какая прямая называется секущей какая касательной по отношению к окружности
Касательная и секущая к окружности
На плоскости прямая и окружность могут либо пересекаться друг с другом, либо не пересекаться:
Расстояние от центра O до прямой m равно длине перпендикуляра OA. Следовательно, расстояние от центра окружности до прямой всегда будет равно перпендикуляру, опущенному из центра окружности на прямую.
Если расстояние от центра окружности до прямой больше радиуса данной окружности, то прямая и окружность не пересекаются и не имеют общих точек:
Касательная
Если расстояние от центра окружности до прямой равно радиусу данной окружности, то прямая касается окружности и они имеют одну общую точку, такая прямая называется касательной к окружности:
Прямая m — касательная. Точка соприкосновения прямой и окружности, то есть их общая точка, называется точкой касания: точка A — точка касания.
Касательная – это прямая линия, имеющая с окружностью одну общую точку.
Секущая
Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется секущей к окружности:
Секущая – это прямая линия, имеющая с окружностью две общие точки.
Какая прямая называется секущей какая касательной по отношению к окружности
Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности.
Часть плоскости, ограниченная окружностью называется кругом.
Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
Хорда
Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.
Теорема о касательной и секущей
Углы в окружности
Центральным углом в окружности называется плоский угол с вершиной в ее центре.
Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.
Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.
Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.
Свойства углов, связанных с окружностью
C = 2 R.
L = R .
S = R 2
.
Вписанные и описанные окружности
Окружность и треугольник
где S — площадь треугольника, а — полупериметр;
R =
,
R = ;
здесь a, b, c — стороны треугольника, — угол, лежащий против стороны a, S — площадь треугольника;
Окружность и четырехугольники
+
=
+
= 180°;
a + c = b + d ;
Касательная к окружности
1. Угол ACO равен 28°, где O — центр окружности. Его сторона CA касается окружности. Найдите величину меньшей дуги AB окружности, заключенной внутри этого угла. Ответ дайте в градусах.
Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Значит, угол САО — прямой. Из треугольника АСО получим, что угол АОС равен 62 градуса. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит, величина дуги АВ — тоже 62 градуса.
2. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, а большая дуга AD окружности, заключенная внутри этого угла, равна 116°. Ответ дайте в градусах.
3. Хорда AB стягивает дугу окружности в 92°. Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.
Проведем радиус ОВ в точку касания, а также радиус ОА. Угол ОВС равен 90°. Треугольник ВОА — равнобедренный. Нетрудно найти, что угол ОВА равен 44 градуса, и тогда угол СВА равен 46 градусов, то есть половине угловой величины дуги АВ.
Получается, что угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.
4. Через концы A, B дуги окружности в 62° проведены касательные AC и BC. Найдите угол ACB. Ответ дайте в градусах.
Рассмотрите четырехугольник ОВСА. Сумма углов любого выпуклого четырехугольника равна 360°. Углы ОВА и ОВС и ОАС — прямые, угол ВОА равен 62°, значит, угол АСВ равен 28 градусов.
5. К окружности, вписанной в треугольник ABC, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника.
Вспомним еще одно важное свойство касательных к окружности:
Отрезки касательных, проведенных из одной точки, равны.
Периметр треугольника — это сумма всех его сторон. Обратите внимание на точки на нашем чертеже, являющиеся вершинами шестиугольника. Из каждой такой точки проведены два отрезка касательных к окружности. Отметьте на чертеже такие равные отрезки. Еще лучше, если одинаковые отрезки вы будете отмечать одним цветом. Постарайтесь увидеть, как периметр треугольника АВС складывается из периметров отсеченных треугольников.
Все эти задачи встречаются в Банке заданий ФИПИ под номером В6. А вот одна из сложных задач В3:
6. Около окружности описан многоугольник, площадь которого равна 5. Его периметр равен 10. Найдите радиус этой окружности.
Обратите внимание — в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке.
Окружность касается всех сторон многоугольника. Отметьте центр окружности — точку О — и проведите перпендикулярные сторонам радиусы в точки касания.
Соедините точку О с вершинами А, В, С, D, E. Получились треугольники АОВ, ВОС, СОD, DOE и ЕОА.
Очевидно, что площадь многоугольника S = SАОВ + SВОС + SСОD + SDOE + SЕОА.
Как вы думаете, чему равны высоты всех этих треугольников и как, пользуясь этим, найти радиус окружности?
Хорда, секущая, касательная
Определения
Хорда – отрезок, соединяющий две точки окружности.
Секущей к окружности называется прямая, которая пересекает окружность в двух различных точках.
Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.
Свойства
Радиус, проведенный в точку касания, перпендикулярен касательной
Отрезки касательных, проведенных к окружности из одной точки, равны.
Отрезки пересекающихся хорд связаны соотношением:
Произведения отрезков секущих, проведенных из одной точки, равны:
Квадрат отрезка касательной равен произведению отрезков секущей, проведенной из той же точки:
Если две окружности касаются внешним образом, то длина отрезка общей внешней касательной равна удвоенному среднему пропорциональному их радиусов Видеодоказательство
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Касательная к окружности
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.