно вычислить по:
Как видно, в любом, из двух названных случаях, все равно необходимо знать значения трех показателей. Без их знания никогда не будет возможным найти ответ на вопрос о том, как находить стороны треугольника.
Как найти неизвестную сторону треугольника
Для того чтобы найти сторону по второму способу понадобится следующая формула: sinA/a=sinB/b=sinC/с. Обозначения этой формулы аналогичны предыдущей, то есть В и С обозначают известные углы, а С — единственно известную сторону.
Как найти сторону треугольника — в помощь школьнику :: SYL.ru
Есть несколько способов решения этой геометрической задачи. Они описаны в статье.
При помощи сторон и углов
Для того чтобы найти сторону, скажем, a, необходимо вычислить квадратный корень из суммы квадрата b, c и вычесть из нее двойное произведение косинуса угла a на стороны b и c. То есть, для того, чтобы облегчить вид формулы и пояснить, как найти сторону треугольника произвольной формы, можем написать следующее: a=(b*b+c*c-2*b*c*cos»альфа»)^(1/2). Будьте внимательны, ведь если угол, расположенный напротив искомой стороны, будет тупым, то косинус примет отрицательное значение. Еще одна формула нахождения сторон треугольника — по двум углам и сторонам. Сразу приведем формулу-равенство, так как для понимания наглядный вид проще, чем длинная роспись. По-прежнему нам нужно найти сторону a. Тогда, опираясь на обозначения, получим следующее: a=(b*sin»альфа»)/sin»бета»=(b*sin»альфа»)/sin(«альфа»+»гамма»)=(b*sin(«бета»+»гамма»))/sin»бета». Вот таким мудреным способом можно найти неизвестную сторону произвольного треугольника.
Равнобедренный треугольник
Что такое равнобедренный треугольник? Сам по себе он имеет две одинаковые стороны и так называемое основание. Стороны-близнецы обозначим буквой a, основание — b. Стало быть, раз у треугольника есть два «бедра» одной величины, то и углы на «фундаменте» тоже будут одинаковыми. Их назовем «альфа». Для того чтобы ответить, как найти сторону равнобедренного треугольника, необходимо ввести еще одну величину — угол, образованный между равными «бедрами».
Так как он располагается напротив b, то назвать его лучше всего «бета». Здесь при поиске неизвестных сторон можно пользоваться несколькими формулами. Давайте же посмотрим, какими именно. Первые две — это те, по которым можно вычислить длину стороны основания равнобедренного треугольника. Основана она на знаниях ученика о синусах и косинусах.
Итак, выглядят наши вычисления следующим образом: b=2*a*sin(«бета»/2)=a*(2-2*cos»бета»)^(1/2) или же b=2*a*cos»альфа». Легко все и просто. Особенно, если «набить руку» и попрактиковаться. Теперь можем взглянуть, как вычислить длину равных сторон. Здесь тоже имеется два варианта, они немного сложнее, чем предыдущие. Выглядят громоздко, но пугаться этого не стоит. Как же найти «бедра»? Будем иметь следующий вид формул: a=b/(2*sin(«бета»/2))=b/(2-2*cos»бета»)^(1/2) или же a=b/(2/cos»альфа»). Какую именно запись нужно использовать? Все зависит от поставленной задачи и условий. Конечно же, можно произвести проверку вычислений по всем формулам, если у вас есть абсолютно все данные. Теперь можем двигаться дальше.
Прямоугольный треугольник
Наверное, каждый школьник, который только начал изучение геометрии, знает, что такое прямоугольный треугольник. С первого взгляда в данной фигуре нет ничего особенного, сложного и непонятного. Но вот когда «теряются» данные о той или иной стороне сего геометрического объекта, начинаются проблемы. Дело все в том, что вопрос: «Как найти сторону прямоугольного треугольника?» — затрагивает не только понятия синуса и косинуса, а еще и тангенсов углов. Таким образом, вычисления становятся намного сложнее и больше. Итак, сначала обозначим два катета нарисованного прямоугольного треугольника через a и b. Углы, лежащие напротив этих сторон, как и принято было прежде, назовем «альфа» и «бета» соответственно. Нашей гипотенузой будет служить сторона c. Угол, лежащий против него, нам не понадобится — он будет прямым. Вариантов вычислений тут несколько. Первый называется классическим. Для катета a формулы выглядит как: a=c*cos»бета»=c*sin»альфа»=b*tg»альфа».
Сторону b найдем аналогичным способом: b=c*cos»альфа»=c*sin»бета»=a*tg»бета». Тогда наша гипотенуза находится при помощи: c=a/sin»альфа»=a/cos»бета» или c=b/cos»альфа»=b/sin»бета». Второй, более простой и привычный метод нахождения сторон прямоугольного треугольника — по теореме Пифагора. Она гласит: сумма квадратов двух катетов равна квадрату гипотенузы. Значит, будем иметь следующее: a=(c*c-b*b)^(1/2), b=(c*c-a*a)^(1/2), c=(b*b+a*a)^(1/2). Вот простой и незамысловатый ответ на вопрос, как найти сторону треугольника. Не пугайтесь огромных вычислений.
Итоги
Итак, сегодня мы разобрались, как найти сторону треугольника, и выучили много новых формул. Для того чтобы лучше их запомнить, запишите их на какую-нибудь бумажку, по которой потом будет проще учить все наизусть. Не стоит пугаться «страшных» цифр и больших вычислений. Все проще, чем кажется.
Формулы прямоугольного треугольника
Определение и формулы прямоугольного треугольника
Сторона треугольника через угол
Катет прямоугольного треугольника через угол и второй катет
Треугольник — это геометрическая фигура, образованная тремя отрезками соединяющихся тремя точками, у которой все углы внутренние.
Прямоугольный треугольник — это треугольник у которого один из углов прямой (равен 90°). Стороны треугольника образующие прямой угол называются катетами треугольника. Сторона противоположная прямому углу называется гиппотенузой.
Радиан — это угол, соответствующий дуге, длина которой равна её радиусу. Своё название данная едииница измерения получила от слова радиус. Имеет обозначение: рад, международное: rad.
Радианы являются основной единицей используемой в вичислениях.
Градус — общепринятая единица измерения плоского угла, которая равняется \dfrac<1> <90>части прямого угла или \dfrac<1> <360>часть окружности. В отличии от радиан, градусы являются чисто символическими единицами измерения, так сказать «взятые с потолка» и не имеют в своём значении ни какого математического основания.
Причина выбора градуса в качестве единицы измерения углов неизвестна. В быту измерение углов в градусах выглядит удобнее и понятнее, но что касается математических вычислений, то здесь основными единицами являются радианы.
Формула нахождения стороны через угол
Посчитать длину одного из катетов треугольника можно через второй катет и угол противолежащий искомой стороне:
Как найти третью сторону треугольника прямоугольного?
Как легко найти третью сторону прямоугольного треугольника?
Если известны две из трех строн прямоугольного треугольника, то третью сторону можно вычислить с помощью теоремы Пифагора. Если известны длины катетов (сторон, прилежащие к прямому углу), то длина третьей стороны (гипотенузы) вычисляется по формуле: c = √(a2 + b2), где a и b — катеты, а c — гипотенуза.
Как найти сторону прямоугольного треугольника если известны 2 стороны?
Если даны две стороны прямоугольного треугольника, то третья сторона может быть вычислена по теореме Пифагора.
Как найти сторону в прямоугольном треугольнике?
По теореме Пифагора, для того чтобы вычислить гипотенузу прямоугольного треугольника, нужно извлечь квадратный корень из суммы квадратов катетов. Катетами считаются стороны a и b, образующие друг с другом прямой угол, а гипотенузой – сторона, лежащая напротив него.
Как найти третью сторону треугольника по двум сторонам?
Теорема косинусов в произвольном треугольнике гласит, что можно найти сторону в треугольнике, зная другие две стороны и угол между ними. Для того чтобы вычислить третью сторону треугольника нужно извлечь квадратный корень из разности от квадратов известных сторон их удвоенного произведения на косинус угла между ними.
Как найти катет в прямоугольном треугольнике?
Катет прямоугольного треугольника равен его гипотенузе, умноженной на синус противолежащего или на косинус прилежащего к этому катету угла. Катет равен другому катету, умноженному на тангенс противолежащего или котангенс прилежащего к первому катету угла.
Где катеты в прямоугольном треугольнике?
Катет — одна из двух сторон прямоугольного треугольника, образующих прямой угол. Противолежащая прямому углу сторона называется гипотенузой. Для непрямоугольного треугольника катеты не существуют.
Как вычислить гипотенузу зная катеты?
Если известна длина обоих катетов, то ее размер вычисляется по теореме Пифагора: сумма квадратов двух катетов равняется квадрату гипотенузы.
Как найти длину стороны треугольника?
Катет, прилежащий к углу А, равен произведению гипотенузы на косинус А; В прямоугольном треугольнике любая из сторон может быть вычислена по теореме Пифагора, если известны две другие. Теорема Пифагора: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Как найти второй катет в прямоугольном треугольнике?
Теорема Пифагора, чтобы найти катет прямоугольного треугольника Если нам известны гипотенуза и катет, то мы можем найти длину неизвестного катета по теореме Пифагора. Звучит она так: “Квадрат гипотенузы равен сумме квадратов катетов”. Формула: c²=a²+b², где c – гипотенуза, a и b – катеты.
Как найти сторону в разностороннем треугольнике?
По теореме Пифагора в прямоугольном треугольнике квадрат гипотенузы (в нашем случае она является и стороной равностороннего треугольника) равен сумме квадрата высоты h и квадрата половины основания (половины стороны а): a2 = h2 + a2/22, где а — сторона, h — высота равностороннего треугольника.
Как найти катет и гипотенузу зная катет и угол?
Формула: tg=a/b, где а – противолежащий к углу катет, а b – прилежащий. Преобразуем формулу и получаем: a=tg*b. Пример. Угол А равен 45 градусов, гипотенуза равна 10 см.
Как найти катет в прямоугольном треугольнике если известна гипотенуза и угол?
Если известны величина прилегающего угла (β) и длина гипотенузы (c), то длину катет а (a) можно вычислить как произведение длины гипотенузы на косинус известного угла: a=c∗cos(β).
Как найти угол треугольника если известны 2 стороны?
Если известны стороны треугольника, можно рассчитать его углы, воспользовавшись теоремой косинусов. Здесь, квадрат одной стороны треугольника (а) равен сумме квадратов двух его других сторон (b,с), образующих искомый угол (α), плюс удвоенное произведение этих сторон (b,с) на косинус угла.
Как найти сторону равнобедренного треугольника зная две стороны?
Как найти третью сторону треугольника по двум сторонам и медиане?
Сторона треугольника равна двум третям корня квадратного из удвоенного произведения квадратов медиан, проведенных к двум другим сторонам минус квадрат медианы, проведенной к этой стороне.
Как найти сторону треугольника, зная сторону и угол
Для начала можно рассмотреть частные случаи и начать со случая прямоугольного треугольника. Если известно, что треугольник прямоугольный и известен один из его острых углов, то по длине одной из сторон можно найти и лругие стороны треугольника.
Рассмотрите прямоугольный треугольник ABC с прямым углом ABC. Пусть задана его гипотенуза AC и, например, острый угол BAC. Тогда катеты треугольника будут равны: AB = AC*cos(BAC) (прилежащий катет к углу BAC), BC = AC*sin(BAC) (катет, противолежащий углу BAC).
Если задан угол при основании ABC или ACB, то AB = AC = (BC/2)/cos(ABC).
Теперь можно рассмотреть общий случай треугольника, когда длины одной стороны и одного угла недостаточно для нахождения длины другой стороны.
Пусть в треугольнике ABC задана сторона AB и один из прилежащих к ней углов, например, угол ABC. Тогда, зная еще сторону BC, по теореме косинусов можно найти сторону AC. Она будет равна: AC = sqrt((AB^2)+(BC^2)-2*AB*BC*cos(ABC))
Нахождение углов треугольника по заданным сторонам
Нахождение углов треугольника по заданным сторонам с использованием теоремы косинусов.
От нашего пользователя поступил запрос на создание калькулятора, рассчитывающего углы треугольника по заданным сторонам — Расчет углов треугольника.
Для треугольника, в отличие от, скажем, четырехугольника, эта задача имеет решение, ибо треугольник можно однозначно определить по трем сторонам (а также по двум сторонам и углу между ними, и по стороне и двум прилежащим углам).
Стороны в треугольнике, кстати сказать, должны следовать неравенству треугольника, то есть, сумма любых двух сторон должна быть больше третьей стороны.
Математически (см. рисунок) это выражается системой
c»/>
a»/>
b»/>
В случае невыполнения хотя бы одного из условий треугольник называют вырожденным. Собственно, это и не треугольник уже.
Идем дальше — при известных сторонах углы проще всего определить, пользуясь теоремой косинусов, частным случаем которой является теорема Пифагора (см. рисунок)
Калькулятор ниже рассчитывает углы по введенным длинам сторон. Если треугольник вырожденный, то в результате будут нули.
- Как высчитать средний расход топлива
- Как высчитать удельный вес