какую форму имеет эритроцит человека

Какую форму имеет эритроцит человека

В этих статьях на сайте мы начинаем обсуждение клеток крови и клеток макрофагальной и лимфатической систем. Сначала будут изложены функции эритроцитов— наиболее многочисленных клеток крови, необходимых для доставки кислорода к тканям.

Главной функцией эритроцитов, называемых также красными клетками крови, является транспорт гемоглобина, который переносит кислород от легких к тканям. У некоторых низших животных гемоглобин циркулирует в виде свободного белка плазмы, не заключенного в красные клетки крови. Если свободный гемоглобин появляется в плазме человека, всякий раз, когда кровь проходит через капилляры, примерно 3% гемоглобина утекает через стенку капилляров в тканевые пространства или через мембраны клубочковых капилляров почек в первичную мочу. Следовательно, чтобы гемоглобин оставался в крови, он должен находиться внутри эритроцитов.

какую форму имеет эритроцит человека

При прохождении красных клеток крови через капилляры их форма может заметно меняться. Фактически эритроциты представляют собой «мешок», который может деформироваться, принимая почти любую форму. Более того, поскольку нормальная клетка имеет большой избыток клеточной мембраны относительно количества материала внутри нее, мембрана при деформации растягивается незначительно и, следовательно, эритроцит не разрывается, как случилось бы со многими другими клетками в этой ситуации.

б) Концентрация эритроцитов в крови. У здорового мужчины среднее число эритроцитов в 1 мм крови 5200000 (±300000); у здоровой женщины — 4700000 (±300000). У людей, живущих на больших высотах, количество эритроцитов больше.

в) Количество гемоглобина в клетках. Красные клетки крови способны концентрировать гемоглобин в клеточной жидкости в количестве примерно до 34 г на каждые 100 мл клеток. Концентрация не поднимается выше этого значения, поскольку существует метаболическое ограничение механизма формирования гемоглобина в клетке. Более того, у здоровых людей процент гемоглобина в каждой клетке почти всегда практически максимален. Однако при недостаточности образования гемоглобина процент его в клетках может падать значительно ниже этого значения, как и объем эритроцита, поскольку он содержит меньше гемоглобина.

Когда гематокритный показатель (процентное содержание клеток крови, равное в норме 40-45%) и количество гемоглобина в каждом эритроците нормальны, цельная кровь мужчины содержит в среднем 15 г гемоглобина на 100 мл; для женщин содержание гемоглобина составляет в среднем 14 г на 100 мл.

Известно, что каждый 1 г чистого гемоглобина способен связывать 1,34 мл кислорода. Следовательно, у здорового мужчины каждые 100 мл крови могут транспортировать в виде соединения с гемоглобином максимально примерно 20 мл кислорода, а у здоровой женщины то же количество крови транспортирует максимально около 19 мл кислорода.

Видео урок физиология кроветворной системы

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

ЭРИТРОЦИТЫ

ЭРИТРОЦИТЫ (erythrocytus, единственное число; греческий erythros красный + kytos вместилище, здесь — клетка) — безъядерные форменные элементы крови, содержащие гемоглобин.

О существовании эритроцитов стало известно более 300 лет назад, когда в 1658 году Сваммердам (J. Swammerdam) обнаружил «красные шарики» в крови лягушки. Затем А. Левенгук в 1673 году нашел их в крови человека. Основное функциональное значение эритроцитов было выяснено во второй половине 19 веке. Не малая заслуга в этом принадлежит И. М. Сеченову.

какую форму имеет эритроцит человека

Содержание

Строение, форма, размеры и функция эритроцитов

При исследовании эритроцитов с помощью трансмиссионного электронного микроскопа отмечается высокая однородная электронно-оптическая плотность цитоплазмы за счет содержащегося в ней гемоглобина (см.); органеллы отсутствуют. Плазмолемма (клеточная мембрана) эритроцитов имеет сложное строение и состоит из четырех слоев. Наружный слой образован гликопротеидами и содержит разветвленные комплексы олигосахаридов, которые представляют собой концевые отделы групповых антигенов крови (см. Группы крови). В этот же слой частично входят адсорбированные протеины плазмы. Средние два слоя образуют классическую двойную липидную мембрану (см. Мембраны биологические), включающую глобулярные белки. Основная часть липидов состоит из фосфолипидов, холестерина и глицеридов. Внутренний, обращенный к цитоплазме слой состоит из белков — спектрина и актина. Спектрин обладает сократительной способностью и К+, Na+-зависимой АТФ-азной активностью, с ним связаны молекулы гликолитических ферментов и гемоглобина. Реологические свойства эритроцитов, пластичность их плазмолеммы во многом определяются структурно-функциональным состоянием этого белка. Из других структурных белков эритроцитов были выделены и идентифицированы гликофорин и сиалогликопротеин.

При сканирующей электронной микроскопии выявляются эритроциты различной формы (см. рис. 1 и 2 к ст. Кровь). Среди циркулирующих эритроцитов основную массу составляют дискоциты; встречаются также сферические формы — стоматоциты, эхиноциты, сфероциты. Дискоцит представляет собой двояковогнутый диск с ровной поверхностью. Площадь его поверхности примерно в 1,7 раза превышает площадь поверхности сферического эритроцита при равном объеме клеток. Считают, что эритроциты в виде диска наиболее адаптированы к диффузии газов и транспорту различных веществ через плазмолемму; подавляющее большинство эритроцитов легко проходит по капиллярам, имеющим вдвое меньший диаметр, чем сама клетка. Эти свойства эритроцитов обусловлены их высокой способностью изменять свою конфигурацию за счет дископодобной формы клетки, относительно низкой вязкости нормального гемоглобина и эластичности клеточной мембраны. Сферические формы эритроцитов имеют пониженную эластичность, в связи с этим они задерживаются в фильтрационном ложе селезенки и уничтожаются макрофагами.

какую форму имеет эритроцит человека

Эхиноцит образуется из дискоцита; при этом сначала по окружности дискоцита, а затем по всей поверхности клетки появляются грубые выросты (на этом этапе дискоцит имеет вид ежа или тутовой ягоды), после чего он приобретает сферическую форму (рис. 2). Трансформация дискоцита в эхиноцит обратима до тех пор, пока не происходит потери части выростов плазмолеммы. Конечным этапом такой трансформации является образование сфероцита. Образование эхиноцитов вызывает ряд факторов, как внутриклеточных (снижение концентрации АТФ, накопление ионов кальция и лизолецитина в эритроцитах), так и внеклеточных (изменение электролитного состава плазмы крови, pH, температуры, концентрации жирных и желчных кислот, а также воздействие нек-рых лекарственных средств, в частности салицилатов и барбитуратов). В норме количество эхиноцитов не превышает 1%. При длительном хранении консервированной донорской крови количество эхиноцитов возрастает до 70—80% в результате потери эритроцитами АТФ.

Стоматоцит развивается из дискоцита в результате метаболических нарушений в клетке. Трансформация начинается со сглаживания контура дискоцита с одной стороны; эритроцит становится куполообразным, затем вогнутая часть клетки уменьшается, и эритроцит принимает сферическую форму (рис. 2). Этот процесс обратим до стадии потери участков плазмолеммы. В нормальных условиях стоматоциты составляют 2—5% эритроцитов.

Сфероцитоз — увеличение количества сферических форм эритроцитов в крови — свидетельствует о патологических отклонениях в организме, детерминированных наследственными или приобретенными повреждающими факторами. Для выявления повышенной сферуляции эритроцитов определяют сфероцитарный индекс, или показатель сферичности (см. Эритро-цитометрия). При необратимой трансформации дискоцита в сфероцит выросты плазмолеммы превращаются в миелиноподобные фигуры или произвольные микросферулы (рис. 1, г).

какую форму имеет эритроцит человека

В зависимости от формы эритроцитов выделяют также планоциты (рис. 1,6) — тонкие дискоциты с широким, но относительно мелким углублением, характерные для железодефицитной анемии (см.); дрепаноциты — серповидные эритроциты, выявляемые при серповидно-клеточной анемии (см.); мишеневидные эритроциты (рис. 3) — дискоциты с центрально расположенным возвышением, наиболее часто встречающиеся при талассемии (см.); овалоциты (эллиптоциты) — дискоциты овальной или эллипсоидной формы, характерные для овалоцитарной гемолитической анемии (см.). При анемиях эритроциты могут приобретать различные причудливые формы, это явление получило название «пойкилоцитоз».

Основной функцией эритроцитов является транспорт кислорода и углекислоты. Эритроциты участвуют в регуляции кислотно-щелочного равновесия в организме, а также ионного равновесия плазмы, водно-солевом обмене организма. Они играют важную роль в регуляции активности свертывающей системы крови (см. Свертывающая система крови). Целые эритроциты, так же как и тромбоциты (см.), влияют на образование тромбопластина. Появление в циркулирующей крови разрушенных эритроцитов может способствовать гиперкоагуляции и тромбообразованию. Эритроциты активно обмениваются липидами с плазмой крови, адсорбируют и транспортируют к тканям различные аминокислоты, биологически активные вещества и др.

Биохимия, иммунология, старение и разрушение эритроцитов

Средняя продолжительность жизни эритроцитов составляет примерно 120 дней. При патологических состояниях может происходить относительное укорочение средней продолжительности жизни эритроцитов, обусловленное не только случайным разрушением клеток, но и ускорением самого процесса старения. В связи с этим следует различать среднюю продолжительность жизни эритроцитов и среднюю потенциальную жизнеспособность клетки. На жизнеспособность и биоэнергетику эритроцитов существенно влияет структурная модификация липидов плазмолеммы эритроцитов, заключающаяся в увеличении относительного количества фосфолипидов (см. Фосфатиды), содержащих ненасыщенные жирные кислоты (см.). Установлено, что средняя продолжительность жизни эритроцитов находится в обратной зависимости от интенсивности перекисного окисления липидов в плазмолемме эритроцитов, поэтому средняя продолжительность жизни эритроцитов и суточный эритроцитопоэз у жителей различных географических регионов, а также при экстремальных нагрузках на здоровый организм имеют значительные различия. При этом физиологическое количественное содержание эритроцитов в крови достигается уравновешиванием процессов разрушения и регенерации эритроцитов.

По мере старения эритроцитов метаболизм клетки нарушается; снижается содержание белков, липидов и гликопротеидов. Утилизация глюкозы уменьшается примерно в 3 раза, концентрация АТФ, НАД-Н, НАДФ-Н,2,3-дифосфоглицериновой кислоты и глутатиона снижается, что приводит к вторичным деструктивным изменениям эритроцитов (сферуляции и потере эластичности). Снижение количества сиаловой кислоты в составе гликопротеидов влечет за собой изменение важнейших свойств поверхности эритроцитов (плотности электрического заряда, антигенности и рецепции). В этом случае повышается способность эритроцитов к агглютинации.

При созревании и старении эритроцитов изменяются антигенные свойства его поверхности. Плотность антигенных детерминант на поверхности старых эритроцитов значительно выше, чем на поверхности молодых. Предполагают, что с потерей сиаловой кислоты «демаскируются» гликопротеиновые комплексы, обладающие способностью связываться с IgG, после чего макрофаги и лимфоциты-киллеры (см. Иммунокомпетентные клетки) «узнают» «маркированные» эритроциты и уничтожают их. В крови нередко можно наблюдать сферические эритроциты, несущие на своей поверхности адсорбированные белковые комплексы (рис. 1, в). Аутоиммунный клеточный механизм физиологического разрушения эритроцитов изучен не полностью.

При повторных переливаниях крови могут образоваться антиэритроцитарные изоантитела (см. Группы крови, Резус-фактор), являющиеся по своей серологической характеристике агглютининами. Агглютинация эритроцитов наблюдается при ряде вирусных заболеваний, так как вирусы содержат специфичные гемагглютинины (см. Агглютинация, Гемагглютинация).

Методы исследования эритроцитов

Подсчет числа эритроцитов крови производят различными способами. Общее количество эритроцитов подсчитывают в 1 мкл крови в счетной камере под микроскопом (см. Камеры счетные), колориметрическим методом, с помощью автоматических счетчиков. Общий объем циркулирующих эритроцитов определяют исходя из объема циркулирующей крови и гематокритного числа (см.). Объем циркулирующей крови чаще устанавливают радиоизотопными методами путем введения в кровь радиоактивного фосфора ( 32 P), хрома ( 51 Cr), альбумина, меченного 131 I, и др. Показатели объема циркулирующей крови и объема циркулирующих эритроцитов имеют большое диагностическое значение при различного рода кровопотерях и нарушении кровообращения.

Оценка состояния красной крови может быть дана на основании комплекса исследований: установления количества гемоглобина, числа эритроцитов, их морфологии и интенсивности окраски. В связи с этим определяют среднее содержание гемоглобина в одном эритроците и цветной показатель (см. Гемограмма). Морфологию изучают в окрашенных мазках крови с помощью светооптических и электронных микроскопов. Наиболее распространенными являются методы окраски по Романовскому — Гимзе (см. Романовского — Гимзы метод) и по Нохту. Большое значение в клин, практике имеет определение РОЭ (см. Оседание эритроцитов) и резистентности эритроцитов к гипотоническим растворам, химическим и физическим воздействиям (см. Гемолиз). Цитохимические, биохимические и иммунологические исследования эритроцитов проводят для выявления патологии красного кроветворения и определения ее характера (см. Костный мозг, Кровь).

Изменения эритроцитов в норме и при патологии

Количество эритроцитов в 1 мкл крови новорожденных, по данным различных исследователей, колеблется от 4,5 до 7,5 млн.; наибольшее число эритроцитов наблюдается в первые часы жизни (7,5 млн.), затем количество их быстро уменьшается и к 12—14-му дню жизни обычно достигает 4,9—5,0 млн. В первые 5— 7 дней жизни у детей отмечается отчетливый анизоцитоз, часто возникают пойкилоцитоз и полихроматофилия. У детей от 1 года до 2 лет, а также от 5 до 7 лет и от 12 до 14 лет выявляются большие индивидуальные колебания числа эритроцитов. Постепенно с возрастом (обычно после 16 лет) устанавливаются стабильные величины для всех параметров эритроцитов. У лиц пожилого и старческого возраста число эритроцитов снижается в среднем до 3,8—4,0 млн. в 1 мкл крови. Осмотическая резистентность эритроцитов в гипотонических солевых растворах у новорожденных и детей грудного возраста выше, чем у детей старшего возраста и у взрослых. Гемоглобин эритроцитов у новорожденных состоит в основном из фетального гемоглобина (70—90%). К 2 годам жизни он почти полностью замещается гемоглобином «взрослых». Несмотря на высокую метаболическую активность эритроцитов, у новорожденных средняя продолжительность жизни эритроцитов снижена за счет усиленной оксидации и пероксидации клеточных структур, в первую очередь фосфолипидов плазмолеммы. Для всей популяции эритроцитов стареющего организма характерно снижение АТФ, НАД-Н,2,3-дифосфоглицериновой кислоты, осмотической и кислотной резистентности эритроцитов, однако укорочения средней продолжительности жизни эритроцитов у лиц пожилого и старческого возраста не наблюдается. Функциональная и структурная неравнозначность эритроцитов и связанная с ней вариабельность содержания эритроцитов в крови в онтогенезе, а также у различных индивидуумов определяется метаболической активностью клеток, антиокислительной защитой клеточных структур и устойчивостью эритроцитов к гемолизу. В связи с этим на количественные и качественные параметры эритроцитов практически здорового человека большое влияние оказывают генетические и экологические факторы.

Эритроциты при их патологической регенерации или повышенной деструкции могут содержать различные включения. Так, базофильная пунктация эритроцитов, открытая П. Эрлихом в 1886 году, имеет цитоплазматическое происхождение; в отличие от базофильной субстанции ретикулоцитов она располагается по периферии эритроцитов и окрашивается всеми красителями, используемыми при обработке мазков крови. Базофильная пунктация выявляется как мелкоточечная зернистость синего цвета; наиболее часто она встречается при отравлениях свинцом.

В эритроцитах обнаруживают так называемые тельца Жолли и кольца Кебота, которые являются остатками ядер. Тельца Жолли встречаются в эритроцитах в виде отдельных зернышек величиной 1—2 мкм, они, как и кольца Кебота, окрашиваются азурофильно и базофильно. Появление их обусловлено нарушением энуклеации (выталкивания) ядра из нормобласта. Тельца Жолли встречаются наиболее часто после удаления селезенки. Кольца Кебота имеют иногда форму восьмерки или ракетки, встречаются при пернициозной анемии.

При различных видах малярии в эритроцитах выявляется шюффнеровская зернистость, имеющая вид мелкого азурофильного крапа, и более крупная неравномерная зернистость темно-фиолетового цвета — пятнистость Маурера.

Тельца Гейнца — Эрлиха определяются в эритроцитах при обычной окраске мазков крови как небольшие округлые образования (включения) ярко-красного цвета, при суправитальной окраске они имеют синий цвет. Образование этих телец обусловлено коагуляцией полипептидных цепей молекулы гемоглобина при различных патологических состояниях, связанных с интоксикацией организма, в частности при отравлении анилиновыми красителями, гемолитическими ядами, а также при энзимопатиях (см. Энзимопеническая анемия) или в случае присутствия в эритроцитах нестабильных гемоглобинов (см. Гемоглобин; Гемоглобинопатии).

Иногда в эритроцитах встречаются зерна гемосидерина, такие эритроциты называют сидероцитами, увеличение их количества наблюдается при некоторых заболеваниях, например при железорефрактерной анемии (см.).

При различных патологических состояниях количество эритроцитов может снижаться, например при анемиях, или повышаться (например, см. Полицитемия, Эритроцитозы, Эритроцитоз наследственно-семейный).

Библиогр.: Ашкинази И. Я. Эритроцит и внутреннее тромбопластинообразование, Л., 1977; Возрастная физиология, под ред. В. Н. Никитина, с. 68, Л., 1975; Истаманова Т. С., Алмазов В. А. и Канаев С. В. Функциональная гематология, Л., 1973; Кинетические аспекты гемопоэза, под ред. Г. И. Козинца и Е. Д. Гольдберга, с. 80, Томск, 1982; Клиорин А. И. и Тиунов Л. А. Функциональная неравнозначность эритроцитов, Л.,1974; Коржуев П. А. Гемоглобин, М., 1964; Крымский Л. Д., Нестайко Г. В. и Рыбалов А. Г. Растровая электронная микроскопия сосудов и крови, М., 1976; Марачев А. Г., и д р. Взаимосвязь процессов эритропоэза, эритродиереза и перекисного окисления липидов мембран эритроцитов, Вестн. АМН СССР, № 11, с. 65, 1983; Мембраны и болезнь, под ред. Л. Волиса и др., пер. с англ., М., 1980; Мосягина E. Н. Эритроцитарное равновесие в норме и патологии, М., 1962; Наследственные анемии и гемоглобинопатии, под ред. Ю. Н. Токарева и др., с. 23, М., 1983; Нормальное кроветворение и его регуляция, под ред. Н. А. Федорова, М., 1976; Пухова Я. И. Аутоиммунный клеточный механизм фйзиологического разрушения эритроцитов, Новосибирск, 1979; Рябов С. И. Основы физиологии и патологии эритропоэза, Л., 1971; Соколов В. В. и Грибова И. А. Показатели периферической крови у здоровых людей, Лаб. дело, № 5, с. 259, 1972; Физиология системы крови, Физиология эритропоэза, под ред. В. Н. Черниговского, с. 211, 274, Л., 1979; Человек, Медико-биологические данные, пер. с англ., с. 45, М., 1977; К а у М. М.,а. о. Antigenicity, storage and ageing,physiologic autoantibodies to cell membrane and serum proteins and the senescent cell antigen, Molec. cell. Biochem., v. 49, p. 65, 1982; Red cell shape, ed. by M. Bessis а. о., N. Y., 1973.

Источник

Как эритроциты изменяют форму

какую форму имеет эритроцит человека

Новая динамичная компьютерная модель на молекулярном уровне демонстрирует процессы обратимой деформации, обеспечивающие прохождение эритроцитов через тончайшие капилляры.

Эритроциты снабжают кислородом и освобождают от углекислого газа все органы и ткани. Для того, чтобы попасть в самые отдаленные участки организма, эритроцитам приходится перемещаться по тончайшим капиллярам, просвет которых меньше диаметра клеток.

Ученые Массачусетского технологического института, работающие под руководством профессора Субра Суреш (Subra Suresh), разработали компьютерную модель, на молекулярном уровне симулирующую механизмы перестройки цитоскелета (внутреннего каркаса) эритроцитов, обеспечивающие временное изменение дискообразной формы клеток.

Цитоскелет эритроцитов состоит молекул белка спектрина, формирующих сетчатую структуру, прикрепленную к внутренней поверхности мембраны клеток. Под действием наружного давления могут разрываться связи между молекулами спектрина внутри цитоскелета и в местах его контакта с молекулами актина  белка, входящего в состав мембраны клетки. Разрывы связей между белковыми молекулами цитоскелета и цитоскелетом и мембраной приводит к переходу клеток в «полужидкое» состояние, позволяющее им перемещаться по самым тонким капиллярам. (На рисунке актин выглядит как большие красные, а спектрин – как маленькие серые, зеленые, желтые и голубые шарики).

Разработанная авторами модель должна помочь получить ответ на вопрос: как молекулярная структура клетки влияет на ее форму, механические свойства и подвижность. Кроме того, модель облегчает изучение некоторых типов заболеваний, например, малярии, при которой из-за присутствия в клетке малярийного плазмодия повреждаются как мембрана эритроцита, так и его цитоскелет.

Другим важным моментом является возможность изучения наследственных заболеваний, таких как серповидноклеточная анемия и сфероцитоз. При серповидноклеточной анемии эритроциты имеют форму серпа, что затрудняет их передвижение по кровеносным сосудам, а у пациентов со сфероцитозом красные клетки крови представляют собой не диски, а шары, неспособные достаточно сильно деформироваться и проходить через мелкие капилляры.

NAME] => URL исходной статьи [

Ссылка на публикацию: Cbio

Код вставки на сайт

Как эритроциты изменяют форму

какую форму имеет эритроцит человека

Новая динамичная компьютерная модель на молекулярном уровне демонстрирует процессы обратимой деформации, обеспечивающие прохождение эритроцитов через тончайшие капилляры.

Эритроциты снабжают кислородом и освобождают от углекислого газа все органы и ткани. Для того, чтобы попасть в самые отдаленные участки организма, эритроцитам приходится перемещаться по тончайшим капиллярам, просвет которых меньше диаметра клеток.

Ученые Массачусетского технологического института, работающие под руководством профессора Субра Суреш (Subra Suresh), разработали компьютерную модель, на молекулярном уровне симулирующую механизмы перестройки цитоскелета (внутреннего каркаса) эритроцитов, обеспечивающие временное изменение дискообразной формы клеток.

Цитоскелет эритроцитов состоит молекул белка спектрина, формирующих сетчатую структуру, прикрепленную к внутренней поверхности мембраны клеток. Под действием наружного давления могут разрываться связи между молекулами спектрина внутри цитоскелета и в местах его контакта с молекулами актина  белка, входящего в состав мембраны клетки. Разрывы связей между белковыми молекулами цитоскелета и цитоскелетом и мембраной приводит к переходу клеток в «полужидкое» состояние, позволяющее им перемещаться по самым тонким капиллярам. (На рисунке актин выглядит как большие красные, а спектрин – как маленькие серые, зеленые, желтые и голубые шарики).

Разработанная авторами модель должна помочь получить ответ на вопрос: как молекулярная структура клетки влияет на ее форму, механические свойства и подвижность. Кроме того, модель облегчает изучение некоторых типов заболеваний, например, малярии, при которой из-за присутствия в клетке малярийного плазмодия повреждаются как мембрана эритроцита, так и его цитоскелет.

Другим важным моментом является возможность изучения наследственных заболеваний, таких как серповидноклеточная анемия и сфероцитоз. При серповидноклеточной анемии эритроциты имеют форму серпа, что затрудняет их передвижение по кровеносным сосудам, а у пациентов со сфероцитозом красные клетки крови представляют собой не диски, а шары, неспособные достаточно сильно деформироваться и проходить через мелкие капилляры.

Источник

Какую форму имеет эритроцит человека

Цельная кровь состоит из жидкой части (плазмы) и форменных элементов, к которым относят эритроциты, лейкоциты и кровяные пластинки — тромбоциты.

Функции крови:
1) транспортная — перенос газов (02 и С02), пластических (аминокислот, нуклеозидов, витаминов, минеральных веществ), энергетических (глюкоза, жиры) ресурсов к тканям, а конечных продуктов обмена — к органам выделения (желудочно-кишечный тракт, легкие, почки, потовые железы, кожа);
2) гомеостатическая — поддержание температуры тела, кислотно-основного состояния организма, водно-солевого обмена, тканевого гомеостаза и регенерации тканей;
3) защитная — обеспечение иммунных реакций, кровяного и тканевого барьеров против инфекции;
4) регуляторная — гуморальной и гормональной регуляции функций различньгх систем и тканей;
5) секреторная — образование клетками крови биологически активных веществ.

Функции и свойства эритроцитов

Эритроциты переносят 02 содержащимся в них гемоглобином от легких к тканям и С02 от тканей к альвеолам легких. Функции эритроцитов обусловлены высоким содержанием гемоглобина (95 % массы эритроцита), деформируемостью цитоскелета, благодаря чему эритроциты легко проникают через капилляры с диаметром меньше 3 мкм, хотя имеют диаметр от 7 до 8 мкм. Глюкоза является основным источником энергии в эритроците. Восстановление формы деформированного в капилляре эритроцита, активный мембранный транспорт катионов через мембрану эритроцита, синтез глютатиона обеспечиваются за счет энергии анаэробного гликолиза в цикле Эмбдена—Мейергофа. В ходе метаболизма глюкозы, протекающего в эритроците по побочному пути гликолиза, контролируемого ферментом дифосфоглицератмутазой, в эритроците образуется 2,3-дифосфоглицерат (2,3-ДФГ). Основное значение 2,3-ДФГ заключается в уменьшении сродства гемоглобина к кислороду.

В цикле Эмбдена—Мейергофа расходуется 90 % потребляемой эритроцитами глюкозы. Торможение гликолиза, возникающее, например, при старении эритроцита и уменьшающее в эритроците концентрацию АТФ, приводит к накоплению в ней ионов натрия и воды, ионов кальция, повреждению мембраны, что понижает механическую и осмотическую устойчивость эритроцита, и стареющий эритроцит разрушается. Энергия глюкозы в эритроците используется также в реакциях восстановления, защищающих компоненты эритроцита от окислительной денатурации, которая нарушает их функцию. Благодаря реакциям восстановления атомы железа гемоглобина поддерживаются в восстановленной, т. е. двухвалентной форме, что препятствует превращению гемоглобина в метгемоглобин, в котором железо окислено до трехвалентного, вследствие чего метгемоглобин неспособен к транспорту кислорода. Восстановление окисленного железа метгемоглобина до двухвалентного обеспечивается ферментом — метгемоглобинредуктазой. В восстановленном состоянии поддерживаются и серусодержащие группы, входящие в мембрану эритроцита, гемоглобин, ферменты, что сохраняет функциональные свойства этих структур.

Цикл Эмбден-Мейергоффа эритроцитов какую форму имеет эритроцит человека

Эритроциты имеют дисковидную, двояковогнутую форму, их поверхность — около 145 мкм2, а объем достигает 85—90 мкм3. Такое соотношение площади к объему способствует деформабильно-сти (под последней понимают способность эритроцитов к обратимым изменениям размеров и формы) эритроцитов при их прохождении через капилляры. Форма и деформабильность эритроцитов поддерживаются липидами мембран — фосфолипидами (глицерофосфолипидами, сфинголипидами, фосфотидилэтаноламином, фосфатидилсирином и др.), гликолипидами и холестерином, а также белками их цитоскелета. В состав цитоскелета мембраны эритроцита входят белки — спектрин (основной белок цитоскелета), анкирин, актин, белки полосы 4.1, 4.2, 4.9, тропомиозин, тропомодулин, адцуцин. Основой мембраны эритроцита является липидный бислой, пронизанный интегральными белками цитоскелета — гликопротеинами и белком полосы 3. Последние связаны с частью белковой сети цитоскелета — комплексом спектрин—актин—белок полосы 4.1, локализованным на цитоплазматической поверхности липидного бислоя мембраны эритроцита (рис. 7.1).

Взаимодействие белкового цитоскелета с липидным бислоем мембраны обеспечивает стабильность структуры эритроцита, поведение эритроцита как упругого твердого тела при его деформации. Нековалентные межмолекулярные взаимодействия белков цитоскелета легко обеспечивают изменение размеров и формы эритроцитов (их деформацию) при прохождении этих клеток через микроциркуляторное русло, при выходе ретикулоцитов из костного мозга в кровь — благодаря изменению расположения молекул спектрина на внутренней поверхности липидного бислоя. Генетические аномалии белков цитоскелета у человека сопровождаются появлением дефектов мембраны эритроцитов. В результате последние приобретают измененную форму (так называемые сфероциты, элиптоциты и др.) и имеют повышенную склонность к гемолизу. Увеличение соотношения холестерин—фосфолипиды в мембране увеличивает ее вязкость, уменьшает текучесть и эластичность мембраны эритроцита. В результате снижается деформируемость эритроцита. Усиление окисления ненасыщенных жирных кислот фосфолипидов мембраны перекисью водорода или супероксидными радикалами вызывает гемолиз эритроцитов (разрушение эритроцитов с выходом гемоглобина в окружающую среду), повреждение молекулы гемоглобина эритроцита. Постоянно образующийся в эритроците глютатион, а также антиоксиданты (остокоферол), ферменты — глутатионредуктаза, супероксиддисмутаза и др. защищают компоненты эритроцита от этого повреждения.

какую форму имеет эритроцит человекаРис. 7.1. Схема модели изменений цитоскелета мембраны эритроцита во время его обратимой деформации. Обратимая деформация эритроцита изменяет лишь пространственную конфигурацию (стереометрию) эритроцита, следующую за изменением пространственного расположения молекул цитоскелета. При этих изменениях формы эритроцита площадь поверхности эритроцита остается неизменной. а — положение молекул цитоскелета мембраны эритроцита при отсутствии его деформации. Молекулы спектрина находятся в свернутом состоянии.

До 52 % массы мембраны эритроцитов составляют белки гликопротеины, которые с олигосахаридами образуют антигены групп крови. Глико-протеины мембраны содержат сиаловую кислоту, которая придает отрицательный заряд эритроцитам, отталкивающий их друг от друга.

Энзимы мембраны — Ка+/К+-зависимая АТФаза обеспечивает активный транспорт Na+ из эритроцита и К+ в его цитоплазму. Са2+-зависимая АТФаза выводит Са2+ из эритроцита. Фермент эритроцита карбоангидраза катализирует реакцию: Са2+ Н20 Н2С03 о Н+ + НСО3, поэтому эритроцит транспортирует часть углекислого газа от тканей к легким в виде бикарбоната, до 30 % С02 переносится гемоглобином эритроцитов в форме карбаминового соединения с радикалом NH2 глобина.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *