какие существуют формы передачи энергии

Методы передачи электроэнергии на расстояние

Электроэнергией является свойство магнитного поля преобразоваться в иные виды энергии. Такими видами энергии могут быть: механическая, химическая, паровая, лазерная. Число потребителей и источников потребления постоянно растет. Поэтому вопрос о способах передачи электроэнергии на большие расстояния, с сохранением мощности и ее распределением, остается открытым. Статья опишет основные и актуальные способы передачи, а также современные разработки в области беспроводных технологий.

какие существуют формы передачи энергии

Способы передачи электроэнергии

Электроэнергия или переменный ток, передается от источника к потребителю, через провода или подземные кабельные линии. Эти способы актуальны на протяжении многих лет. Связано это с тем, что нет технологии, способной передать электричество на большое расстояние при минимальных потерях с сохранением полной мощности. Да и способ еще должен быть максимально надежным и дешевым.

Схема передачи переменного электрического напряжения или постоянного электрического напряжения выглядит следующим образом:

какие существуют формы передачи энергии

Принцип работы и объяснение схемы:

Для постоянного тока существует выпрямительное устройство, которое находится после повышающего трансформатора. Пройдя по ЛЭП, постоянный ток сначала должен попасть на устройство преобразования постоянного тока в переменный, а только потом на понижающий трансформатор.

Воздушные и кабельные линии

Потребление электроэнергии по воздушным ЛЭП и кабельным линиям, представляет собой определенную схему. В начале схемы находится источник энергии, а именно электростанция. Электростанция подает завышенное напряжение на распределительную линию, в конце которой находится занижающий трансформатор. Основным минусом подобной схемы является именно потребность в подаче слишком высокой мощности. Связано это с потерей доли напряжения на расстоянии. Способов подобной передачи 2.

Воздушные линии представляют собой сеть высоковольтных проводов, подвешенных на столбы или опоры. Этот метод очень распространен и является эффективным. Но и у него есть ряд минусов:

какие существуют формы передачи энергии

Воздушные линии подают потребителю переменный ток. По дальности и мощности они делятся на следующие категории:

Чем выше подаваемое напряжение, тем большие расстояния оно должно покрыть от источника к потребителю.

какие существуют формы передачи энергии

Кабельные линии работают по схожему принципу. По ним также поступает переменный электрический ток. Но проводят такие линии под землей или под водой. Основными недостатками подобной передачи являются:

На данный момент существует 2 схемы передачи электроэнергии от источника к потребителю по воздушным или кабельным линиям:

Подобные схемы также делятся на категории.

Схемы в визуальном отображении:

какие существуют формы передачи энергии

Разомкнутая схема бывает 3 видов:

Замкнутая схема также бывает 3 видов:

Все эти схемы относятся к передаче постоянного тока потребителю. Передача и распределение электроэнергии подобным способом является одинаковым для российских и зарубежных сетей.

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Беспроводная передача

Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.

Катушки

какие существуют формы передачи энергии

Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:

На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.

Лазер

какие существуют формы передачи энергии

Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %. Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.

Микроволновая передача

какие существуют формы передачи энергии

Основой для передачи электроэнергии путем микроволн, стала способность 12 см волн, частотой в 2.45 ГГц, быть незаметными для атмосферы Земли. Подобная особенность могла бы сократить до минимума потерю при передаче. Для подобного способа нужны передатчик и приемник. Люди давно создали передатчик и преобразователь электрической энергии в микроволновую. Это изобретение называется магнетрон. Он стоит в каждой микроволновой печи и является очень безопасным. Вот с изобретением приемника и преобразователя микроволн обратно в электричество возникли проблемы.

какие существуют формы передачи энергии

В СССР был изобретен циклотронный преобразователь микроволн в электричество. Он представлял собой 40 см трубку и был полностью собран на лампах. КПД устройства равнялось 85 %. Но для этого способа основным минусом является способ сборки на лампах. Устройства на подобных деталях могут вернуть человечество в мир огромных телефонов, компьютеров величиной с комнату. О миниатюрных электрических приборах можно забыть.

какие существуют формы передачи энергии

Передачу микроволн можно было организовать из космоса. Подобный проект предполагал собирать энергию солнца при помощи спутника и перенаправлять на приемник, расположенный на поверхности Земли. Но для этого придется построить спутник диаметром в километр и приемник диаметром в 5 километров. О полетах в зоне действия системы можно полностью забыть.

Главной проблемой при передаче электричества беспроводным способом, является расстояние и атмосферные преломления. Стоит также учитывать мощности. Общая потребляемая мощность всех электрических приборов в квартире, равняется 30–40 кВт. Для обеспечения электричеством одной квартиры, пришлось бы строить гигантские сооружения.

На сегодняшний день единственным способом передачи энергии большой мощности, является проводной. Он не требует прямого и обратного преобразования электрической энергии. Достаточно только подать высокое напряжение в начале и существенно занизить его в конце. Этот способ имеет ряд недостатков, но остается актуальным долгие годы.

Видео по теме

Источник

Типы теплопередачи. Виды передачи теплоты

Обеспечение нужд человечества достаточным количеством энергии – одна из ключевых задач, которые стоят перед современной наукой. В связи с повышением энергозатратности процессов, направленных на поддержание базовых условий существования общества, возникают острые проблемы не только генерации больших объемов энергии, но и сбалансированной организации систем ее распределения. И тема преобразования энергии имеет ключевое значение в данном контексте. От этого процесса зависит коэффициент выработки полезного энергетического потенциала, а также уровень затрат на обслуживание технологических операций в рамках используемой инфраструктуры.

Общие сведения о технологии преобразования

Вам будет интересно:Жаркий — это… Толкование и синонимы

какие существуют формы передачи энергии

Необходимость использования разных видов энергии связана с различиями в процессах, для которых требуется питающий ресурс. Тепло требуется для отопления, механическая энергия – для силовой поддержки движения механизмов, а свет – для освещения. Электричество можно назвать универсальным источником энергии и с точки зрения ее преобразования, и в плане возможностей применения в разных сферах. В качестве исходной энергии обычно используются природные явления, а также искусственно организованные процессы, способствующие генерации того же тепла или механического усилия. В каждом случае требуется определенный вид оборудования или сложного технологического сооружения, в принципе позволяющего обеспечивать преобразование энергии в нужную для конечного или промежуточного потребления форму. Причем среди задач преобразователя выделяется не только трансформация как перевод энергии из одного вида в другой. Зачастую данный процесс служит и для изменения некоторых параметров энергии без ее трансформации.

Вам будет интересно:Павел Павлович Демидов: благотворительность, семья и карьера

Преобразование как таковое может быть одноступенчатым или многоступенчатым. Кроме того, например, работа солнечных генераторов на фотокристаллических элементах обычно рассматривается как трансформация энергии света в электричество. Но вместе с этим возможно и преобразование тепловой энергии, которую Солнце отдает грунту в результате нагрева. Геотермальные модули размещаются на определенной глубине в земле и посредством специальных проводников наполняют энергетическим запасам аккумуляторы. В простой схеме преобразования геотермальная система обеспечивает накопление энергии тепла, которая отдается отопительному оборудованию в чистом виде с базовой подготовкой. В сложной структуре задействуется тепловой насос в единой группе с конденсаторами тепла и компрессорами, которые обеспечивают преобразование тепла и электроэнергию.

Виды преобразования электрической энергии

Вам будет интересно:Матрицы: метод Гаусса. Вычисление матрицы методом Гаусса: примеры

Канал ДНЕВНИК ПРОГРАММИСТА

Жизнь программиста и интересные обзоры всего. Подпишись, чтобы не пропустить новые видео.

Существуют разные технологические методы извлечения первичной энергии из естественных природных явлений. Но еще больше возможностей для изменения свойств и форм энергии дают аккумулированные энергоресурсы, поскольку они хранятся в удобном для трансформации виде. К наиболее распространенным формам преобразования энергии можно отнести операции излучения, нагрева, механического и химического воздействия. В наиболее сложных системах применяются процессы молекулярного распада и многоуровневые химические реакции, в которых объединяется несколько этапов преобразования.

какие существуют формы передачи энергии

Выбор конкретного способа трансформации будет зависеть от условий организации процесса, вида изначальной и конечной энергии. Среди самых распространенных видов энергии, которые в принципе участвуют в процессах преобразования можно выделить лучистую, механическую, тепловую, электрическую и химическую энергию. Как минимум, данные ресурсы успешно эксплуатируются в промышленности и бытовом хозяйстве. Отдельного внимания заслуживают косвенные процессы преобразования энергии, которые являются производными той или иной технологической операции. К примеру, в рамках металлургического производства требуется выполнение операций нагрева и охлаждения, в результате которых вырабатывается пар и тепло как производные, но не целевые ресурсы. В сущности, это отходные продукты переработки, которые также находят применение, подвергаются трансформации или использованию в рамках этого же предприятия.

Преобразование энергии тепла

Один из старейших с точки зрения освоения и самых важных для поддержания жизнедеятельности человека энергетических источников, без которых невозможно представить жизнь современного общества. В большинстве случаев тепло преобразуется в электроэнергию, причем простая схема такой трансформации не требует подключения промежуточных этапов. Однако в тепловых и атомных электростанциях в зависимости от условий их работы может применяться этап подготовки с переводом тепловой в механическую энергию, что требует дополнительных затрат. Сегодня все чаще для преобразования тепловой энергии в электричество используются термоэлектрические генераторы прямого действия.

Вам будет интересно:Закон Максвелла. Распределение Максвелла по скоростям

Сам процесс трансформации происходит в специальном веществе, которое сжигается, выделяет тепло и в дальнейшем выступает источником генерации тока. То есть термоэлектрические установки могут рассматриваться как источники электроэнергии с нулевым циклом, так как их работа запускается еще до появления базовой тепловой энергии. В качестве основного ресурса выступают топливные элементы – как правило, газовые смеси. Они сжигаются, в результате чего происходит нагрев теплораспределительной металлической пластины. В процессе отвода тепла через специальный генераторный модуль с полупроводниковыми материалами происходит преобразование энергии. Электрический ток генерируется радиаторной установкой, подключенной к трансформатору или аккумулятору. В первом варианте энергия сразу поступает к потребителю в готовом виде, а во втором – накапливается и отдается по мере надобности.

какие существуют формы передачи энергии

Суть конвекции

Для объяснения конвекции можно использовать закон Архимеда, а также твердых тел и жидкостей. По мере повышения температуры происходит увеличение объема жидкости, уменьшение плотности. Под воздействием силы Архимеда вверх стремится более легкая (нагретая) жидкость, а холодные (плотные) слои попадают вниз, постепенно прогреваются.

В случае прогрева жидкости сверху теплая жидкость остается в исходном положении, поэтому не наблюдается конвекции. Именно так происходит круговорот жидкости, который сопровождается переносом энергии от прогретых участков к холодным местам. В газах конвекция происходит по аналогичному механизму.

С термодинамической точки зрения конвекцию рассматривают как вариант передачи тепла, при котором перенос внутренней энергии идет отдельными потоками веществ, нагретых неравномерно. Подобное явление встречается в природе и в быту. К примеру, отопительные радиаторы устанавливают на минимальной высоте от пола, вблизи подоконника.

Холодный воздух прогревается батареей, затем постепенно поднимается вверх, где он смешивается с холодными воздушными массами, опускаемыми от окна. Конвекция приводит к установлению в помещении равномерной температуры.

Среди распространенных примеров атмосферной конвекции приведем ветры: муссоны, бризы. Воздух, который нагревается над одними фрагментами Земли, охлаждается над другими, в результате чего происходит его циркуляция, осуществляется перенос влаги и энергии.

Генерация тепловой энергии из механической

Также один из самых распространенных способов получения энергии в результате преобразования. Суть его заключается в способности тел отдавать тепловую энергию в процессе совершения работы. В простейшем виде данную схему трансформации энергии демонстрирует пример с трением двух деревянных предметов, в результате чего возникает огонь. Однако для использования данного принципа с ощутимой практической пользой требуются специальные устройства.

В бытовом хозяйстве преобразование механической энергии имеет место в системах отопления и водоснабжения. Это сложные технические конструкции с магнитопроводом и шихтованным сердечником, подключенным к замкнутым электропроводящим контурам. Также внутри рабочей камеры данной конструкции проходят трубы отопления, которые нагреваются под действием совершаемой работы от привода. Недостатком данного решения можно назвать необходимость подключения системы к электросети.

В промышленности используются более мощные преобразователи с жидким теплоносителем. Источник механической работы подключается к замкнутым резервуарам с водой. В процессе движения исполнительных органов (турбин, лопастей или других элементов конструкции) внутри контура создаются условия для вихреобразования. Это происходит в моменты резкого торможения лопастей. Кроме нагрева в данном случае повышается и давление, что облегчает процессы циркуляции воды.

Разновидности теплообмена

Как подразделяется теплопередача? Теплопроводность, конвекция, излучение — три способа передачи энергии, существующие в природе.

Механизмы теплообмена при нагревании

Мы излучаем тепло в сторону стен, потолка и обогревателя. На этот раз только в двух словах. В случае отопления с радиатором мы имеем дело с конвекцией и излучением. Большая часть передачи на пути конвекции. Радиатор имеет всю поверхность пола, поэтому здесь доля излучения намного больше. Конечно, конвекция также имеет место. Но и руководство, потому что на полу мы стоим, будь босиком или в носках или туфлях. Наши ботинки проводят тепло через подошвы и нагревают наши ноги.
С принудительной конвекцией мы имеем дело в случае систем центрального отопления с распределением горячего воздуха, приводимого в действие воздуходувкой, а также в случае кондиционеров с функцией нагрева.

Источник

Виды энергии и способы передачи энергии

Энергия является мерой различного вида материального движения в процессах взаимного превращения одних форм движения в другие. Под движением понимается способность материи к изменению.

Существуют различные формы движения: механическая, тепловая, электрическая, химическая, магнитная и др. Установлено, что передача движения от одних тел к другим может происходить как без изменения, так и с изменением формы движения. В первом случае уменьшение движения некоторой формы в одном теле сопровождается таким же увеличением движения той же формы в другом (принцип сохранения движения). Во втором случае уменьшение движения некоторой формы в одном теле приводит к увеличению в другом теле движения иной формы (принцип превращения движения). Причем наблюдается количественная эквивалентность взаимно превращающихся форм движения, что послужило основанием для введения единой, общей для всех форм движения меры – энергии.

Итак, энергия – это общая количественная мера для всех форм движения материи, способных превращаться одна в другую.

Для характеристики вида движения используется понятие вида энергии (кинетическая, гравитационная, электрическая и др.). При превращении одной формы движения в другую, соответственно происходит трансформация одного вида энергии в другой, но при этом энергия как общая мера любых форм движения остается неизменной, она не создаваема и неуничтожима.

Установление количественной эквивалентности разных форм движения материи при взаимных превращениях привело к открытию закона сохранения энергии.

Кроме понятия вид энергии существует еще понятие форма обмена энергией или способ передачи энергии.

Большое разнообразие макроскопических проявлений одного фундаментального микроскопического взаимодействия приводит и к большим различиям в изменениях, наблюдаемых в телах при различных способах передачи энергии. Однако установлено, что все виды термодинамических взаимодействий, то есть все формы обмена энергией, сводятся к двум принципиально различным способам: совершение работы и теплообмен.

Работой называется такой способ (форма) передачи энергии, при котором осуществляется макроскопическое, упорядоченное, направленное движение. Количество передаваемой при этом энергии называется работой процесса или просто работой.

Наиболее наглядным видом работы является механическая работа, которую совершает механическая сила при перемещении в пространстве макроскопического тела или некоторой части тела. Кроме того, существуют различные виды немеханических работ: электрическая, магнитная и др.

Общим для всех видов работ свойством является принципиальная возможность их полного количественного преобразования друг в друга, то есть при передаче энергии от одной части тела другой в форме работы энергия одного вида может полностью трансформироваться в энергию другого вида.

Теплообменом называется такой способ передачи энергии, при котором осуществляется обмен хаотическим, ненаправленным движением микрочастиц. Количество передаваемой при этом энергии называется количеством теплоты или теплотой.

Для осуществления теплообмена между телами должен существовать так называемый тепловой контакт, который может быть обеспечен либо непосредственным соприкосновением тел, либо переносом энергии беспорядочных электромагнитных колебаний. В обоих случаях тела должны иметь различную температуру.

Если не требуется указывать способ передачи энергии, то количество энергии, передаваемое от одного тела к другому тем или иным способом, называется количеством внешнего воздействия.

Источник

Какие существуют формы передачи энергии

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

какие существуют формы передачи энергии

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа. Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

какие существуют формы передачи энергии

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

какие существуют формы передачи энергии

Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *