какова форма графита в чугуне марки кч 35 10
Структура, свойства и применение чугунов (стр. 5 )
Основные характеристики металла
Основные характеристики металла напрямую зависит от процентного содержания углерода в его составе. Структура ковкого чугуна представляет собой кристаллическую решётку, в которой присутствуют частицы углерода в форме графита. Дополнительно в составе содержится небольшое количество кремния, марганца и хрома.
Строение ковкого материала влияет на изготавливаемые из него детали и заготовки. Например, ферритная разновидность материала обладает более низким показателем прочности, нежели перлитная. При использовании частиц графита хлопьевидной формы материал становится более прочным и пластичным. Детали, изготавливаемые из ковкого чугуна, могут изменять размер и форму при длительном воздействии комнатной температуры и уровня влажности.
Однако по названию материал нельзя говорить о способах обработки. Этот вид чугуна по стандартам, указанных в ГОСТах, не производится с помощью ковочного оборудования. Для этого применяется технология литья. Благодаря этому в готовом металле нет внутренних и поверхностных напряжений. Характеристики:
Однако характеристики этого материала быстро снижаются при воздействии низких температур. Он становится хрупким и разрушается от ударов.
Ковка чугуна
Ковкий чугун – это разновидность чугуна, полученного термической обработкой белого чугуна. Отличительной особенностью ковкого чугуна является присутствие графита в хлопьевидной форме.
Какой чугун называют ковким
Надо понимать, что ковкий чугун, это не чугун, полученный ковкой. Изделия из ковкого чугуна при высокой влажности могут деформироваться даже при комнатной температуре. Данное свойство ковкого чугуна и предопределило его название. Ковкий чугун получают литьем. Интересной и важной особенностью ковкого чугуна является отсутствие внутренних напряжений.
Виды чугунов
Напомним, что все чугуны подразделяются на следующие группы:
В белом чугуне углерод присутствует в форме цементита. Белые чугуны обладают высокой твердостью и стойкостью к износу. По причине высокой твердости белый чугун очень трудно поддается обработке на металлорежущем оборудовании.
В сером чугуне углерод присутствует в пластинчатом виде. Серые чугуны не такие твердые, как белые. Основная сфера их применения в конструкциях, которые не испытывают ударных нагрузок.
В ковком чугуне графит присутствует в хлопьевидной форме. Из ковкого чугуна изготавливают изделия, работающие при высоких ударных и вибрационных нагрузках.
В высокопрочном чугуне графит присутствует в шаровидной форме. Высокопрочный чугун получают модифицированием его магнием, который и обеспечивает формирование углерода в виде шариков. Высокопрочные чугуны по своим свойствам близки к углеродистым сталям. Из высокопрочного чугуна изготовляют поршни, коленчатые валы, различные компоненты систем торможения.
Получение ковкого чугуна
Как уже было сказано выше, ковкий чугун получают термической обработкой белого чугуна с последующим томлением (выдержкой при определенной температуре).
Поскольку белые чугуны обладают плохими литьевыми качествами, при производстве ковких чугунов необходимо принимать меры, направленные на снижение дефектов литья. С этой целью белый чугун перегревается, а при отливке учитывается его усадка, а также изменение размеров заготовок во время томления, которое выполняется при температуре 1350-1450°С.
Процесс томления ковкого чугуна проводится в специальных цехах, где заготовки, выполненные из чугунных сплавов, размещаются в горшках, вмещающих до 300 отливок.
Максимальную прочность ковкий чугун получает, если проходит процесс отжига в горшках, выполненных из белого чугуна, легированного хромом.
Ковкий чугун производится в муфельных электропечах, которые могут в режиме томления гибко регулировать температуру, при этом продукты сгорания топлива не контактируют с горшками, с уложенными заготовками.
Марки ковкого чугуна
Ковкий чугун маркируется КЧ 45 – 6. Первое число – это прочность на растяжение, второе – это удлинение в процентах.
Основные физико-технические параметры ковкого чугунного сплава нормированы в ГОСТ 1215-79.
Конкретная марка КЧ непосредственно зависит от условий, в которых проводилось томление. После этой операции получают три класса чугуна КЧ:
Структура ковкого чугуна
Компактные графитовые включения, являющиеся основной особенностью микроструктуры ковкого чугуна, определяют его высокую прочность и пластичность. Ковкий чугун с низким содержанием углерода является единственным видом чугуна, который поддается сварке. Он хорошо прессуется, расчеканивается, легко заполняя зазоры и пустоты.
Состав ковкого чугуна:
Пройдя процесс томления, ковкий чугун содержит аустенит и графит.
При медленном охлаждении цементит, входящий в состав перлита, разлагается, и структура приобретает вид из феррита и графита (ферритный ковкий чугун).
При быстром охлаждении получается перлитный ковкий чугун, поскольку вторая стадия разложения отсутствует.
Применение ковкого чугуна
Применение изделий из ковкого чугуна обусловлено его механическими свойствами, которые находятся между сталью и серым чугуном. С одной стороны ковкий чугун обладает высокими показателями текучести, износостойкости, хорошими антикоррозионными свойствами. С другой стороны, ковкие чугуны высокопрочны, что позволяет их использовать в производстве трубопроводной арматуры для газа и воды.
При низких температурах ковкий чугун становится достаточно хрупким и боится ударных нагрузок.
Изделия из ковкого чугуна широко применяются в машиностроении, автомобилестроении, железнодорожном транспорте.
Наибольшее применение нашли ферритные отливки, производство которых дешевле. Из ферритного ковкого чугуна изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы.
Перлитный ковкий чугун используется для изготовления деталей, работающих в узлах под высокими нагрузками. Из перлитных чугунов изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.
Ковкий чугун используют для получения отливок с тонкой стенкой, размер которой может колебаться в диапазоне от 3 до 40 мм.
Разновидности
При изготовлении высокопрочных чугунных сплавов, создаются разные условия, при которых проводится процедура отжига. В зависимости от изменений технологического процесса, получается три вида ковкого чугуна:
В зависимости от температуры отжига и легирующих добавок характеристики готового материала изменяются.
Общепринятая маркировка металла
Согласно с рекомендациями ГОСТ 1215–79, маркировка ковкого чугуна включает в себя первые буквы его наименования – КЧ. Прописанное число, состоящее из двух цифр, отображает показатель временного сопротивления или предел стойкости к деформации и разрушению, измеряемый в 10 МПа – КЧ 70. Цифра, прописанная через дефис, отражает величину пластической деформации во время растяжения с единицей измерения «%» (относительное удлинения) – КЧ70-2.
Вдобавок к этому, марки ковких сплавов классифицируются в зависимости от их структур. К ферритному и ферритно-перлитному классу относятся КЧ с относительно низкими пределами стойкости к разрушениям и более высокими процентами относительного удлинения. Сплавы с перлитовой структурой представлены с высокими значениями временного сопротивления и со сравнительно низкими показателями относительного удлинения.
По данным ГОСТ 26358, можно определить такие свойства марок ковкого чугуна, как:
Свойства
Механические свойства чугуна напрямую зависят от того, сколько в его составе содержится углерода и в какой форме представлен этот компонент. Характеристики могут изменяться от добавления легирующих примесей. К ним относится кремний, марганец, сера, фосфор и хром. Изготавливают этот материал из белого чугуна, после проведения отжига при высоких температурах. Свойства ковкого материала:
Ковкий чугун является лучшей разновидностью основного сплава. Из него изготавливаются массивные конструкции, отдельные части которых соединяются с помощью сварочного оборудования.
Теория железоуглеродистых структур
Карбон с ферумом могут образовывать несколько различных видов сплавов по типу кристаллической решетки, что отображается на варианте микроструктуры.
Для чугунов характерна особая микроструктура. Графит может находиться в связанном виде и образовывать вышеперечисленные структуры, а может пребывать в свободном состоянии в форме разных включений. На свойства влияют как основные зерна, так и эти образования. Графитовыми фракциями в металле являются пластины, хлопья или шары.
Пластинчатая форма характерна для серых железоуглеродистых сплавов. Она обуславливает их хрупкость и ненадежность.
Включения хлопьеобразные имеют ковкие чугуны, чем положительно влияют на их механические показатели.
Шарообразная структура графита еще более улучшает качества металла, влияя на увеличение твердости, надежности, выдержки значительных нагрузок. Такими характеристиками обладает чугун высокопрочный. Ковкий чугун свойства свои обуславливает ферритной или перлитной основами с наличием хлопьеобразных графитовых включений.
Маркировка
Как и другие металла или их сплавы, ковкий чугун имеет определённую маркировку. Он обозначается в сокращении КЧ. После букв, обозначающих материал, идут цифры. Первые две обозначают предел прочности на разрыв. Третья цифра указывает на показатель удлинения в процентах.
По ГОСТу 1215–79 существует 11 разновидностей ковкого чугуна, которые имеют собственную маркировку. Их можно найти в справочниках по литью металлов и сплавов или таблицах в интернете.
Маркировка
Особенности производства
При изготовлении ковкого чугуна существует ряд особенностей и тонкостей. В первую очередь необходимо понимать, что основой для изготовления этого материала является БЧ (белый чугун). Этот сплав обладает плохими показателями для литья. При остывании происходит процесс усадки, во время которого материал сильно теряет в размере. Во время литья белого чугуна часто образовываются дефекты, из-за которых заготовки бракуются.
Чтобы добиться желаемого результата и обойти все недостатки этого материала, необходимо нагревать его до критических температур и при этом учитывать то, насколько измениться форма заготовки во время процессов томления и усадки. Томление металла должно проходить при температуре в 1400 градусов по Цельсию. Во время этого процесса заготовки располагаются в специальных горшках, изготавливаемых из тугоплавких металлов. В одну емкость для томления укладывается до 300 отливок.
При укладке заготовок в горшки их располагают как можно плотнее друг к другу. Сверху их засыпают рудой или песком. Таким образом материал защищается от процессов окисления и деформации.
Чтобы сделать ковкий чугун, используют электрические печи. Специальное оборудование позволяет регулировать температуру томления. Наиболее эффективными являются печи, в которых можно регулировать воздушные смеси. Самыми популярными печами для изготовления ковкого материала являются муфельные. Они позволяют уберечь емкости с заготовками от соприкосновения с продуктами сгорания топлива.
Готовые отливки проходят несколько этапов очистки. На первом этапе с них счищаются остатки формовочной смеси. Чтобы провести грубую очистку применяется промышленное пескоструйное оборудование. Далее идёт второй этап очистки, на котором с отливки удаляются остатки питателей. Для этого применяются шлифовальные машины.
В ГОСТах указаны требования и правила, которые позволяют уберечь детали из КЧ от появления различных дефектов. К ним могут относиться трещины, сколы, недоливы и раковины. Ковка чугуна не проводится ни на одном этапе производства. Исправить большинство дефектов термической обработкой невозможно.
Сферы использования
Благодаря характеристикам ковкий чугун получил широкое применение в различных сферах промышленности:
Из ковкого чугуна делают механизмы, конструкции и детали, которые используются при эксплуатации железнодорожного транспорта. Яркий пример использования этого материала в машиностроении — изготовление коленчатых валов, которые устанавливаются в дизельных тракторах и автомобилях. Низкая цена и характеристики этого металла позволяют использовать его, как аналог разным видам сталей.
Ковкий чугун представляет сплав железа и углерода. Изготавливают его из БЧ в процессе отжига. В итоге получается уникальный материал со своими характеристиками. Используется в машиностроении, строительстве, изготовлении деталей для поездов и износоустойчивого оборудования, станков.
Особенности и свойства металла
Литейные свойства материала и особенности технологии формы. Ковкий чугун, полученный из отливок белого малоуглеродистого сплава, обладает относительно низкими литейными характеристиками:
Все это создаёт существенные трудности во время изготовления чугунных деталей, требует высокого нагрева металла и усиленных мер борьбы с литейными пороками. Получение КЧ должно осуществляться с учётом усадки в литейной форме и изменений размеров во время термического воздействия (томления). Самой большой усадкой обладают тонкостенные заготовки из ферритного ковкого сплава, самой малой – толстостенные детали из перлитного сплава.
Производство этих материалов происходит обычно при температурах от 1350 до 1450 градусов. Для обеспечения таких условий требуются особые меры для повышения температуры сплава, определяющие грамотный подбор агрегата.
Чугун ковкий
Свойства и характеристики ковкого чугуна:
Отливки из черно-сердечного ковкого чугуна получают путем графитизирующего отжига отливок из белого чугуна. Они характеризуются повышенными σв и δ вследствие образования при отжиге хлопьевидного графита, более компактного, чем в СЧ с пластинчатым графитом. Металлическая основа у КЧ, как и у других чугунов, может быть ферритной или перлитной в зависимости от его химического состава и применяемого режима термической обработки.
Основные преимущества отливок из КЧ заключаются в однородности их свойств по сечению, практическом отсутствии напряжений. КЧ применяется преимущественно для отливок с толщиной стенок 3—50 мм, что связано со стремлением обеспечить безусловное получение структуры БЧ при литье и однородность строения и свойств во всех сечениях отливки. Наибольшую прочность можно получить при высокодисперсном перлите и малом количестве и наибольшей компактности графита, а наибольшую пластичность — при феррите и таком же графите,
Влияние температуры на химические свойства КЧ проявляется главным образом выше 400 °С и выражается в понижении σв и σ0,2 и повышении δ. Ферритный КЧ характеризуется более низким порогом хрупкости, чем перлитный КЧ (обычно при —80 °С); с возрастанием твердости перлитного КЧ порог хрупкости повышается.
Если отливки из КЧ не имеют литейных дефектов, они могут быть герметичны при давлениях 20 МПа и выше.
Перлитный КЧ обладает высокой износостойкостью в условиях работы со смазкой при давлении до 20 МПа и быстро изнашивается при трении без смазочного материала. Перлитно-ферритный КЧ имеет сравнительно низкие антифрикционные свойства в условиях работы со смазкой и весьма хорошие при работе без смазочного материала.
Обрабатываемость КЧ примерно такая же, как и высокопрочного чугуна.
Объемная и линейная усадка велики у белого чугуна как при кристаллизации, так и в твердом доперлитном состоянии при сравнительно небольшом предусадочном расширении. Вследствие этого в сложных отливках легко образуются горячие и холодные трещины. Поэтому сложные отливки практически невозможно получать в металлических формах, оказывающих существенное сопротивление усадке. Для уменьшения склонности чугуна к образованию трещин следует понижать до минимума содержание Р, S, снижать содержание N и О в чугуне, использовать оптимальные температуры заливки и т. д.
В сравнении с КЧ высокопрочный чугун обладает лучшими литейными и более высокими механическими свойствами, возможностью во многих случаях обходиться без термической обработки, а также возможностью применения для деталей любых массы и размеров. Поэтому отливки из КЧ в последние годы заметно вытесняются отливками из высокопрочного чугуна, особенно там, где это оказывается экономически целесообразно.
По своим литейным и механическим свойствам он занимает промежуточное положение между серым чугуном и сталью. По разнообразию свойств в зависимости от структуры ковкий чугун близок к стали и в ряде случаев является полноценным ее заменителем. По сравнению со сталью ковкий чугун обладает повышенной демпфирующей способностью и малой чувствительностью к надрезам.
Отливки из ковкого чугуна по условиям изготовления почти полностью свободны от остаточных напряжений. Структура ковкого чугуна обеспечивает высокую плотность металла. Отливки с толщиной стенки 7—8 мм выдерживают гидростатическое давление до 40 am, что позволяет использовать ковкий чугун для производства большого ассортимента деталей водо-, газо- и паропроводных установок.
Ковкий чугун удовлетворительно работает при пониженных температурах, но обладает в сравнении с серым чугуном увеличенной склонностью к хрупкому динамическому разрушению.
Несмотря на большое разнообразие номенклатуры изделий и различные области применения, ковкий чугун используют главным образом при получении тонкостенного литья (толщина стенок 3—40 мм). Это связано прежде всего со стремлением обеспечить безусловное получение отбела и однородность свойств во всех сечениях отливки как при первичной кристаллизации белого чугуна, так и в процессе термической обработки. Требование равномерности толщины стенок отливок из ковкого чугуна является обязательным условием обеспечения высокого качества и экономичности производства изделий.
Химический состав ковкого чугуна не регламентируется ГОСТом, а определяется требованиями к его механическим и технологическим свойствам. Основные элементы, с помощью которых регулируются свойства ковкого чугуна, — углерод и кремний, а в производстве перлитного чугуна, кроме того, марганец, хром и др.
Механические свойства ковкого чугуна в значительной мере зависят от общего объема содержащихся в нем включений углерода отжига и поэтому для получения высококачественного сплава следует отдавать предпочтение низкоуглеродистому чугуну (2,4—2,7% С).
Варианты химического состава ковкого чугуна для отливок в автомобильной промышленности приведены в таблице ниже.
4.Химический состав и свойства ковкого чугуна для автомобильных отливок [2]
Завод | Марка | ||||||
С | Si | Mn | S | P | Cr | ||
ЗИЛ | КЧ 35-10 | 2,5-2,75 | 0,95-1,15 | 0,35-0,45 | ≤0,12 | 0,12-0,17 | ≤0,06 |
УАЗ | КЧ 35-10 | 2,45-2,65 | 1,1-1,3 | 0,3-0,45 | ≤0,12 | До 0,17 | ≤0,08 |
ЯАЗ | КЧ 35-10 | 2,4-2,6 | 1,1-1,3 | 0,6-0,8 | ≤0,12 | 0,18 | ≤0,07 |
ГАЗ | КЧ 35-10 | 2,4-2,6 | 1,2-1,4 | 0,35-0,45 | ≤0,1 | 0,1 | ≤0,06 |
МАЗ | КЧ 37-12 | 2,4-2,6 | 1,2-1,35 | 0,35-0,45 | ≤0,12 | 0,11-0,14 | ≤0,05 |
Карбидообразующие элементы при большом содержании в чугуне замедляют его графитизацию, некоторые из них (Ti, Та, Zr, Nb) при малом содержании оказывают модифицирующее действие и ускоряют графитизацию. С, Si, А1 — графитизацию ускоряют. Ni и Си — оказывают неоднозначное влияние — ускоряют первую и замедляют вторую стадии графитизации.
Углерод, образуя графитные включения, является основным регулятором механических свойств ковкого чугуна. Наиболее высокими свойствами обладает чугун с пониженным содержанием углерода. Однако этот чугун имеет низкую жидкотекучесть и требует длительного отжига. Для хорошего заполнения литейной формы низкоуглеродистый ковкий чугун необходимо сильно перегревать.
Сера. Избыточную серу считали вредной примесью, тормозящей первую стадию графитизации ковкого чугуна. Однако установлено, что избыточная сера, растворяясь в металлической основе, дает возможность получать ковкий чугун с высокими механическими свойствами и компактной формой графита.
В работах показано, что содержание серы в ферритном ковком чугуне, модифицированном алюминием, может быть повышено до 0,20% без увеличения длительности отжига. При этом механические свойства возрастают за счет улучшения формы графита, упрочнения феррита и перлитизации металлической основы.
Определяющее влияние на структуру и свойства ковкого чугуна оказывает отношение содержания марганца и серы в нем. Установлено, что при отношении Mn : S меньшем 1,7 отливки из белого чугуна даже в весьма массивных сечениях свободны от выделений первичного графита. Скорость распада эвтектических карбидов на первой стадии отжига от отношения марганца к сере зависит незначительно. При отношении Мп : S = 0,8—1,2 перлитная структура сохраняется независимо от длительности второй стадии графитизации, а форма углерода отжига получается шаровидной. С повышением отношения Мп : S наблюдается переход к перлито-ферритной и ферритной структуре металлической основы и уменьшение компактности выделений углерода отжига. Изменение отношения Мп : S от 1,0 до 3,0 позволяет получить всю гамму структур (от перлитной до ферритной) и механических свойств ковкого чугуна по ГОСТу 1215—59, без изменения содержания других химических элементов и технологии производства.
Фосфор. При содержании свыше 0,20% ведет к повышению жидкотекучести чугуна и некоторому увеличению предела прочности при растяжении, но резко снижает ударную вязкость и повышает порог хладноломкости. Фосфор ускоряет первую и замедляет вторую стадии графитизации.
Хром является наиболее сильным замедлителем процесса графитизации ковкого чугуна. Его содержание обычно ограничивают 0,06—0,08%. Повышение количества хрома до 0,1—0,12% приводит к необходимости прибегать к специальным мерам для получения ферритного ковкого чугуна (удлинять отжиг, производить предварительную закалку отливок и др.). Трудности получения ферритного ковкого чугуна при повышенном содержании хрома связаны с образованием сложных карбидов, устойчивых при высоких температурах, и замедлением диффузионных процессов в металлической основе. Широкое использование металлолома, содержащего легированную сталь, при производстве ковкого чугуна приводит к увеличению концентрации хрома в шихте и требует изыскания методов нейтрализации его влияния на процесс графитизации. Так, совместное модифицирование ковкого чугуна алюминием, бором и сурьмой или ферротитаном позволяет получать ферритный и перлитный ковкий чугун, содержащий до 0,2% хрома, с высокими механическими свойствами без удлинения цикла отжига.
Молибден способствует измельчению перлита и графитных включений, увеличивает предел прочности (на 3—7 кГ/мм 2 при присадке 0,5% Мо), но затрудняет графитизацию вследствие образования легированного цементита и специальных карбидов. Он влияет аналогично хрому, но слабее последнего. Молибден предохраняет ковкий чугун от хрупкости в интервале температур 300—500° С.
Ванадий. Присадка 0,05—0,10% ванадия позволяет получать износостойкий ковкий чугун с сорбито-перлитной основой. Прочностные характеристики повышаются на 30—40%.
Свойства при повышенных и пониженных температурах. При повышенных температурах сопротивление ковкого чугуна упругим и пластическим деформациям понижается. Несколько уменьшается и пластичность при кратковременных испытаниях.
Характерной особенностью поведения чугуна при высоких температурах является его рост, связанный с необратимым увеличением объема. Этот рост особенно увеличивается при термоциклировании — периодическом нагреве и охлаждении. Причинами роста чугуна являются графитизация при нагреве и выделение растворенного углерода на новых центрах графитизации при охлаждении, а также проникновение кислорода во внутрь изделия, приводящее к окислению металлической матрицы чугуна особенно по границам включений графита или по границам зерен. Рост весьма велик, когда имеет место неодновременное превращение в различных слоях металла при частых колебаниях температуры. Это приводит к объемным изменениям, создающим сжимающие и растягивающие напряжения, обусловливающие возникновение микротрещин. Микротрещины сами увеличивают объем чугуна и служат добавочными каналами для окисления металлической основы агрессивными газами.
Ковкий чугун имеет меньшую склонность к росту в сравнении с серым чугуном в связи с изолированностью в металлической основе компактных графитовых включений. Мала склонность к росту в области субкритических температур и у перлитного ковкого чугуна, имеющего низкое содержание кремния, а следовательно, меньшую склонность к графитизации. Ковкий чугун при субкритических температурах имеет в 2—3 раза большую ростоустойчивость, чем обычный серый чугун. При высоких надкритических температурах, когда мала сопротивляемость металлической основы окислению и велико растворение графита, процессы роста протекают в ковком чугуне так же интенсивно, как и в обычном сером чугуне. Таким образом, отливки из ковкого чугуна могут работать в течение продолжительного срока лишь при таких Температурах, при которых процессы окисления не имеют большого равития.
Увеличение температуры испытания выше 400— 450° С вызывает интенсивное падение прочности. В атмосфере водяного пара, являющегося интенсивным окислителем, допустимая температура работы отливок из ковкого чугуна должна быть понижена до 300° С. При этом необходимо учитывать, что ферритный ковкий чугун хуже сопротивляется окислению, чем перлитный.
Длительная прочность ковкого чугуна при 300—400° С невелика и резко понижается при дальнейшем повышении температуры. Форма кривой ползучести и ее скорость зависят от структуры чугуна, температуры и величины напряжений.
По данным работы, длительная прочность перлито-ферритного ковкого чугуна при 425° С (соответствующая испытаниям в течение 4000 ч) одинакова с литой сталью марки 25Л после отжига, в то время как кратковременная прочность стали при этой температуре выше, чем чугуна. При температурах более высоких, чем 500°, длительная прочность феррито-перлитного чугуна оказывается меньше, чем указанной стали. Ферритный ковкий чугун при всех температурах имеет длительную и кратковременную прочность ниже, чем сталь. Сопротивление ползучести ковкого чугуна выше, чем серого, но ниже, чем высокопрочного чугуна.
В отличие от серого чугуна по мере понижения температуры ферритный кoвкий чугун становится более хрупким, что связано с насыщением его азотом.
Наиболее распространенным модификатором ковкого чугуна является алюминий. Присадки его в количестве 0,015—0,025% от веса расплавленного металла обеспечивают отсутствие первичного графита при нормальном содержании углерода и кремния и толщине стенки отливки до 40 мм. Повышение механических свойств при оптимальных добавках алюминия связано с увеличением дисперсности и более равномерным распределением графита в металлической основе, а также, возможно, упрочнением феррита. Дальнейшее повышение содержания алюминия в ковком чугуне приводит к резкому снижению механических свойств.
Широко применяют модифицирующие смеси, в которых одной из основных составляющих является бор. Оптимальная присадка бора, равная 0,002—0,003%, повышает механические свойства ферритного ковкого чугуна и уменьшает длительность графитизирующего отжига.
Модифицирование снижает влияние изменений температуры заливки металла в форму и колебаний его химического состава на механические свойства, что улучшает технологичность ковкого чугуна. Необходимо учитывать, что эффективность воздействия модификаторов на механические свойства ковкого чугуна и уменьшение продолжительности отжига зависят от времени пребывания металла в ковше перед разливкой. При чрезмерном его увеличении эффект модифицирования резко снижается.
Модифицирующие смеси алюминий—бор—висмут и алюминий—бор—сурьма достаточно полно нейтрализуют вредное влияние хрома на торможение процесса графитизации. Даже при содержании 0,18—0,20% Сг ковкий чугун имеет достаточно высокие механические свойства, хорошую обрабатываемость и не требует длительного отжига.
Влияние нормализации, закалки и отпуска. Нормализация повышает прочность, твердость и износостойкость ковкого чугуна при некотором понижении его пластичности. Нормализация приводит к увеличению содержания в структуре перлита.
Закалка с последующим высоким отпуском является оправдавшим себя методом получения ковкого чугуна со структурой зернистого перлита. Максимальная твердость закаленного ферритного и феррито-перлитного ковкого чугуна достигается при
Технологические свойства. Литейные свойства (жидкотекучесть, усадка, склонность к образованию горячих трещин) характеризуют ковкий чугун как хороший литейный материал.
Жидкотекучесть имеет особо важное значение, так как большинство отливок обладает сложной конфигурацией при небольшом весе и тонких стенках. Белый чугун из-за низкого содержания углерода, кремния и фосфора имеет пониженную жидкотекучесть по сравнению с серым чугуном.
Жидкотекучесть возрастает с увеличением содержания кремния, фосфора и особенно углерода. Сера и марганец в отдельности слабо влияют на жидкотекучесть, но увеличенное содержание обоих элементов приводит к повышению содержания в расплаве тугоплавкого соединения MnS и понижению жидкотекучести.
Усадка и склонность к образованию горячих трещин. Величина усадки зависит от химического состава чугуна и технологии изготовления отливок. Усадка в жидком состоянии и в процессе затвердевания определяет образование усадочных раковин и пористости, а в твердом состоянии — различие в размерах модели и отливки.
Общий объем усадочных раковин и усадочной пористости определяется объемной усадкой сплава при кристаллизации отливки, т. е. при переходе жидкого чугуна в твердое состояние.
Белый чугун имеет большую усадку при затвердевании, чем серый, но меньшую, чем высокопрочный чугун.
Образование усадочных раковин и пористости происходит в местах отливок, где металл затвердевает в последнюю очередь, т. е. в местах концентрации наибольшей массы металла, где теплоотвод наименее интенсивен. В зависимости от конфигурации отливок эти дефекты могут быть макро- и микроскопическими, сосредоточенными и рассредоточенными, внутренними и внешними. Для предупреждения образования дефектов усадочного происхождения необходимо при конструировании отливок предусматривать возможность создания направленного их затвердевания. Литниковая система отливок из ковкого чугуна должна обязательно иметь прямые и отводные питающие бобышки (прибыли) у массивных мест отливки и в «горячих узлах» [8].
Объемная и линейная усадка чугуна в твердом состоянии определяется не только термическим сжатием, но и выделением газов из твердого металла, фазовыми превращениями, сопротивлением формы и т. д. Усадка определяет в значительной мере величину напряжений и опасность образования горячих и холодных трещин в отливках.
Кроме того, при отжиге отливок из белого чугуна происходит увеличение размеров отливки («положительная усадка»), связанное с графитизацией. Общая усадка серого чугуна меньше, чем белого. Данные по линейной усадке белого чугуна в зависимости от характера усадки (свободная, затрудненная) и размеров отливки приведены на рис. 14). Усадка при заливке в сухие формы меньше, чем в сырые.
В процессе отжига белого чугуна происходит увеличение объема и линейных размеров отливок. В результате суммарная величина усадки ковкого чугуна колеблется в довольно широких пределах. В среднем ее можно принять равной 0,8—1,0%.
Однако эти цифры должны быть уточнены для конкретных условий (характер производства, атмосфера печи, размеры отливок, марка чугуна и т. д.). Плотность чугуна в процессе отжига уменьшается.
Затрудненная усадка белого чугуна в период кристаллизации вызывает повышенную его склонность к образованию горячих трещин. Усадка в твердом состоянии определяет величину литейных напряжений, являющихся причиной образования горячих и холодных трещин. Величина литейных напряжений в отливках белого чугуна значительно выше, чем в отливках из серого чугуна и стали вследствие большего модуля упругости, чем у серого чугуна, и меньшей теплопроводности, чем у стали. Поэтому при проектировании следует предпочитать конструкции со свободной усадкой и избегать резких переходов в толщине стенки между различными сечениями отливок, вызывающих концентрацию напряжений и пониженную усталостную прочность.
Отливкам необходимо по возможности придавать такую конфигурацию и так их располагать в форме, чтобы осуществлялся принцип направленного затвердевания. Для питания утолщенных частей отливки широко применяются боковые прибыли. Утолщения, которые нельзя питать прибылями, следует охлаждать наружными холодильниками. Придавая отливке ту или иную конфигурацию, конструктор должен учитывать возможность удобного размещения прибылей с учетом простоты формовки.
С целью предотвращения появления горячих и холодных трещин необходимо принимать следующие меры предосторожности:
не допускать резких изменений сечений, больших выступов и впадин; следует широко применять различного рода поднутрения с целью выравнивания толщин стенок, а также устройство литых отверстий в утолщенных частях отливок;
необходимо так конструировать отливки, чтобы их элементы при охлаждении подвергались деформации изгиба, а не растяжения, что может быть достигнуто применением изогнутых спиц, стенок и других элементов отливок;
не допускать чрезмерного увеличения размеров отливок, особенно в тех направлениях, в которых выступающие части тормозят ее усадку. Усиливать сечения, в которых могут возникнуть трещины, рекомендуется с помощью ребер, приливов или другим способом.
Обрабатываемость металла можно определять различными методами. Общей закономерностью является ухудшение обрабатываемости по мере повышения прочности и твердости металла.
При обработке ковкого чугуна необходимо учитывать, что при одинаковых механических и физических свойствах разные марки чугуна резко различны по обрабатываемости. Это прежде всего связано с иногда очень незначительными изменениями в структуре. Так, включения эвтектического цементита в количестве 5—7% слабо влияют на твердость и прочность ковкого чугуна, но резко снижают стойкость режущего инструмента при механической обработке. Увеличение пластичности материала сверх допустимых пределов вызывает образование нароста на передней грани инструмента, что также снижает его стойкость. Это может иметь место при обработке ферритного ковкого чугуна марок КЧ 35-10 и КЧ 37-12. Однако основной причиной, нарушающей зависимость между обрабатываемостью чугуна и его твердостью и прочностью, являются неоднородности структуры, особенно у перлитного ковкого чугуна. Так, чугун с крупнопластинчатым перлитом обрабатывается хуже, чем с зернистым, несмотря на то, что последний имеет более высокую твердость.
При повышении содержания углерода и кремния увеличивается количество свободного углерода в структуре ковкого чугуна, понижается его твердость и улучшается обрабатываемость. Для получения высокой чистоты обработанной поверхности необходимо стремиться к мелким включениям углерода отжига, равномерно расположенным в металлической основе. Чистота обработанной поверхности перлитного ковкого чугуна выше, чем ферритного, что имеет особое значение при нарезании резьбы, конфигурация элементов которой на перлитном чугуне получается более совершенной, чем на ферритном.
Сильно снижают обрабатываемость ковкого чугуна поверхностные дефекты, возникающие при отжиге в недостаточно герметизированной печи, имеющей окислительную атмосферу. В результате такого отжига образуется слой окалины, глубоко внедренной в приповерхностные слои отливки по границам зерен в обезуглероженном слое на глубину до 0,7—1 мм и неудаляющейся при пескоструйной и дробеструйной обработке. Создание защитной атмосферы в печи и защита отливок от окисления на всех стадиях графитизации позволяет почти полностью избавиться от этих дефектов и тем самым улучшить качество отливок и расширить области их применения.
Области применения. Ковкий чугун как конструкционный материал широко применяют в различных отраслях машиноетроения благодаря высоким физико-механическим свойствам отливок, несложной и стабильной технологии их производства и более низкой стоимости по сравнению с отливками из стали, поковками и штамповками. Основным потребителем отливок из ковкого чугуна является автомобиле-и тракторостроение, сельхозмашиностроение и другие отрасли промышленности.
На машиностроительных заводах производят в основном ферритный ковкий чугун, и в крайне незначительном количестве перлитный, хотя последний и обладает высокрй прочностью, износостойкостью, хорошо работает в условиях повышенных температур, обладает высокой усталостной прочностью, хорошо гасит вибрации и т. д.
Из перлитного ковкого чугуна можно изготовлять такие детали, как коленчатые и распределительные валы, поршни дизельных двигателей, коромысла клапанов, детали сцепления и т. д.
Более подробно применение ковкого чугуна и других типов чугуна рассмотрено в статье применение чугуна.