какие электродвигатели применяют для компенсации реактивной мощности

Компенсация реактивной мощности «Три — в одном» или панацея от всех бед?

Предисловие

Сразу оговорюсь, что данная статья имеет обзорный характер и не претендует на научный труд. Поэтому ряд вопросов автор рассматривает поверхностно. Почему «три в одном»? По нашему мнению существуют следующие аспекты компенсации реактивной мощности (РМ):

Мы намеренно опускаем все три аспекта. Это отдельная тема. Написание этой статьи ставило своей целью собрать воедино разрозненную общую информацию о компенсации РМ из различных источников, проанализировать ее и представить на суд читателей ее различные аспекты для более полного понимания сути этого процесса.

Как известно, электроэнергия — это товар, который имеет свое качество. Качество электроэнергии должно соответствовать требованиям ГОСТ 13109-97.

Сегодня потребителя интересуют три вопроса:

Ремарка

По давно проверенной статистике, как только потребитель получает достоверную информацию о том, куда и сколько он тратит киловатт-часов, его суммарное потребление снижается на 10-15%. Это только «сливки» потенциала энергосбережения, которые можно снять без больших затрат на модернизацию электросети и оборудования.

Справка

Проведенные в Московском энергетическом институте под руководством д. т. н., проф. Абрамовича Б. Н. исследования влияния качества электроэнергии на работу электрооборудования показали, что при нарушении нормативных показателей качества электроэнергии (КЭ) происходит сокращение срока службы:

Например, стоимость ущерба от плохого качества электрической энергии в экономике США оценивается более чем в 150 миллиардов долларов в год (данные 2005 г.).

А как оценивается ущерб от плохого качества электроэнергии в экономике России?

Официальная статистика по степени серьезности и распределению падений напряжения отсутствует, но в настоящее время проводятся некоторые измерения регионального масштаба, которые могут дать информацию к размышлению. Например, в исследовании, проводимом одним из основных производителей электроэнергии, замерялись перепады напряжения на 12 участках мощностью от 5 до 30 МВА. За 10 месяцев было зафиксировано 858 перепадов, 42 из которых привели к сбоям и финансовым потерям. Хотя на всех этих 12 участках потребителями были производители с несложной технологией, финансовые потери составили 600 тыс. евро, а максимальная сумма убытков на один участок составила 165 тыс. евро.

Немного теории

Электрической сети в целом требуется равенство генерации и потребления активной и реактивной мощности. Основным нормативным показателем поддержания баланса активной мощности в каждый момент времени является частота переменного тока, которая служит общесистемным критерием. А основным нормативным показателем поддержания баланса реактивной мощности в каждый момент времени является уровень напряжения — местный критерий, который для каждого узла нагрузки и каждой ступени номинального напряжения существенно отличается. Поэтому в отличие от баланса активной мощности необходимо обеспечить баланс реактивной мощности не только в целом в энергосистеме, но и в узлах нагрузки. И оттого, где и как «гуляет» реактивная мощность (РМ) по сети, зависит многое, если не все.

Наглядным примером серьезности проблемы компенсации РМ является отчет Рабочей группы Госдумы РФ по расследованию причин московской аварии, произошедшей 25 мая 2005 г. В нем сделан вывод о том, что одной из главных причин аварии на подстанции «Чагино» явился дефицит источников реактивной мощности в электрической сети Москвы и Подмосковья. В отчете также указано, что такой дефицит создает угрозу повторения системных аварий.

Вот почему существует необходимость самого серьезного отношения к проблеме компенсации реактивной мощности.

Сегодня, когда строительство новых генерирующих мощностей очень дорого и невозможно в короткий срок, актуальным становится максимальное использование действующих ЛЭП и трансформаторов, повышая их пропускную способность за счет применения различных устройств управляемой компенсации реактивной мощности.

Как известно, полная мощность сети состоит из активной мощности Р, передаваемой в нагрузку, и реактивной Q, которая используется на нагрев обмоток электродвигателей и трансформаторов. Q отрицательно влияет на режимы работы электрической сети и показатели качества электроэнергии. Но без нее процесс получения полезной работы был бы невозможен. Рисунок 1.

какие электродвигатели применяют для компенсации реактивной мощности

Но отрицательное влияние РМ на сеть несоизмеримо больше, чем положительное. Недаром еще во времена заката СССР в конце 80-х директивно на всех промышленных предприятиях были установлены конденсаторные батареи. Знали, что делали.

Реактивный ток дополнительно загружает высоковольтные линии и трансформаторы, приводит к увеличению потерь активной (АМ) и реактивной мощности (РМ), влияет на уровень напряжения у потребителя. Большая величина РМ в сети приводит к несинусоидальности напряжения, появляются дополнительные потери в сети, электрических машинах и трансформаторах, сокращается срок службы изоляции кабелей и другого оборудования, появляются помехи и сбои в работе компьютеров, устройств автоматики, телемеханики и связи, возникают резонансные перенапряжения в электрических сетях.

При компенсации РМ происходит уменьшение потребления РМ и возврат ее в сеть (см. график 1). Вследствие этого полная мощность S, потребляемая из сети практически вся используется на полезную работу. Q1 уменьшается до значения Q2.

Использование установок компенсации реактивной мощности (УКРМ) позволяет

какие электродвигатели применяют для компенсации реактивной мощности

Характерные отраслевые коэффициенты мощности приведены в Таблице 1.

Характерные отраслевые коэффициенты мощности

Тип нагрузкиПримерный коэффициент мощности
Мукомольные и крупозаводы0,6-0,7
Мясоперерабатывающие предприятия0,6-0,7
Мебельные предприятия0,6-0,7
Деревообрабатывающие предприятия0,55-0,65
Молокоперерабатывающие предприятия0,6-0,8
Машиностроительные предприятия0,5-0,6
Авторемонтные предприятия0,7-0,8

Когда мы 7 лет назад начали заниматься проблемой повышения качества и надежности электроснабжения предприятий и снижения энергопотребления при помощи компенсации реактивной мощности, у нас появились вопросы:

Пришлось взяться за учебники, пройти техническое обучение, перелопатить кучу литературы и Интернет в поисках расчетов, методик выбора, характеристик процессов протекающих в электросетях при работе УКМ.

Мы пришли к выводу, чтобы понять суть процессов, протекающих в конкретной электросети, нужна достоверная техническая информация. Для этого мы начали проводить мониторинг параметров электросети. Были закуплены специальные приборы, позволяющие снимать одновременно несколько десятков характеристик электросети с интервалом в доли секунды. (Токи, напряжения, активные, реактивные и полные мощности по каждой фазе, Cos F, гармонический состав сети и т.д.). Полученная информация оказалась очень интересна (см. графики 1, 2).

какие электродвигатели применяют для компенсации реактивной мощности

какие электродвигатели применяют для компенсации реактивной мощности

Как видно из графиков, при выключенной конденсаторной установке Cos F «плавает» от 0,3 до 0,5. При включенной он фактически стабилен на уровне 0,75-0,8. Также при включенной УКРМ сглаживаются пульсации тока и напряжения, характер потребления становится более равномерным и исключает преждевременный выход оборудования из строя. И наконец, уровень нелинейных искажений (гармоник) в сети THDI находится в пределах нормы (не более 5-7%).

За 7 лет нами проведен мониторинг параметров электрических сетей более 30 промышленных предприятий Алтая различного профиля, проанализированы полученные данные, выяснены некоторые закономерности процесса потребления реактивной мощности (РМ).

Анализ результатов измерений в разных участках системы электроснабжения предприятия позволяет определить оборудование, влияющее на качество электроэнергии, генерирующее помехи, которые могут выводить из строя компьютеры и другое электронное оборудование. Такой анализ необходимо производить на объектах, где используются частотные электроприводы или имеют место частые коммутации мощных электроприемников (например сварочное производство).

Технический эффект, ожидаемый в результате применения УКРМ, представлен в Таблице 2.

Технический эффект ожидаемый в результате применения УКРМ

Cos φ1, без компенсацииCos φ2, с компенсациейСнижение величины тока и полной мощности, %Снижение величины тепловых потерь, %
0,50,94469
0,515075
0,60,93355
0,614064
0,70,92239
0,713051
0,812036

Экономический эффект от использования УКРМ выражается в значительной экономии энергоресурсов предприятиями, снижением расходов на ремонты и аварии, а также прямой выгодой в виде снижения платы за потребляемую электроэнергию.

Заключение

Для энергосистем, промышленных предприятий реактивная мощность всегда была и остается неизбежным атрибутом технологического оборота электроэнергии, влияющим на его экономическую эффективность. И поэтому использование такого мощного рычага воздействия как управление реактивной мощностью — один из наиболее эффективных и малозатратных способов энергосбережения как в энергосистемах, так и в сетях предприятий и ЖКХ. И оттого, как технически грамотно будет решаться этот вопрос потребителями с одной стороны, и энергоснабжающими организациями с другой, будет зависеть надежность всей системы электроснабжения страны.

В данной статье мы рассмотрели только общие аспекты компенсации РМ. Намеренно не были затронуты вопросы воздействия компенсации РМ на энергосбережение, качество электроэнергии, и экономическую эффективность деятельности предприятий. Все эти вопросы могут быть рассмотрены нами позже в случае заинтересованности читательской аудитории.

А. В. СИНЕЕВ,
член правления МОСЭП,
г. Барнаул.

Источник

Эволюция технологий и устройств компенсации реактивной мощности

Если абстрагироваться от дат публикаций ряда важных ранних теоретических исследований в области снижения негативного влияния перетоков реактивной мощности на качество генерируемой/транспортируемой электрической энергии, то текущий год знаменует столетие реального практического использования устройств компенсации реактивной мощности в энергопередающих сетях разного уровня напряжения.

Впервые вне исследовательских лабораторий для компенсации реактивной мощности в 1914 году были использованы шунтирующие конденсаторы (H. Frankand S. Ivner, «Thyristor-ControlledShuntCompensationinPowerNetworks», ASEA Journal, 1981), подключаемые в сеть последовательно с нагрузкой, а к началу текущего тысячелетия эволюционировали не только устройства и технологии для коррекции коэффициента мощности, но и сама концепция — сегодня электрическая сеть уже рассматривается не, как пассивное сооружение для транспорта электроэнергии, а как активное устройство, участвующее в управлении режимами генерации, транспорта и потребления электрической энергии.

Переход к управляемым (гибким) системам электропередачи переменного тока (FACTS — Flexible AlternativeCurrentTransmissionSystem – термин формализован Институтом электроэнергетики EPRI в США) обусловил разработку и внедрение в энергосистемы новых типов устройств коррекции коэффициента мощности и стабилизации сетевого напряжения —управляемых шунтирующих реакторов, статических тиристорных компенсаторов реактивной мощности, синхронных статических компенсаторов реактивной мощности типа СТАТКОМ (StaticSynchronousCompensator — STATCOM), синхронных статических продольных компенсаторов реактивной мощности на базе преобразователей напряжения, управляемых тиристорами устройств продольной емкостной компенсации, управляемых фазоповоротных устройств, вставок постоянного тока на базе преобразователей напряжения, объединенных регуляторов потока мощности, асинхронизированных машин, электромашинновентильных комплексов и т.д., а также управляющих систем — глобального мониторинга, защиты и управления (wide-areamonitoring, protection, andcontrolsystems — WAMPAC), глобального позиционирования (GPS), фазных измерений (PMU), диспетчерского управления и сбора информации (SCADA), защиты схем управления (SPS) и пр.

какие электродвигатели применяют для компенсации реактивной мощности

Вместе с тем, во всяком случае в сетях низкого и среднего напряжения РФ по-прежнему достаточно эффективно используются традиционные устройства компенсации реактивной мощности, имеющие свои достоинства и недостатки в сравнении с устройствами, агрегатами, комплексами и системами FACTS.

Типовые топологии схем компенсации реактивной мощности

Вне зависимости от типа устройств компенсации реактивной мощности традиционными на текущий момент стали две топологии схем их присоединения к сетям электропередачи с переменного тока с линейными и нелинейными нагрузками:

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Параллельная (поперечная) компенсация реактивной мощности электродвигателя (индуктивной нагрузки): а — схема без компенсации, б — схема с компенсацией

К достоинствам схем параллельной (поперечной) компенсации реактивной мощности относят:

Недостатком параллельной (поперечной) компенсации является ограниченная возможность демпфирования быстрых изменений (колебаний) активной составляющей мощности;

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Параллельная (продольная) компенсация реактивной мощности электродвигателя: а —схема без компенсации, б — схема с компенсацией. Рис. Типовая схема устройства последовательной (продольной) компенсации реактивной мощности с защитой от перенапряжения

Достоинствами схем последовательной (продольной) компенсации реактивной мощности считают: возможность оптимизации потоков реактивной энергии по разным фазам напряжения;

значительную степень компенсации; простоту интеграции в сеть компенсирующих устройств. Недостатки последовательной (продольной) компенсации реактивной мощности — отсутствие возможности регулирования сетевого напряжения, сложность управления устройствами при переменных нагрузках, большие риски перенапряжения во время резких изменений нагрузки из-за задержки срабатывания устройства.

Традиционные устройства компенсации реактивной мощности

Статические или механически переключаемые устройства компенсации реактивной мощности.

Это типовые релейные (контакторные) установки КРМ, УКРМ и т.д. с механическим (ручным) включением/отключением ступеней батарей силовых конденсаторов. Включение или отключение каждой ступени даже с современными вакуумными контакторами занимает время, часто критическое при динамических, быстро изменяющихся нагрузках, что определяет значительные риски, как перенапряжений, так и провалов сетевого напряжения. Условная «плавность» регулирования величины генерируемой реактивной энергии зависит от числа ступеней в установке и мощности каждой ступени, а потому в сети с динамической нагрузкой всегда напряжение нестабильно и может превышать или быть ниже оптимального разности в объемах генерируемой и потребляемой реактивной мощности.

Дополнительным недостатком релейных (контакторных) установок компенсации реактивной мощности с механическим переключением является практически полная неспособность к компенсации мощности искажений, возникающей в цепях с нелинейными нагрузками из-за искажений синусоиды основной частоты тока синусоидами гармоник тока более высокого порядка и показывающей несоответствие синусоидальности кривых тока/напряжения. Причем фильтры гармоник в статических/механически переключаемых устройствах компенсации реактивной мощности остаются малоэффективными из-за нестабильности сети по теку и напряжению, а прогрессивные импульсно-модуляционные преобразователи (ИМП), ориентированные на компенсацию мощности искажений, пока имеют ограниченное применение, как из-за большой стоимости, так и несовершенства алгоритмов адаптации в конкретных сетях с конкретной нелинейностью нагрузки.

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Типовая топология компенсатора с импульсно-модуляционным (ИМП) преобразователем с: а) емкостным и б) индуктивным накопителями энергии

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Диаграммы напряжений и токов компенсатора с импульсно-модуляционным (ИМП) преобразователем с нагрузкой сложного характера, где: а) напряжения и токи трёх фаз распределительной сети; б) напряжение фазы А — UA и токи фазы А — линейной нагрузки IAлн, нелинейной нагрузки IAнн, компенсатора IAк.

Установки синхронной компенсации реактивной мощности

Установки синхронной компенсации реактивной мощности используются в энергосетях развитых стран мира уже более 50 лет, однако из-за больших потерь в сравнении с статическими устройствами компенсации реактивной мощности и стоимости (в том числе систем защиты от токов короткого замыкания) установки синхронной компенсации реактивной мощности постепенно заменяются более прогрессивными устройствами. Кроме того, установки синхронной компенсации реактивной мощности, а по факту — синхронные двигатели специальной конструкции, работающие на холостом ходу и в режиме перевозбуждения обмотки генерирующие реактивную мощность — являются средствами пассивной компенсации и не могут быть адаптированы в системах FACTS.

Переключаемые тиристорные установки компенсации реактивной мощности типа TSC. Это статические конденсаторные установки с различным числом ступеней, управляемые тиристорными переключателями, обеспечивающими быстрое подключение/отключение ступеней в момент равенства напряжений на конденсаторных блоках и в сети. Впервые статические установки компенсации реактивной мощности типа TSC были использованы ASEA в 1971 году, имели среднюю задержку переключения от половины до цикла колебаний по току/напряжению, по факту не генерировали гармоник и отличались простотой конструктивных решений.

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Переключаемая тиристорами конденсаторная установка компенсации реактивной мощности. Вместе с тем, устройства типа TSC остались ступенчатыми, а значит дискретными по потокам генерируемой мощности, а каждая батарея конденсаторов оборудовалась своим тиристорным переключателем, что делало установку материалоемкой и финансово затратной.

Отчасти недостатки финансовой доступности установок типа TSC были устранены применением тиристорно-диодных схем, к тому же выгодно отличающихся почти полным отсутствием импульсных токов при переключении, однако имеющих запаздывание включения/отключения ступени не менее одного цикла в сравнении половиной цикла у установок TSC.

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Бинарные тиристорно-диодные переключатели статических установок компенсации реактивной мощности.

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Диаграммы токов бинарной тиристорно-диодной установки компенсации реактивной мощности, где: а — d — токи по В1 — В4; е — результирующая кривая тока установки. Управляемые тиристорами реакторы.

Управляемые тиристорами реакторы (тип TCR), как правило, имеют батареи статических конденсаторов, фильтры гармоник низшего порядка и управляемую тиристорами индуктивность (собственно реактор), интегрируемую в каждую фазу питающей сети. Управляемая тиристорами индуктивность используется для демпфирования избытка реактивной мощности, генерируемой конденсаторами, что исключает риски перенапряжения. В то же время тиристорное управление, как конденсаторными блоками, так и индуктивностью позволяет формировать достаточно плавную компенсацию реактивной мощности, хотя для получения реально плавной на практике компенсации используют:

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Трех импульсные (слева) управляемые тиристорами реакторы с пассивными фильтрами низкоуровневых гармоник и двенадцати импульсные (справа) управляемые тиристорами реакторы типа TCR с трансформатором для смещения фаз, позволяющего устранить гармоники 5 и 7 порядка без использования пассивных фильтров.

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Типовая топология комбинированной установки компенсации реактивной мощности TSC-TCR.

какие электродвигатели применяют для компенсации реактивной мощности

Рис. Типовая топология тиристорно-управляемой установки последовательной (продольной) компенсации TCSC.

Самокоммутируемые преобразователи для компенсации реактивной мощности

Самокоммутируемые преобразователи для компенсации реактивной мощности – прогрессивные полупроводниковые устройства, способные к генерированию или поглощению реактивной мощности, и включающие статические синхронные компенсаторы, объединенные энергетические регуляторы потока (unifiedpowerflowcontrollers — UPFC) и динамические восстановители напряжения (dynamicvoltagerestorers — DVR).

какие электродвигатели применяют для компенсации реактивной мощности

Источник

Компенсация реактивной мощности в квартире, быту и на производстве

Слишком высокая или как еще её называют, реактивная энергия и мощность, способствуют значительному ухудшению работы электрических сетей и систем. Мы предлагаем рассмотреть в нашей статье как производится автоматическая компенсация реактивной мощности (крм) и перекомпенсация в сетях на предприятиях, в квартире и в быту.

Зачем нужна компенсация реактивной мощности

Чем больше требуется энергии — тем выше становится уровень потребления топлива. И это не всегда оправдано. Компенсация мощности, т.е, её правильный расчет, поможет сэкономить в промышленных распределительных электросетях на производстве до 50 % затрачиваемого топлива, а в некоторых случаях и больше.

Нужно понимать, что тем больше ресурсов затрачено на производство, тем выше будет цена конечного продукта. При возможности снизить стоимость изготовления товара, производитель либо предприниматель, сможет снизить его цену, чем привлечь потенциальных клиентов и потребителей.

Как наглядный пример – пара диаграмм ниже. Эти векторы визуально передают полный эффект от работы установки.

какие электродвигатели применяют для компенсации реактивной мощностиДиаграмма до работы установки какие электродвигатели применяют для компенсации реактивной мощностиДиаграмма после работы установки

Кроме этого, мы также избавляемся от потерь в электросетях, от чего эффект следующий:

Теория и практика

Чаще всего реактивная энергия и мощность потребляется при использовании трехфазного асинхронного двигателя, здесь и нужна компенсация сильнее всего. Согласно последним данным: 40 % — потребляют двигатели (от 10 кв), 30 – трансформаторы, 10 – преобразователи и выпрямители, 8% — расход освещения

Для того чтобы этот показатель уменьшить, используются конденсаторные устройства или установки. Но существует огромное количество подтипов этих электроприборов. Какие бывают конденсаторные установки и как они работают?

Видео: Что такое компенсация реактивной мощности и для чего она нужна?

Для того чтобы производилась компенсация энергии и реактивной мощности конденсаторными батареями и синхронными двигателями, понадобится установка энергосбережения. Чаще всего используют подобные устройства с реле, хотя вместо него может быть установлен контактор либо тиристор. Дома используются релейные приборы дуговой компенсации. Но если проводится компенсация реактивной энергии и мощности на заводах, у трансформаторов (там, где несимметричная нагрузка), то намного целесообразнее применять тиристорные устройства.

В отдельных случаях возможно использование комбинированных устройств, это приборы, которые одновременно работают и через линейный преобразователь, и через реле.

Чем поможет использование установок:

Как установить конденсаторные устройства

Предварительно понадобится схема работы электросети, и документы от ПУЭ, по которым и проводится решение о компенсации энергии и реактивной мощности ДСП. Далее необходим экономический расчет:

Далее нужно сгенерировать часть мощности сразу на месте её поступления в сеть при помощи генератора. Это называется централизованная компенсация. Она может проводится также при помощи установки cos, electric, schneider, tg.

Но существует также индивидуальная однофазная компенсация реактивной энергии и мощности (либо поперечная), её цена намного ниже. В этом случае производится установка упорядоченных регулирующих устройств (конденсаторов), непосредственно у каждого потребителя питания. Это оптимальный выход, если регулируется трехфазный двигатель или электропривод. Но у этого типа компенсации есть существенный недостаток – она не регулируется, и поэтому называется еще и нерегулируемой или нелинейной.

Статические компенсаторы или тиристоры работают при помощи взаимоиндукции. В этом случае переключение производят при помощи двух или более тиристоров. Самый простой и безопасный метод, но его существенным недостатком является то, что гармоники генерируются вручную, что значительно усложняет процесс монтажа.

Продольная компенсация

Продольная компенсация производится методом варистора или разрядника.

какие электродвигатели применяют для компенсации реактивной мощностиПродольная компенсация реактивной мощности

Сам процесс происходит из-за наличия резонанса, который образуется из-за направления индуктивных зарядов друг другу на встречу. Данная технология и теория компенсации мощности применяется для реактивных и тяговых двигателей, сталеплавильной или станочной техники Гармоники, к примеру, и именуется еще искусственная.

Техническая сторона компенсации

Существует огромное количество производителей и типов установок конденсаторных установок:

Их стоимость разнится в зависимости от организации, для боле точной и исчерпывающей информации посетите форум, где обсуждается компенсаций реактивной мощности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *