Мышца состоит из пучков исчерченных (поперечнополосатых) мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью (endomysium) в пучки первого порядка. Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка и т. д. В целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой — perimysium, составляя мышечное брюшко.
Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.
Так как сокращение мышцы вызывается импульсом, идущим от центральной нервной системы, то каждая мышца связана с ней нервами: афферентным, являющимся проводником «мышечного чувства» (двигательный анализатор, по И. П. Павлову), и эфферентным, приводящим к ней нервное возбуждение. Кроме того, к мышце подходят симпатические нервы, благодаря которым мышца в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом.
В мышцах совершается очень энергичный обмен веществ, в связи с чем они весьма богато снабжены сосудами. Сосуды проникают в мышцу с ее внутренней стороны в одном или нескольких пунктах, называемых воротами мышцы. В мышечные ворота вместе с сосудами входят и нервы, вместе с которыми они разветвляются в толще мышцы соответственно мышечным пучкам (вдоль и поперек).
В мышце различают активно сокращающуюся часть — брюшко и пассивную часть, при помощи которой она прикрепляется к костям, — сухожилие. Сухожилие состоит из плотной соединительной ткани и имеет блестящий светло-золотистый цвет, резко отличающийся от красно-бурого цвета брюшка мышцы. В большинстве случаев сухожилие находится по обоим концам мышцы. Когда же оно очень короткое, то кажется, что мышца начинается от кости или прикрепляется к ней непосредственно брюшком. Сухожилие, в котором обмен веществ меньше, снабжается сосудами беднее брюшка мышцы.
Таким образом, скелетная мышца состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани (perimysium, сухожилие), из нервной (нервы мышц), из эндотелия и гладких мышечных волокон (сосуды). Однако преобладающей является поперечнополосатая мышечная ткань, свойство которой (сократимость) и определяет функцию мускула как органа сокращения. Каждая мышца является отдельным органом, т. е. целостным образованием, имеющим свою определенную, присущую только ему форму, строение, функцию, развитие и положение в организме.
Общими свойствами всех мышечных тканей является сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечнополосатая скелетная и поперечнополосатая сердечная мышечные ткани. Клетки мышечной ткани имеют хорошо развитый цитоскелет, содержат много митохондрий.
Гладкая (висцеральная) мускулатура
Эта мышечная ткань встречается в стенках внутренних органах (бронхи, кишечник, желудок, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.
Особо заметим, что в гладкой мышечной ткани миофиламенты собираются в миофибриллы только во время сокращения. У таких временных миофибрилл не может быть регулярной организации, а значит ни у таких миофибрилл, ни у гладких миоцитов не может быть поперечной исчерченности.
Гладкая мышечная ткань сокращается непроизвольно (неподвластна воле человека). Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой. К примеру невозможно по желанию сузить или расширить бронхи, кровеносные сосуды, зрачок.
Гладкая мышечная ткань называется неисчерченной, так как не обладает поперечной исчерченностью, характерной для поперечнополосатых скелетной и сердечной мышечных тканей.
Саркомер состоит из актиновых (тонких) и миозиновых (толстых) филаментов, которые образованы главным образом белками актином и миозином. Сокращение происходит за счет взаимного перемещения миофиламентов: они тянутся навстречу друг другу, саркомер укорачивается (и мышца в целом).
Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.
Скелетные мышцы сокращаются произвольно: они подконтрольны нашему сознанию. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.
Сердечная поперечнополосатая мышечная ткань
Большое число контактов между кардиомиоцитами обеспечивает высокую эффективность и надежность проведения возбуждения по миокарду. Сокращается эта ткань непроизвольно, не утомляется.
Ответ мышц на физическую нагрузку
В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Мустафа Поль Университет им. Ататюрка, Эрзурум, Турция Осмо Хяннинен Университет Куопио, Финляндия
Скелетные мышцы состоят из медленных окислительных волокон, быстрых окислительно-гликолитических волокон и быстрых гликолитических волокон. Медленные окислительные волокна задействуются при малоинтенсивной, но требующей выносливости физической активности, например при марафонском беге. Быстрые окислительно-гликолитические волокна, способные на большее усилие, но и легче утомляющиеся, используются главным образом во время более кратковременных упражнений на выносливость большей интенсивности, таких как бег на 1 милю. Быстрые гликолитические волокна используются преимущественно в упражнениях с взрывной нагрузкой, таких как забег на 100 м. Тренировки на выносливость увеличивают число митохондрий в медленных окислительных и быстрых окислительно-гликолитических волокнах, а также капилляров вокруг них. С другой стороны, непродолжительная физическая нагрузка высокой интенсивности, например, поднятие тяжестей, затрагивает, в первую очередь, быстрые гликолитические волокна, что приводит к гипертрофии мышц. Энергия для кратковременной интенсивной физической нагрузки поставляется энергетической системой немедленного типа, включающей АТФ и креатинфосфат, и анаэробным гликолизом, тогда как энергия для физической нагрузки на выносливость обеспечивается, главным образом, окислительным фосфорилированием.
При выполнении физических упражнений в функциях нашего организма происходит множество изменений. Они требуют взаимодействия практически всех систем тела, например:
Функции многих из этих систем можно изучать во время физической нагрузки. Например, электрическая активность сердца легко регистрируется кардиотахометром, который многие спортсмены уже используют в своих индивидуальных тренировочных программах на выносливость. Во время тренировки также можно регистрировать электрическую активность отдельных мышц для последующего анализа, чтобы оценить эффективность программы.
В целом, спортивные упражнения можно разделить на испытания на силу, скорость и выносливость. Примерами могут послужить толкание ядра, спринт на 400 м и марафонский бег, соответственно. Скелетные мышцы обладают тремя энергетическими системами, каждая из которых используется в этих трех типах физической активности:
Если физическая активность снижается, скелетные мышцы постепенно уменьшаются в диаметре. Количество сократительных белков уменьшается (так называемая атрофия) из-за недостатка сокращений, что может стать результатом денервации, как при инсульте и параличе или долговременной неподвижности мышц (например, из-за травмы кости, хряща или сухожилия).
«Скользящие нити» Править
Чтобы поперечные мостики прикрепились к актину, нужно, чтобы молекулы тропомиозина сдвинулись из положения, в котором они блокируют актин. Это происходит, когда кальций связывается с определенными центрами связывания на тропонине. Концентрация ионов кальция в цитозоле определяет число поперечных мостиков, которые могут связываться с актином и прилагать силу к тонким нитям. Изменения в концентрации кальция в цитозоле управляются электрическими явлениями, происходящими в плазматической мембране.
Во время сокращения мышцы поперечные мостики, которые тянутся от поверхности толстых нитей, вступают в контакт с тонкими нитями и прилагают к ним силу. Актиновые нити скользят вдоль нитей миозина с помощью поперечно-мостиковых соединений между этими двумя нитями, так что длина саркомера становится меньше вследствие движения актина внутрь.
На глобулярных головках миозина есть активный ферментативный участок, который катализирует расщепление аденозинтрифосфата (АТФ), высвобождая, таким образом, химическую энергию, накопленную в АТФ, необходимую для движения поперечных мостиков. АТФ также необходим для того, чтобы закачать ионы Са+2 обратно в саркоплазматический ретикулум и разорвать тем самым связь между миозином и актином в конце сокращения.
Все испытывают мышечную усталость, но пока еще остаются некоторые аспекты, которые в этом явлении поняты не до конца.
Тренировка на выносливость может увеличить плотность капилляров в мышцах и даже размер коронарных артерий, обеспечивая повышение объема кровообращения. Она может также уменьшить как систолическое, так и диастолическое кровяное давление примерно на 1 —1,3 кПа (8—10 мм рт. ст.) у людей с умеренной гипертонией. Физическая нагрузка оказывает благоприятное воздействие на уровень липидов в крови. Хотя уменьшение общего содержания холестерина и уровня холестерина липопротеинов низкой плотности при тренировках на выносливость относительно невелико, по всей видимости, наблюдается относительно большое повышение уровня холестерина липопротеинов высокой плотности и снижение уровня триглицеридов. Физическая нагрузка также играет важную роль в контроле и снижении массы тела и при контроле диабета. Благодаря этому и многим другим благоприятным воздействиям, регулярная физическая нагрузка может не только уменьшить риск сердечных приступов и инсультов, но и повышает качество жизни с улучшением как физической формы, так и умственных способностей. Кроме того, она может также способствовать увеличению продолжительности здоровой жизни.
За последние три десятилетия внимание исследователей, занимающихся различными аспектами физической нагрузки, переместилось с отдельных органов на внутриклеточный/молекулярный уровень. Поэтому в будущем исследования физической нагрузки, вероятно, и дальше будут испытывать влияние новых технологий (например, генные микрочипы) и других инструментов молекулярной биологии. Эти обстоятельства, возможно, приведут к появлению таких областей, как функциональная геномика (идентификация функций различных участков генома) и протеомика (исследование свойств белков) в связи с физической нагрузкой.
Авторы благодарят доктора Питера М. Тиидуса из Университета им. Уилфрида Лорье (Канада) за критическое прочтение текста.
Актин — тонкая нить белка, которая взаимодействует с нитями миозина, чтобы заставить мышцу сократиться.
Анаэробный — в отсутствие кислорода.
Атрофия — потеря размера или массы ткани тела, например, атрофия мышц при неподвижности.
АТФ — аденозинтрифосфат, высокоэнергетическое фосфатное соединение, из которого организм получает энергию.
Аэробный — в присутствии кислорода.
Аэробный метаболизм — процесс, происходящий в митохондриях, в ходе которого кислород используется для производства энергии (АТФ); также известен как клеточное дыхание.
БОГ — быстрый окислительно-гликолитический.
Венозный возврат — объем крови, поступающий к сердцу в единицу времени.
Выносливость — способность сопротивляться усталости; включает в себя мышечную выносливость и кардиореспираторную выносливость.
Гликоген — углевод (сильно разветвлённый полисахарид, состоящий из субъединиц глюкозы), накапливающийся в теле; встречается в основном в мышцах и печени.
Гликолиз — метаболический путь, который расщепляет глюкозу на две молекулы пировиноградной кислоты (аэробно) или две молекулы молочной кислоты (анаэробно).
Гликолитическое волокно — волокно скелетной мышцы, в котором наблюдается высокая концентрация гликолитических ферментов и большой запас гликогена.
ДК — дыхательный коэффициент, представляющий собой отношение объема произведенного С02к объему 02, потребленного в единицу времени
Закон Франка-Старлинга — в определенных пределах повышенный конечно-диастолический объем сердца (увеличение длины мышечных волокон) увеличивает силу его сокращения.
К — креатин, вещество, содержащееся в скелетных мышцах, обычно в форме креатинфосфата (КФ).
Конечно-диастолический объем — объем крови в левом желудочке в конце диастолы, непосредственно перед сокращением.
КФ — креатинфосфат, энергоемкое соединение, играющее ведущую роль в снабжении энергией работающих мышц с помощью поддержания концентрации АТФ путем передачи фосфата и энергии в АДФ.
Медленное волокно — тип мышечных волокон, обладающий высокой окислительной и низкой гликолитической способностью; задействуется при нагрузке на выносливость.
Миозин — сократительный белок, из которого состоят толстые нити в мышечных волокнах.
Миозин-АТФаза — ферментативный участок на шаровидной головке миозина, который катализирует расщепление АТФ до АДФ и Ф|, высвобождая химическую энергию, используемую для сокращения мышц.
МО — медленный окислительный.
ОПСС — общее периферическое сопротивление сосудов.
Поперечный мостик — выступ на миозине, тянущийся от толстой нити мышечного волокна и способный приложить силу к тонкой нити, заставляя нити скользить друг по другу.
Саркомер — повторяющаяся структурная единица миофибриллы; состоит из толстых и тонких нитей; располагается между двумя смежными Z-линиями.
Сахарный диабет — болезнь, при которой контроль глюкозы в плазме нарушается из-за недостатка инсулина или снижения отклика клетки-мишени на инсулин.
Скелетная мышца — поперечнополосатая мышца, прикрепленная к костям или коже и отвечающая за движения скелета и выражение лица; управляется соматической нервной системой.
Сократительная способность — сила сердечного сокращения, не зависящая от длины волокна.
Специфика тренировки — физиологическая адаптация к физической нагрузке высоко специфична по отношению к характеру физической активности. Чтобы извлечь максимальную пользу, тренировка должна полностью соответствовать потребностям спортсмена и роду его физической активности.
Тканевая жидкость — внеклеточная жидкость, окружающая клетки ткани; в нее не входит плазма, которая окружает клетки крови наряду с внеклеточной жидкостью.
Толстая нить — нить миозина 12—18 нм в мышечной клетке.
Тонкая нить —нить 5—8 нм в мышечной клетке, состоящая из актина, тропонина и тропомиозина.
Ударный объем сердца — объем крови, выбрасываемый желудочком за один цикл сокращения сердечной мышцы.
УО — ударный объем сердца, т. е. количество крови, выбрасываемое из левого желудочка во время сокращения; разница между ко-нечно-диастолическим и конечно-систоли-ческим объемами.
Уровень pH — показатель кислотности раствора; отрицательный десятичный логарифм концентрации Н+; при повышении кислотности уровень pH снижается.
Р02 — парциальное давление кислорода.
Утомление — общее ощущение усталости и сопровождающее его снижение мышечной работоспособности.
Физиология физической нагрузки — изучение изменений в строении и функциях тела при резкой или затяжной физической нагрузке.
Частота сердечных сокращений в гомеостазе — частота сердечных сокращений, которая поддерживается постоянной при субмаксимальном уровне физической нагрузки, когда ее интенсивность остается постоянной.
ЧССmах — максимальная частота сердечных сокращений, самый высокий показатель частоты сердечных сокращений, достижимый при напряжении всех сил на грани изнеможения.
РС02 — парциальное давление С02.
Baldwin К. М. (2000). Research in the exercise sciences: Where do we go from here? Journal of Applied Physiology 88, 332-336. [Этот обзор содержит перспективный взгляд на то, как исследования, касающиеся острого и долговременного влияния фи-1 зической нагрузки на строение и функции систем органов, будут развиваться в XXI в.]
Bodine S.C., Latres Е., Naumhueter S., Lai V. К.-М., Nunez L., Clarke В. A., Pouey-mirou W.T., Panaro F.J., Na E., Dharmara-jan K., Pan Z.-Q., Valenzuela D. М., DeChi-ara Т. М., Stitt T. N., Yancopoulos G. D., Glass D. J. (2001). Identification of ubiqui-tin ligases required for skeletal muscle athro-phy. Science 294, 1704-1707. [В этой статье приведены данные о том, что происходит при мышечной атрофии на молекулярном уровне.]
Bouchard С., Shephards R.J., Stephen Т. (1994). Physical Activity, Fitness, and Health. International Proceedings and Consensus Statement. Champaign, IL: Human Kinetics Publishers. 1055 pp. [Всеобъемлющий источник информации, содержит ценные рекомендации.]
Brooks G. A., Fahey Т. D., White Т. Р. (1996). Exercise Physiology: Human Bioenergetics and its Applications. Mountain View, CA: Mayfield Publishing Company. 750 pp. [Эта книга предоставляет всестороннюю и современную информацию о физиологии физической нагрузки, особенно о метаболизме и энергетике мышц.]
Fritzsche R.G., Switzer T.W., Hodgkinson B.J., Coyle E. F. (1999). Stroke volume decline during prolonged exercise is influenced by the increase in heart rate. Journal of Applied Physiology 86, 799-805. [В этой работе исследуется, связано ли снижение ударного объема сердца во время длительной физической нагрузки с увеличением частоты сердечных сокращений и/или увеличением кровотока в коже.]
Labeit S., Kolmerer В. (1995). Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 13270 (5234), 293-296. [Эластичная составляющая мышц накапливает энергию, которая затем выделяется для их сокращения; молекулы тити-на определяют эластичность мышц, и его содержание в разных мышцах различно. Титин также обеспечивает упорядочение структуры сократительных белков.]
Pekkarinen Н. (1998). Finnish Fitness Plan Program, [Регулярно обновляется.]
Saltin В., Radegran G., Koskolou M. D., and Roach R.C. (1998). Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiologica Scandinavica 162, 421-436. [В этой обзорной статье рассматривается кровоток в скелетных мышцах в начале и во время физической нагрузки и, в особенности, роль местных вазоактивных веществ, а также мышечной симпатической нервной активности в регулировании кровотока в мышцах.]
Sen С. К., Packer L., Ндпшпеп О. (2000). Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier. 1207 pp. [Множество статей о физической нагрузке и кислородном обмене, а также о свободных радикалах и контроле над ними.]
Tamaki Т. Akatsuka A., Takunaga М., Ishige К., Uchiyama S., Shiraishi Т. (1997). Morphological and biochemical evidence of muscle hyperplasia following weight-lifting exercise in rats. American Journal of Physiology 21Ъ (Cell Physiology 42), C246-C256. [В этом исследовании показано, что морфологические изменения при мышечной гиперплазии, вызванные занятиями тяжелой атлетикой, совместимы с повышенной митотической активностью клеток-сателлитов и синтезом белка мышц].
Vander A. J., Sherman J. Н., Luciano D. S. (1990). Human Physiology: the Mechanisms of Body Function. New York: McGraw-Hill Publishing Company, 724 pp. [В этой книге всесторонне представлены основополагающие принципы физиологии человека, а также приведена базовая информация о функции скелетных мышц и физиологии физической нагрузки].
Осмо Отто Пяйвьё Хяннинен — доктор медицинских наук, доктор философии, профессор физиологии, заведующий кафедрой Университета Куопио (Финляндия). Доктор Хяннинен родился 30 апреля 1939 г. в Лахти (Финляндия). Учился в университетах Хельсинки и Турку (Финляндия), где получил степень магистра по биохимии в 1962 г., лиценциата медицины в 1964 г., доктора медицинских наук в 1966 г. и защитил диссертацию по биохимии на степень доктора философии в 1968 г. Он также изучал генетику. Специалистом по спортивной медицине является с 1986 г. Работал научным сотрудником у профессора К. Хартиала в 1962-1964 гг., ассистентом по физиологии в 1964-1965 гг., лаборантом по физиологии в 1966-1967 гг., доцентом по физиологии с 1967 г. по настоящее время, адъюнкт-профессором по биохимии в 1969-1971 гг. в Университете Турку (Финляндия), исполняющим обязанности профессора в проектном отделе в 1971-1972 гг. и профессором физиологии и заведующим кафедрой физиологии с 1972 г. по настоящее время в Университете Куопио (Финляндия). Был вице-президентом Университета Куопио в 1972-1979 гг. и президентом Университета Куопио в 1981-1984 гг. Кроме того, работал приглашенным профессором физиологии в Шанхайском медицинском университете (Китай) в 1991-1992 гг. и в Медицинском университете им. Сунь Ятсена в Гуанчжоу (Китай) в 1998-1999 гг. Является иностранным членом Российской академии естественных наук с 1994 г.; был генеральным секретарем Международного совета по науке о лабораторных животных в 1988-1995 гг., президентом Финского физиологического общества в 1990-1999 гг., в настоящее время является президентом Международного общества патофизиологии (с 1994 г.), а также членом Исполнительного комитета (с 1994 г.), казначеем Международного союза по биологическим наукам (с 1997 г.).
Опубликовал 266 статей в рецензируемых журналах, 72 доклада в материалах конференций, написал 55 обзоров, и 30 книг и глав в книгах. Входит в состав редколлегии четырех международных журналов, в настоящее время является европейским редактором журнала “Pathophysiology”.