какая ткань образована клетками удлиненной формы

Таблица «Виды тканей растений»

Ищем педагогов в команду «Инфоурок»

Виды тканей растений

Особенности строения клеток

какая ткань образована клетками удлиненной формы

-древесные и лубяные волокна

какая ткань образована клетками удлиненной формы

Придают прочность, упругость и гибкость растениям

Клетки с утолщёнными оболочками иногда одревесневшими. Часто клетки удлинённые и имеют вид волокон

какая ткань образована клетками удлиненной формы

Передвижение питательных веществ, растворённых в воде

Сосуды образованы последовательно соединёнными мёртвыми клетками без перегородок;

Ситовидные трубки образованы безъядерными живыми клетками, последовательно соединённые между собой

(расположены между покровными, механическими и проводящими тканями):

какая ткань образована клетками удлиненной формы

Фотосинтез и запасание различных веществ

Состоят из живых клеток. Есть несколько видов этих тканей в зависимости от того какую функцию выполняют клетки.

-конус нарастания стебля

какая ткань образована клетками удлиненной формы

Клетки делятся, образуя новые клетки, благодаря чему происходит рост растения

Клетки небольших размеров с тонкой оболочкой и крупным ядром.

Виды тканей растений

Особенности строения клеток

какая ткань образована клетками удлиненной формы

-древесные и лубяные волокна

какая ткань образована клетками удлиненной формы

Клетки с утолщёнными оболочками иногда одревесневшими. Часто клетки удлинённые и имеют вид волокон

какая ткань образована клетками удлиненной формы

____________ образованы последовательно соединёнными мёртвыми клетками без перегородок;

___________________________ образованы безъядерными живыми клетками, последовательно соединённые между собой

_____________________ (расположены между покровными, механическими и проводящими тканями):

какая ткань образована клетками удлиненной формы

Состоят из _____________________ клеток. Есть несколько видов этих тканей в зависимости от того какую функцию выполняют клетки.

-конус нарастания стебля

какая ткань образована клетками удлиненной формы

Клетки небольших размеров с тонкой оболочкой и крупным ядром.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

какая ткань образована клетками удлиненной формы

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

какая ткань образована клетками удлиненной формы

Курс повышения квалификации

Современные педтехнологии в деятельности учителя

какая ткань образована клетками удлиненной формы

Курс профессиональной переподготовки

Биология: теория и методика преподавания в образовательной организации

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Общая информация

Международная дистанционная олимпиада Осень 2021

Похожие материалы

Конспект урока на тему «Прямые наблюдения процесса эволюции»

Конспект урока на тему «Видообразование»

Конспект урока «Возникновение адаптаций в результате ЕО»

Конспект урока «Формы естественного отбора»

Конспект урока «Направленные и случайные изменения генофонда в ряду поколений»

Конспект урока «Популяционная структура вида»

Конспект урока «Палеонтологические и биогеографические свидетельства эволюции»

Не нашли то что искали?

Воспользуйтесь поиском по нашей базе из
5278187 материалов.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

какая ткань образована клетками удлиненной формы

какая ткань образована клетками удлиненной формы

В Туве предложили ввести антиковидные паспорта для школьников

Время чтения: 2 минуты

какая ткань образована клетками удлиненной формы

Кабмин утвердил список вузов, в которых можно получить второе высшее образование бесплатно

Время чтения: 2 минуты

какая ткань образована клетками удлиненной формы

Минобрнауки утвердило перечень вступительных экзаменов в вузы

Время чтения: 1 минута

какая ткань образована клетками удлиненной формы

В школе в Пермском крае произошла стрельба

Время чтения: 1 минута

какая ткань образована клетками удлиненной формы

В Тюменской области студенты и школьники перейдут на дистанционное обучение

Время чтения: 2 минуты

какая ткань образована клетками удлиненной формы

СК предложил обучать педагогов выявлять деструктивное поведение учащихся

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Клеточное строение листовой пластины

Вопрос 1. Какие клетки образуют листовую пластинку?
Сверху и снизу лист покрыт одним из видов покровной ткани — кожицей. Как правило, клетки кожицы плотно прилегают друг к другу, прозрачны, в них нет хлоропластов. Кроме того, в кожице имеются расположенные парами замыкающие клетки устьиц (с хлоропластами). Между верхней и нижней кожицей заключена мякоть листа, образованная основной тканью, клетки которой имеют многочисленные хлоропласты. В толще листа расположены жилки из проводящей и механической тканей. Они содержат соответственно сосуды, ситовидные трубки и волокна.

Вопрос 2. Какое значение имеет кожица листа? Клетками какой ткани она образована?
С верхней и нижней сторон лист покрыт однослойной кожицей. Кожица — это покровная живая ткань. Ее клетки плотно сомкнуты между собой, в них отсутствуют хлоропласты. Они прозрачны и хорошо пропускают солнечные лучи внутрь листа. Кожица защищает лист от избыточной потери влаги и служит для механической опоры. На поверхности клеток кожицы могут располагаться волоски и шипики различной формы. Часто кожица выделяет кутикулу, или восковидный налет, которая предохраняет растение от испарения. Для обеспечения водо- и газообмена между клетками кожицы находятся устьица.

Вопрос 3. Что такое устьица и где они расположены?
Газообмен и испарение воды осуществляются через специальные образования — устьица. Устьице состоит из двух клеток эпидермиса, которые называются замыкающими. Между замыкающими клетками имеется щель, которая открывается или закрывается в зависимости от величины тургорного давления в них. Щель ведет в воздушную полость, края которой составляют паренхимные клетки. На 1 мм поверхности листа располагается от 40 до 300 устьиц. При этом у наземных растений устьица находятся на нижней стороне листа, у водных — на верхней. Через устьица в межклетники фотосинтезирующей паренхимы поступает СО и выходят О2 и Н2О.
Устьица обычно располагаются с нижней стороны листовой пластинки, а у водных растений (кувшинка, кубышка) — только на верхней. У ряда растений (злаки, капуста) устьица есть на обеих сторонах листа.

Вопрос 4. Какое строение имеют клетки мякоти листа? К какому типу тканей они относятся?
Мякоть листа состоит из клеток основной ткани. Два-три слоя мякоти, расположенные непосредственно под верхней кожицей, образованы плотно прилегающими друг к другу клетками удлиненной формы. По внешнему виду они напоминают столбики одинаковой величины, поэтому верхнюю часть основной ткани листа называют столбчатой. В цитоплазме мяггих клеток особенно много хлоропластов. Под столбчатой тканью лежат более округлые или неправильной формы клетки. Они лежат рыхло (не прилегают друг к другу), между ними — крупные межклетники. Эти клетки образуют губчатую ткань.

Вопрос 5. В каких клетках листа особенно много хлоропластов?
Клетки, примыкающие к верхнему эпидермису, образуют столбчатую ткань. Они располагаются перпендикулярно поверхности листа и плотно примыкают друг к другу. У большинства растений столбчатая ткань однослойная, иногда двухслойная. Ее клетки содержат множество хлоропластов, осуществляющих фотосинтез.

Вопрос 6. Какую функцию выполняют проводящие пучки листа? Клетками каких тканей они образованы?
Проводящий пучок листа, или жилка, состоит из сосудов древесины, ситовидных трубок луба и механической ткани. Между лубом и древесиной в пучках нет камбия. Древесина в пучке обращена к верхней стороне листа, а луб — к нижней. По сосудам проводящих пучков передвигаются вода и растворенные в ней минеральные вещества. По ситовидным трубкам из листьев — растворы органических веществ.

Источник

ГДЗ биология 6 класс Пасечник Линейный курс Дрофа 2020 Задание: § 13 Клеточное строение листа

Стр. 67. Вопросы в начале параграфа

1. Какую функцию выполняет покровная ткань?

Покровная ткань выполняет сразу несколько функций. Во-первых, она защищает растение от воздействия негативных факторов окружающей среды (вода, ветер, температура, механические повреждения). Во-вторых, регулирует поглощение влаги и газов, а также выделение различных веществ растением.

2. Какие особенности строения имеют клетки покровной ткани?

Разновидности покровной ткани схожи по своему строению и имеют определенные особенности. Клеток в составе такой ткани очень много, а вот клеточного вещества, наоборот, мало. Сами клетки живут недолго и располагаются близко друг к другу. Они могут быстро делиться, за счет чего покровная ткань постоянно обновляется (регенерируется). Оболочка у клеток по сравнению с оболочкой обычных клеток, в разы толще.

3. Какую функцию выполняют и где расположены клетки основной ткани?

Основная ткань у растений заполняет пространство между проводящей и покровной тканями. Ее клетки живые, имеют тонкие клеточные стенки. Они принимают участие в газообмене, а также в создании и накоплении питательных веществ.

4. Что такое межклетники?

Межклетники – это пространства, которые возникают в тканях растения при росте, отмирании, разъединении или разрушении соседних между собой клеток. Их образование улучшает газообмен, как между клетками, так и с окружающей средой.

Стр. 68. Лабораторная работа. Строение кожицы лука

Берем кусочек листа традесканции, надламываем его и осторожно снимаем с нижней стороны небольшой участок тонкой прозрачной кожицы. Готовим препарат так же, как препарат кожицы чешуи лука. Рассматриваем под микроскопом.

какая ткань образована клетками удлиненной формы

Находим бесцветные клетки кожицы. Рассматриваем их форму и строение. Они неправильной формы, плотно прилегают друг к другу. Ядро внутри бесцветных клеток практически оттеснено к клеточной оболочке, а все свободное пространство занято прозрачной вакуолью.

Находим устьичные клетки. Они представляют собой «замыкающее отверстие». В цитоплазме устьичных клеток листа традесканции, в отличие от клеток кожицы лука, находятся зеленые пластиды – хлоропласты.

Зарисовываем кожицу лука под микроскопом. Отдельно зарисовываем устьице (см. пункт 1). Делаем подписи на рисунках.

какая ткань образована клетками удлиненной формы

Вывод:

Кожица листа является одним из видов покровной ткани у растения. Благодаря ее наличию и прочности сохраняются внутренние части листа, а также обеспечивается их защита от повреждения извне, от пересыхания и т.д.

Стр. 69. Лабораторная работа. Клеточное строение листа

Изучаем готовые микропрепараты среза листа. Находим клетки верхней и нижней кожицы, устьица. Кожица является одним из видов покровной ткани растения. Ее клетки предохраняют листовую пластину от высыхания и повреждения.

Рассматриваем клетки мякоти листа, которая находится под кожицей. Удлиненные клетки основной ткани располагаются в два-три слоя и плотно прилегают друг к другу, а также к верхней кожице. В цитоплазме этих клеток содержится большое количество хлоропластов. Под столбчатой тканью можно увидеть неправильной формы или округлые формы клетки, которые прилегают друг к другу неплотно. Хлоропластов в них меньше, нежели в клетках столбчатой ткани. Пространство между такими клетками заполнено воздухом.

Находим на препарате межклетники. Они располагаются в нижней губчатой мякоти листа, то есть, занимают пространство между клетками, которое заполнено воздухом. Главное значение межклетников заключается в том, что они служат растениям для улучшения газообмена, как между клетками листьев, так и между ним и окружающей средой. Также именно в межклетниках содержатся продукты выделительных тканей, например, смолы или эфирные масла.

Находим проводящие пучки листа, которые состоят из сосудов, волокон и ситовидных трубок, выполняющих сразу несколько важнейших функций. Например, сосуды проводят воду и минеральные вещества, растворенные в ней. Волокна «отвечают» за прочность листа. А вот по ситовидным трубкам происходит движение растворов органических веществ.

Зарисовываем поперечный срез листа и делаем подписи.

какая ткань образована клетками удлиненной формы

Стр. 70. Вопросы после параграфа

№ 1. Какие клетки образуют листовую пластинку?

Листовая пластинка образована тремя типами клеток:

Клетки кожицы (покровная ткань);

Клетки мякоти (основная ткань);

Клетки проводящего пучка (проводящая ткань).

№ 2. Какое значение имеет кожица листа? Клетками какой ткани она образована?

Кожица листа обеспечивает сохранение его внутренних частей от механических повреждений извне и пересыхания. Также с ее помощью происходит проникновение внутрь листа воздуха и испарение из него излишков влаги.

Образована кожица листа растения клетками покровной ткани.

№ 3. Что такое устьица и где они расположены?

Устьица – это щели, которые располагаются между двумя замыкающими клетками, в цитоплазме которых содержатся хлоропласты. Через устьица не только проникает воздух в лист, но и происходит испарение излишков в лаги из него.

У большинства растений устьица располагаются преимущественно в кожице нижней стороны листовой пластинки. Однако, например, у водных растений, которые плавают постоянно на поверхности воды, они находятся только на верхней стороне листа. А вот на подводных листьях таких растений устьица вовсе отсутствуют. При этом число их может достигать нескольких миллионов у разных растений.

№ 4. Какое строение имеют клетки мякоти листа? К какому типу тканей они относятся?

Мякоть листа состоит из клеток основной ткани. Несколько слоев (обычно 2 – 3), которые прилегают к верхней кожице, образованы клетками удлиненной формы, плотно соприкасаются друг с другом. Такие клетки напоминают столбики, поэтому верхняя часть основной ткани листа растения называется столбчатой.

Под клетками столбчатой ткани располагаются округлые, неплотно прилегающие друг к другу и неправильной формы клетки, которые образуют губчатую ткань.

№ 5. В каких клетках листа особенно много хлоропластов?

В цитоплазме продолговатых и одинаковых по величине клеток, которые образуют верхнюю часть основной ткани листа – столбчатой, содержится особенно много хлоропластов.

Стр. 70. Подумайте

Какую функцию выполняют проводящие пучки листа? Клетками каких тканей они образованы?

У проводящих пучков листа сразу несколько функций. Во-первых, это транспорт воды и растворенных в ней минеральных веществ, которые нужны растению. Осуществляется данный процесс при помощи сосудов проводящих пучков. Во-вторых, волокна проводящего пучка обеспечивают листу прочность. В-третьих, благодаря ситовидным трубкам проводящего пучка происходит проведение растворов органических веществ.

Проводящие пучки листа образованы механическими и проводящими тканями.

Стр. 70. Задания

№ 1. Сравните строение клеток, образующих различные ткани листа. Выделите особенности в строении клеток различных тканей. Как вы считаете, чем можно объяснить особенности в строении различных клеток листа? Свои предположения обсудите в классе.

На нижней и верхней поверхностях листа есть кожица, которая представляет собой разновидность покровной ткани. Она защищает внутренние клетки от пересыхания и механического повреждения, воздействия факторов окружающей среды, а также обеспечивает испарение воды и газообмен. Ее клетки бесцветны. Это необходимо для того, чтобы солнечный свет мог свободно проникать внутрь листа.

Внутренняя часть листа образована основной тканью, способной к фотосинтезу. В клетках этой ткани содержатся хлоропласты, а также две разновидности основной ткани: губчатая и столбчатая. Под верхней кожицей располагается столбчатая ткань, состоящая из продолговатых клеток с большим количеством хлоропластов и плотно прилегающих друг к другу в несколько слоев. Под столбчатой тканью находятся клетки губчатой ткани. Они округлые, рыхло расположены, а между ними есть много межклетников с воздухом. По сравнению со столбчатой тканью, в клетках губчатой ткани содержится меньшее количество хлоропластов.

№ 2. Изучите таблицу «Число устьиц у разных растений на 1 мм 2 поверхности листа». Проанализируйте число и расположение устьиц на верхней и нижней поверхности листьев у разных растений. Сделайте вывод и обсудите его с учащимися класса.

У большинства растений основная часть устьиц располагается на кожице нижней части пластинки листа. Более того, у растений, которые произрастают в местностях с влажными и умеренно влажными условиями, устьица на верхней стороне листа и вовсе отсутствуют. Например, у яблони, дуба или сливы.

У водных растений, листья которых находятся над поверхностью воды, например, у кувшинки, наибольшее количество устьиц располагается именно на верхней поверхности листовой пластинки. Это можно пояснить необходимостью испарения и газообмена, который проходит легче на открытом воздухе, нежели под водой.

У растений, которые произрастают в местах с недостаточным уровнем влажности, устьица, находятся в достаточном количестве и на верхней, и на нижней стороне листовой пластинки.

Таким образом, можно сделать вывод, что для растений, которые произрастают во влажных местах, по сравнению с растениями, произрастающими в местностях с недостаточным уровнем влажности, количество устьиц имеет огромное значение. Потому как с их помощью происходит газообмен у растения. У таких растений количества устьиц на каждый квадратный сантиметр листа достаточно велико.

№ 3. Учёные установили, что, чем больше загрязнён воздух, тем меньше число устьиц. У листьев, собранных с деревьев, растущих в пригородах, где воздух относительно чистый, на единицу поверхности листа приходится в 10 раз больше устьиц, чем у листьев деревьев сильно загрязнённых промышленных районов. Какой вывод из этого можно сделать?

Из этого можно сделать вывод, что растения, которые произрастают в сильно загрязненных промышленных районах, приспосабливаются к внешним окружающим условиям. Поглощение чрезмерно загрязненного воздуха вредно для растений, поэтому они сокращают количество устьиц на своих листовых пластинках, чтобы не поглощать вредные вещества и тем самым сохранить себе жизнь.

Источник

БИОЛОГИЧЕСКИЙ ОТДЕЛ ЦЕНТРА ПЕДАГОГИЧЕСКОГО МАСТЕРСТВА

какая ткань образована клетками удлиненной формы

Ткани высших растений

Автор статьи Вислобоков Н.А.

Ткань – это совокупность клеток, имеющих общее происхождение, положение и выполняющих общую функцию. Перед тем как разбираться во всем разнообразии тканей высших растений, следует вспомнить строение растительной клетки и ее отличия от животных клеток. Клетки высших растений состоят из клеточной оболочки (клеточной стенки), протопласта (ядра и цитоплазмы) и вакуоли с клеточным соком. В цитоплазме находятся различные органеллы – рибосомы, пластиды, митохондрии, аппарат Гольджи и т.д. Отличительными чертами растительной клетки является наличие целлюлозной клеточной стенки, большой центральной вакуоли с клеточным соком, а также присутствие пластид в цитоплазме. Запасным веществом растительных клеток в отличие от животных является крахмал, а деление клеток происходит с образованием фрагмопласта.

какая ткань образована клетками удлиненной формы

Признаки

Клетки растений

Клетки животных

Немногочисленные крупные с клеточным соком

Многочисленные мелкие пищеварительные или сократительные

С образованием фрагмопласта

Строение растительной клетки. 1 – плазмалемма; 2 – пластида; 3 – клеточная стенка; 4 – цитоплазма; 5 – митохондрия; 6 – плазмодесма; 7 – комплекс Гольджи (диктосомы); 8 — эндоплазматическая сеть; 9 — оболочка ядра; 10 – ядрышко; 11 – ядро; 12 – тонопласт (оболочка вакуоли); 13 – вакуоль.

Ткани высших растений можно классифицировать по-разному. Так, можно различать простые и сложные ткани. Простые ткани сложены одинаковыми клетками. Например, к простым тканям относятся склеренхима, паренхима и хлоренхима. Сложные ткани состоят из разных клеток (проводящих, механических, запасающих). Примерами сложных тканей могут служить флоэма и ксилема. Также ткани можно разделить по происхождению на первичные и вторичные – образовавшиеся в результате деятельности первичных или вторичных меристем соответственно (например, первичная ксилема и вторичная ксилема). Говоря о разнообразии тканей высших растений, чаще всего прибегают к классификации, основанной на их функциях в организме растения. Так, ткани растений разделяют по выполняемым ими функциям на следующие группы:

Покровные ткани

Эпидерма – первичная покровная ткань высших растений. Она состоит из одного слоя клеток, расположенных на поверхности тела растения. Клетки эпидермы плотно сомкнуты друг с другом (без межклетников), а их клеточные стенки, обращенные к внешней среде утолщены. Снаружи эпидерма покрыта неклеточным слоем – кутикулой. Кутикула состоит из воскоподобных веществ и играет важную роль в защите растения от излишнего испарения. В составе эпидермы также можно встретить разнообразные волоски (трихомы). Трихомы могут быть одноклеточными или многоклеточными, простыми (в виде простого волоска) или сложной формы (разветвленные, звездчатые, Т-образные и т.д.). Важной частью эпидермы также являются устьица. Устьице состоит из двух замыкающих клеток обычно бобовидной формы, между которыми находится устьичная щель, способная открываться и закрываться. Устьица выполняют две важные функции – регулируют интенсивность испарения, а также через устьичную щель осуществляется газообмен растения с внешней средой. Следует отметить, что эпидерма – это «прозрачная» ткань, в основных клетках эпидермы отсутствуют хлоропласты. Однако в замыкающих клетках устьиц хлоропласты есть, они необходимы для их работы по закрыванию и открыванию устьица. Клетки эпидермы, которые прилегают к замыкающим клеткам, называются побочными. По их числу, ориентации и взаимному расположению выделяют разные типы устьичного аппарата. Так, например, различают парацитный, диацитный, анизоцитный, антомоцитный и множество других типов устьичных аппаратов.

Рисунок 1: Эпидерма.

Рисунок 2: Основные типы устьичных аппаратов. 1 – диацитный; 2 –парацитный; 3 –анизоцитный; 4 — аномоцитный.

Вторичная покровная ткань высших растений – это пробка. Пробковый слой обычно образуется на вторично утолщенных стеблях и корнях высших растений. Пробка (она же феллема), образуется в результате работы так называемого пробкового камбия (или феллогена). В феллогене клетки делятся и откладываются наружу, их клеточные стенки утолщаются и суберинизируются (опрбковевают). Суберин – это вещество непроницаемое для воды и воздуха, следовательно, внутреннее содержимое клеток вскоре отмирает. В результате пробковый слой состоит из мертвых клеток и является газо- и водонепроницаемой покровной тканью.

Рисунок 3: Феллема, феллоген, феллодерма.

Механические ткани

Существует две специализированные механические ткани высших растений – склеренхима и колленхима.

Склеренхима, как правило, состоит из клеток вытянутой формы – волокнообразных. Их клеточные стенки утолщаются и лигнифицируются, то есть одревесневают. Живое содержимое клетки впоследствии отмирает. Таким образом, склеренхима – это мертвая ткань, механическую функцию в которой выполняют жесткие клеточные стенки. Склеренхима твердая жесткая ткань и в растении она выполняет армирующую функцию, располагаясь обычно тяжами или слоями. Однако иногда склеренхима может быть представлена в виде отдельных клеток с одревесневшими клеточными стенками, разбросанных в толще некой мягкой ткани (например, паренхимы). Такие клетки называются склереидами. По форме различают разные типы склереид: брахисклереиды, астросклереиды, остеосклереиды и волокнистые склереиды. Все склеренхимные элементы вместе составляют стереом – совокупность всех толстостенных одревесневших клеток растения. Следует также помнить, что отчасти механическую функцию, подобно склеренхиме, выполняет водопроводящая ткань ксилема (в особенности ядровая древесина – вторичная ксилема, прекратившая проводить воду).

Рисунок 1: Склеренхима.

Колленхима также является механической тканью, однако клетки ее остаются живыми. Их клеточные стенки утолщаются, но неравномерно и не одревесневают. Живые клетки упругие, так как находятся под тургорным давлением, а клеточные стенки эластичны, поскольку состоят из полисахаридов. Именно эти свойства и позволяют колленхиме выполнять свою механическую функцию. Таким образом, колленхима – это живая упругая эластичная механическая ткань. Обычно колленхима располагается в тех органах высших растений, которые подвержены изгибу и должны быть упругими. Например, это стебли травянистых растений, особенно если стебель граненый или ребристый, то вдоль граней под эпидермой, скорее всего, располагаются тяжи колленхимы. Также колленхима часто встречается в листьях в черешке и вдоль средней жилки, поскольку именно эти части должны быть эластичными и упругими. Выделяют три типа колленхимы: уголковую (клеточные стенки утолщены в местах контакта трех и более клеток – «в уголках»), пластинчатую (утолщены продольные клеточные стенки) и рыхлую (похожа на уголковую, но с крупными межклетниками).

Рисунок 2: Колленхима. А – рыхлая; Б – пластинчатая; В – уголковая. 1 – первичная; клеточная стенка; 2 – вторичная клеточная стенка; 3 – межклетник; 4 – протопласт.

Ассимилирующие ткани (хлоренхима)

Высшие растения являются фотоавтотрофами, то есть получают питательные органические вещества в результате процесса фотосинтеза. Соответственно, у высших растений существуют ткани, специализированные для того, чтобы в них активно происходил фотосинтез. Такая фотосинтезирующая ткань имеет название хлоренхима, которое происходит от слова «хлор», что значит «зеленый». Действительно, эту ткань несложно узнать по ее зеленому цвету. В клетках хлоренхимы находится много хлоропластов и активно происходит фотосинтез. Эту ткань мы найдем в первую очередь в листьях высших растений, но не стоит забывать, что зеленым может быть и стебель, например, травянистого растения. В листе хлоренхима может быть представлена однородной рыхлой тканью, а может быть дифференцирована на столбчатую и губчатую. Столбчатая хлоренхима состоит из клеток вытянутой формы, которые расположены плотными рядами в один или несколько ярусов. Столбчатая хлоренхима обычно располагается под верхней эпидермой листа, то есть с той стороны, которая наиболее ярко освещена. Такая форма и расположение клеток позволяют ткани наиболее эффективно улавливать солнечный свет, необходимый для фотосинтеза. В некоторых листьях можно найти еще один столбчатый слой у нижней эпидермы. Такая анатомия характерна для растений, листья которых всегда ярко освещены с обеих сторон. Губчатая хлоренхима состоит из округлых и овальных клеток с большими межклетниками, за счет которых ткань вентилируется, в результате чего происходит газообмен, необходимый для фотосинтеза. В листе она обычно прилегает к нижней эпидерме. Хвоинка сосны является видоизмененным листом, и внутри нее также находится хлоренхима. Но ее клетки имеют извилистые очертания, за что хлоренхима называется складчатой. У некоторых мохообразных фотосинтезирующие ткани имеют вид зеленых нитей из одного ряда клеток, а в хлоренхиме антоцеротовых каждая клетка имеет только один очень большой хлоропласт.

Рисунок 1: Хлоренхима.

Рисунок 2: Поперечный срез листа. 1 – эпидерма; 2 – столбчатая хлоренхима; 3 – губчатая хлоренхима; 4 – подустьичная полость; 5 – устьице.

Поглощающие ткани

Высшие растения поглощают воду с помощью специальных тканей. У мохообразных отсутствуют корни, и всасывание воды происходит всей поверхностью тела (например, с помощью гиалиновых клеток у сфагновых мхов) или с помощью ризоидов – длинных тонкостенных клеток. Сосудистые растения имеют корни, поверхность которых покрыта ризодермой (эпиблемой) – специализированной всасывающей тканью. Ризодерма гомологична эпидерме, то есть также формируется из одного внешнего слоя клеток, покрывающих орган. Однако ризодерма не является покровной тканью, поскольку практически не выполняет защитную функцию. Ее клетки тонкостенные и специализируются на поглощении воды и минеральных солей из почвы, поглощение при этом происходит избирательно и с затратой энергии. В ризодерме различают два типа клеток: трихобласты и атрихобласты. У трихобластов наружная часть клетки выпячивается и образует длинный вырост – корневой волосок, служащий для увеличения поверхности всасывания. Корневой волосок выделяет слизь, которая помогает растворять поглощать минеральные вещества из почвы. Атрихобласты не формируют корневых волосков, но также поглощают вещества своей поверхностью.

Рисунок: Ризодерма. А – Продольный разрез корня; Б – Клетки ризодермы. 1 – зона проведения; 2 – зона всасывания; 3 – зона роста; 4 – зона деления; 5 – корневые волоски; 6 – корневой чехлик.

У некоторых тропических эпифитных растений вместо ризодермы развивается веламен. Веламен гомологичен ризодерме, но в отличие от нее является многослойной тканью и состоит из отмерших клеток. Их клеточные стенки имеют спиральные утолщения, которые служат ребрами жесткости, сами клеточные стенки частично разрушаются, а внутреннее содержимое клеток отмирает. В результате получается структура наподобие губки, которая способна впитывать воду из влажного воздуха, тумана или осадков. Таким образом, веламен поглощает вещества пассивно и не избирательно. Направленный и избирательный транспорт воды дальше внутрь корня происходит при участии экзодермы, подстилающей веламен (как, впрочем, и любую ризодерму).

Проводящие ткани (ксилема, флоэма)

Ксилема – сложная ткань, то есть состоит из клеток разной морфологии. В состав ксилемы одновременно входят и проводящие, и механические, и запасающие элементы.

Ксилема проводит воду с растворенными в ней минеральными веществами от корней по всему остальному телу растения. Таким образом, по ксилеме в основном осуществляется восходящий ток. Проводящие элементы ксилемы – это сосуды и трахеиды. Следует помнить, что ксилема голосеменных растений лишена сосудов. Трахеида образуется из клетки удлиненной формы, ее клеточная стенка утолщается и лигнифицируется, то есть одревесневает. Протопласт при этом отмирает и в результате получается мелкий капилляр, по которому может транспортироваться вода. Прочные клеточные стенки предохраняют просвет капилляра от схлопывания. От трахеиды к трахеиде вода транспортируется через специальные поры. Сосуд, по сути, является таким же капилляром, как и трахеида, но более длинным, широкопросветным и многоклеточным. Каждый сосуд состоит из отдельных клеток (члеников сосуда) с одревесневшей оболочкой и отмершим протопластом, между члениками сосуда формируются уже не поры, а перфорационные пластинки (то есть сквозные отверстия). Между сосудами, как и между трахеидами, есть поры, через которые также может транспортироваться вода. Кроме проводящих элементов, в состав ксилемы входят механические волокна – волокна либриформа. Это удлиненные клетки, похожие на трахеиды, однако их клеточные стенки очень сильно утолщены и лигнифицированы. Просвет таких капилляров слишком мал для осуществления транспорта воды, зато толстая и прочная клеточная стенка выполняет механическую функцию подобно склеренхиме. Ксилема в основном состоит из мертвых клеток, обычно небольшой процент живых клеток представлен древесинной паренхимой. Эти клетки в основном выполняют запасающую функцию.

Флоэма, как и ксилема, – это сложная ткань, которая состоит из разных клеток. В состав флоэмы входят проводящие механические и паренхимные (в том числе запасающие) элементы.

Флоэма транспортирует раствор питательных веществ, в основном это углеводы, образовавшиеся в результате фотосинтеза. Поскольку фотосинтез происходит преимущественно в листьях, а питательные вещества нужно доставлять во все части растения, в том числе и в корни, по флоэме преимущественно осуществляется нисходящий ток веществ. Проводящими элементами являются ситовидные клетки. Это живые клетки, они имеют вытянутую форму, а в их стенках формируются так называемые ситовидные поля. Ситовидное поле – это участок клеточной стенки, где близко друг к другу расположено множество плазмодесм. Через ситовидные поля происходит транспорт веществ от одной ситовидной клетки к другой. У покрытосеменных растений проводящими элементами флоэмы являются ситовидные трубки. Ситовидная трубка – это более длинная многоклеточная проводящая структура. Состоит она из одного ряда клеток, называемых члениками ситовидной трубки. В местах контакта члеников друг с другом формируются ситовидные пластинки – участки клеточной стенки, где расположено одно или несколько сближенных ситовидных полей. Вещества транспортируются по внутреннему содержимому живой клетки. Однако в ситовидных элементах деградируют многие органеллы, в том числе и ядро. Таким образом, ситовидная клетка и членик ситовидной трубки находятся в «полуживом» состоянии. При этом существуют специальные клетки, которые поддерживают ситовидные элементы в этом состоянии, обеспечивают и регулируют их жизнедеятельность. Такие клетки называются клетками-спутницами у члеников ситовидных трубок, а ситовидные клетки поддерживают специальные клетки Страсбургера. Кроме проводящих элементов во флоэме, как и в ксилеме, находятся паренхимные (запасающие) клетки, а также механические элементы (лубяные волокна). Волокна обычно представлены удлиненными клетками с толстой одревесневшей клеточной стенкой.

Запасающие ткани (запасающая паренхима)

Запасающие ткани высших растений бывают различными по происхождению, также различия заключаются в том, какие именно вещества и в какой части клетки запасаются.

Главное запасное вещество высших растений – это крахмал. Крахмал синтезируется и откладывается в виде зерен в специальных пластидах – амилопластах. Крахмальные зерна увеличиваются в размере и растягивают пластиду. В результате клетка такой запасающей ткани содержит множество крупных зерен крахмала – примером может служить запасающая ткань в клубне картофеля.

Если растение запасает питательные вещества не на очень долгий срок, то они могу откладываться в виде сахаров в вакуолях клеток. Например, в сочной ткани многих плодов. Сочный плод рассчитан на то, что его съест некое животное, а значит, он должен быть привлекательным для него – питательным и сладким.

В эндосперме некоторых семян запасание происходит за счет утолщения клеточной стенки, в которой откладывается гемицеллюлоза.

При прорастании семени клетки частично растворяют свои клеточные стенки и потребляют углеводы, из которых она состоит. В качестве запасного вещества может выступать белок. Он может откладываться в вакуолях (алейрон) или в лейкопластах. В цитоплазме запасаются жиры в виде сферосом.

Кроме питательных веществ, ткань может запасать воду. Клетки водоносной ткани бывают ослизнены и имеют крупные вакуоли, в которых сохраняется влага.

Рисунок: Запасающая паренхима клубня картофеля. 1 – крахмальные зерна.

Основные ткани (основная паренхима)

К системе тканей основной паренхимы традиционно относят все ткани, образованные из основной меристемы (не являющиеся покровными и проводящими) то есть запасающие, фотосинтезирующие и т.д. Однако эти ткани специализированы на выполнении конкретной функции и рассматриваются обычно отдельно. Основной паренхимой в узком смысле называют ткань, состоящую из рыхло расположенных более или менее шарообразных клеток.

Между клетками есть заметные межклетники.

Данная ткань не специализирована для выполнения какой-то определенной функции, это структурная ткань, заполняющая пространство того или иного органа. Поскольку клетки основной паренхимы живые, их клеточные стенки не лигнифицированы, а в цитоплазме есть полный набор клеточных органелл, при необходимости она может становиться запасающей, водоносной или фотосинтезирующей тканью.

Также основная паренхима может проявлять меристематическую активность – клетки могу начать делиться. Со временем клеточные стенки паренхимы могут одревесневать, тем самым начиная выполнять механическую функцию.

Таким образом, основная паренхима – это неспециализированная структурная ткань, которая может специализироваться при определенных условиях.

Рисунок: Основная паренхима.

Образовательные ткани

Массив ткани, в которой происходят клеточные деления в теле высшего растения, следует назвать образовательной тканью или меристемой. Образовательные ткани не являются постоянными. Клетки меристемы недифференцированные и не специализированные, у них тонкие клеточные оболочки. Данные клетки делятся и в дальнейшем преобразуются в ту или иную специализированную ткань.

Высшие растения имеют верхушечный рост, их побеги (и корни) нарастают за счет верхушечной или апикальной меристемы. Рассмотрим апикальную меристему стебля. Это массив делящихся клеток на вершине растущей оси побега, ниже апекса ткань разделяется на три отдельные меристемы: протодерму, прокамбий и основную меристему. Протодерма – это один поверхностный слой клеток меристемы. Из протодермы в дальнейшем формируется эпидерма. Прокамбий представлен тяжами клеток, которые дифференцируясь, становятся проводящими тканями (формируют проводящие пучки). Остальные ткани стебля (паренхима, хлоренхима, склеренхима и т.д.) формируются из основной меристемы.

Рисунок 1: Апикальная меристема стебля.

У высших растений выделяют две вторичные латеральные меристематические ткани – камбий и феллоген. Камбий (или сосудистый камбий) закладывается в проводящих пучках стебля или корня между флоэмой и ксилемой. В результате клеточных делений внутрь откладывается ткань, дифференцирующаяся в ксилему, а наружу – будущая флоэма. За счет работы камбия происходит процесс вторичного утолщения стебля или корня. Соответственно, сформированные камбием проводящие ткани будут называться вторичными – вторичная ксилема и вторичная флоэма. Следует помнить, что при вторичном утолщении камбиальная зона возникает не только внутри проводящих пучков, но и формируется так называемый межпучковый камбий. В результате на поперечном срезе камбий имеет вид общего меристематического кольца.

Рисунок 2: Камбий. 1 – эпидерма; 2 – паренхима; 3 – флоэмные волокна; 4 – флоэма; 5 – пучковый камбий; 6 – ксилема; 7 – межпучковый камбий.

Феллоген (или пробковый камбий) возникает в корнях и стеблях растений при их вторичном утолщении. При утолщении эпидерма и впоследствии первичная кора опадает и отмирает, покровную функцию в данном случае выполняет пробковый слой, формируемый феллогеном. В результате клеточных делений в феллогене, наружу откладываются клетки феллемы (или пробка). Феллоген снизу подстилается слоем клеток – феллодермой. Комплекс из трех данных тканей носит название перидерма.

Рисунок 3: Феллема, феллоген, феллодерма.

Секреторные ткани (железистые волоски, смоляные ходы)

Секреторные (или выделительные) структуры высших растений очень разнообразны как по строению, так и по происхождению. Они делятся на две группы: экзогенные и эндогенные.

Экзогенные секреторные структуры расположены на поверхности тела растения. К ним относятся гидатоды – структуры, выделяющие капельно-жидкую воду. Их наличие характерно для растений, обитающих в условиях повышенной влажности. К гидатоде подходят проводящие элементы ксилемы, по которым транспортируется вода. Также к экзогенным структурам относятся различные железистые волоски или более крупные многоклеточные железки. Они, как правило, выделяют эфирные масла, которые скапливаются под кутикулой наружных клеток структуры. Нектарники также являются экзогенными секреторными структурами. Они выделяют секрет богатый сахарами, сахара поступают в нектарники по флоэмным элементам. Различают флоральные (расположенные в цветке) и экстрафлоральные нектарники.

Эндогенные секреторные структуры находятся внутри тела растения. Они бывают одноклеточные и многоклеточные. Одноклеточные структуры могут быть разнообразными по содержанию – это слизевые, кристаллоносные, масляные клетки, одноклеточные млечники, а также прочие клетки, накапливающие в себе те или иные вещества. Многоклеточные эндогенные структуры обычно выделяют секрет в некую полость, представляющую собой межклетник. По типу межклетников различают схизогенные и лизигенные вместилища. По типу содержащегося в них секрета различают смоляные, слизевые, камеденосные ходы и т.д. К многоклеточным структурам также относят млечники. Они состоят из трубчатых клеток, внутри которых находится млечный сок. Если концевые стенки трубчатых клеток деградируют, то такой млечник называют нечленистым.

Рисунок: Секреторные структуры.

Вентиляционные ткани (аэренхима)

Аэренхима – это вентиляционная ткань или ткань проветривания. Главную функцию аэренхимы выполняют крупные межклетники, по которым и циркулирует воздух. Воздух необходим высшим растениям как для дыхания, так и для процессов фотосинтеза. Наличие аэренхимы характерно для водных или околоводных высших растений. Воздух, находящийся в системе полостей аэренхимы, не только вентилирует все части растения (в особенности подводные), но и придает им плавучесть, как, например, листьям кувшинки.

Аэренхима обычно имеет вид системы полостей с однослойными стенками. Клетки, слагающие стенки полостей могут иметь вытянутую форму или же могут быть шарообразной формы. Сами полости при этом в некоторых местах имеют тонкие пленчатые перегородки из одного ряда мелких клеток. Клетки этих перегородок имеют звездчатую форму, таким образом, между «лучей» данных клеток остаются мелкие отверстия в пленке (межклетники). Данные перегородки не мешают выполнять вентиляционную функцию аэренхиме, пропуская воздух через эти мелкие отверстия. Однако, если произойдет повреждение и полость начнет заполняться водой, то такая перегородка не попустит капельно-жидкую воду, поскольку поверхностное натяжение жидкости не позволит ей пройти сквозь мелкие отверстия. Такая аэренхима встречается у кувшинки, ириса, рдеста и т.д.

В другом случае аэренхима может быть целиком представлена только звездчатыми клетками. Такие клетки формируют трехмерную рыхлую ткань, похожую по консистенции на вату. Между «лучей» этих клеток также формируется одно большое общее межклеточное пространство, по которому циркулирует воздух. Такой тип аэренхимы характерен для ситников, осок, некоторых злаков и т.д. Также рыхлая аэренхима, многократно преломляя свет, придает белый цвет лепесткам некоторых растений.

Рисунок: Аэренхима. А – аэренхима на поперечном срезе стебля; Б – клетки пленчатой перегородки, разделяющей полости аэренхимы; В – аэренхима из трехмерно расположенных звездчатых клеток.

Вентиляционная ткань выполняет свою функцию за счет многочисленных увеличенных межклетников. Стоит помнить, что межклетники по типу происхождения делятся на три типа. Схизогенные межклетники образовались в результате простого расхождения клеток в пространстве. Лизигенные полости формируются в результате деградации (лизиса) некоторых клеток. Крупные рексигенные полости являются результатом механического разрыва тканей, например, в центре черешков или стеблей некоторых растений.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *