клетки растений получают энергию только за счет фотосинтеза

Написать цифры правильных утверждений и не праивльных

1. Существуют семейства двудольных растений, не имеющие околоцветника.
2. Органические вещества могут перемещаться от корней к листьям по сосудам ксилемы.
3. Растения могут размножаться как половым, так и бесполым путём.
4. Все живые клетки растений содержат пластиды.
5. Клетки растений получают энергию только за счёт фотосинтеза.
6. Для ракообразных, обитающих на суше, характерно жаберное дыхание.
7. Все беспозвоночные используют внешнее оплодотворение.
8. У представителей отряда Жесткокрылые колюще-сосущий ротовой аппарат.
9. Все клетки животных содержат ядра.
10. Земноводные получают кислород через лёгкие, кожу и кишечник.
11. Рефлекторная дуга содержит по меньшей мере три нейрона: чувствительный, вставочный и двигательный.
12. Наименьшая линейная скорость движения крови у человека наблюдается в полых венах.
13. Зона коры больших полушарий мозга, ответственная за кожно-мышечную чувствительность, расположена в затылочной части мозга.
14. У человека по лёгочным венам течёт артериальная кровь.
15. Кожными железами человека являются сальные, потовые и млечные.
16. Особь, имеющая рецессивный фенотип, гомозиготна по рецессивной аллели. 17. Самые крупные молекулы в животных клетках – молекулы ДНК.
18. Все триплеты в ДНК кодируют аминокислоты.
19. Длину пищевых цепей ограничивает потеря энергии.
20. Конечным акцептором электронов при окислении органических субстратов в живых клетках всегда является кислород.

Источник

Фотосинтез

Типы питания

клетки растений получают энергию только за счет фотосинтеза

Фотосинтез

клетки растений получают энергию только за счет фотосинтеза

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

клетки растений получают энергию только за счет фотосинтеза

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

клетки растений получают энергию только за счет фотосинтеза

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

клетки растений получают энергию только за счет фотосинтеза

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

клетки растений получают энергию только за счет фотосинтеза

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

клетки растений получают энергию только за счет фотосинтеза

клетки растений получают энергию только за счет фотосинтеза

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

клетки растений получают энергию только за счет фотосинтеза

Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

клетки растений получают энергию только за счет фотосинтеза

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Что такое фотосинтез? История открытия процесса, фазы фотосинтеза и его значение.

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Но еще 300-400 лет назад ответ на вопрос «откуда растения берут питательные вещества для строительства своих клеток?» занимал умы ученых во всем мире.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

После ван Гельмонта различные ученые повторили его опыт, и сложилась так называемая «водная теория питания растений».

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

клетки растений получают энергию только за счет фотосинтеза

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

клетки растений получают энергию только за счет фотосинтеза

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

Подробнее о «великой кислородной революции» можно прочитать в учебнике «Биология 10-11 классы» под редакцией А.А. Каменского на портале LECTA.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Слово фотосинтез состоит из двух частей: фото — «свет» и синтез — «соединение», «создание». Если подходить к определению упрощенно, то фотосинтез — это превращение энергии света в энергию сложных химических связей органических веществ при участии фотосинтетических пигментов. У зеленых растений фотосинтез происходит в хлоропластах.

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

У некоторых растений фотосинтез идет по упрощенному варианту, который называется «циклическое фосфорилирование» и разбирается этот процесс в учебнике «Биология 10-11 классы» под редакцией А. А. Каменского на портале LECTA.

Источник

Bio-Lessons

Образовательный сайт по биологии

клетки растений получают энергию только за счет фотосинтеза

клетки растений получают энергию только за счет фотосинтеза

Фотосинтез. Воздушное питание растений.

Фотосинтез. Воздушное питание растений.

Как же осуществляется фотосинтез?

Через устьичные щели в лист поступает углекислый газ. При попадании солнечных лучей на поверхность листа в его хлоропластах происходит сложный процесс: из углекислого газа и воды, всасываемой корнями, образуется органическое вещество — сахар (глюкоза). При этом выделяется кислород. Частично он используется растениями для дыхания, а излишки поступают в воздух также через устьица. Сахар затем превращается в крахмал. Крахмал в воде не растворяется. Образование сахара на свету при участии воды и углекислого газа происходит только в хлоропластах и только за счет энергии солнечного света.

Следовательно, процесс образования в хлоропластах на свету органических веществ из воды и углекислого газа с выделением кислорода называется фотосинтезом (рис.1).

клетки растений получают энергию только за счет фотосинтеза

Рис.1 Процесс фотосинтеза

История открытия фотосинтеза

Первые опыты по изучению питания растений провел в 1630 г. голландский врач Ян Батист ван Гельмонт. Он доказал, что растения не получают органические вещества в готовом виде из почвы, а сами образуют их (рис.2)

клетки растений получают энергию только за счет фотосинтеза

Рис.2 Опыт Яна Батиста ван Гельмонта

А швейцарский естествоиспытатель Жан Сенебье доказал, что растения используют углекислый газ.

Русский ученый К. А. Тимирязев (1843-1920) впервые описал роль хлорофилла (пигмент, который находится в хлоропластах) в фотосинтезе. Он назвал фотосинтез космическим процессом. Растения используют космическую энергию Солнца. Жизнь как явление существует на нашей планете, только благодаря фотосинтезу, обеспечивающему питанием и кислородом все живое. Может, благодаря фотосинтезу наша планета единственная в Космосе, населенная живыми существами?

Опыт доказывающий образование крахмала в листьях

Доказать процесс образования крахмала в листьях можно путем постановки простого опыта (рис.3)

клетки растений получают энергию только за счет фотосинтеза

Рис.3 Образование крахмала в зеленых листьях на свету

Комнатное растение, желательно пеларгонию или примулу, хорошо поливают и ставят в темное место на 2-3 дня. За это время растением расходуется ранее образованный в листьях крахмал. Через 2—3 дня несколько листьев на растении закрывают с двух сторон черной бумагой так, чтобы часть поверхности листа оставалась открытой. Растение выставляют на свет.

Через сутки бумагу убирают, лист срывают, опускают его на одну минуту в кипяток, затем переносят в посуду с горячим спиртом, который в целях предосторожности подогревается на водяной бане. Обесцвеченный лист ополаскивают холодной водой и помещают в плоский сосуд. Расправленный лист заливают слабым раствором йода. Через 2—3 мин можно увидеть, что закрытая часть листа не изменила своего цвета, а та часть листа, на которую попадал свет, окрасилась в синий цвет.

Обработка йодом помогает обнаружить в клетках крахмал. Следовательно, крахмал образуется в листьях только на свету.

В ходе фотосинтеза растение использует углекислый газ и выделяет кислород, который поддерживает горение. Это можно подтвердить следующим опытом.

Следует взять две банки (0,8 л) из светлого стекла и поместить в каждую по 5-6 веточек традесканции. Чтобы растения не завяли, в банки наливают немного воды. Затем небольшие свечи, укрепленные на проволоке, зажигают, опускают в банки и закрывают их. Вскоре свечи погаснут, что указывает на отсутствие в банке кислорода и на увеличение содержания углекислого газа, образовавшегося в результате горения свеч. Свечи вынимают, закрывают обе банки стеклом и выставляют одну на свет, а другую — в темное место. На следующий день банки открывают и опять опускают туда на проволоке зажженные свечи. В банке, стоявшей на свету, свеча горит, а в банке, находившейся в темном месте, — гаснет (рис.4).

клетки растений получают энергию только за счет фотосинтеза

Рис. 4 Образование кислорода на свету

Таким образом, вы снова убедились, что зеленые растения поглощают углекислый газ и выделяют кислород, который поддерживает горение, только на свету, т. е. в процессе фотосинтеза. А при дыхании растения, как и все живые организмы, поглощают кислород, а выделяют углекислый газ.

Подводим итог

Фотосинтез — основа воздушного питания растений. При фотосинтезе зеленые растения с помощью хлорофилла извлекают энергию из солнечного света и с ее помощью создают органические вещества из углекислого газа и воды. Как побочный результат при фотосинтезе выделяется кислород.

Источник

ГДЗ биология 6 класс Пасечник, Суматохин, Калинова Просвещение 2019-2020 Задание: 31 Фотосинтез

Стр. 132. Вспомните

№ 1. Какие вещества входят в состав растений?

В растениях содержатся разные группы веществ. Это и органические соединения – жиры, белки, углеводы или крахмал, нуклеиновые кислоты, и минеральные соли. Также в их состав входит вода и в малых количествах витамины.

№ 2. Какова роль хлоропластов в жизни растений?

Хлоропласты – это пластиды зеленого цвета, которые содержатся в клетках фотосинтезирующих эукариот – растений. Благодаря содержанию в них хлорофилла возможен процесс поглощения энергии и света и превращения их в органические вещества с выделением кислорода в воздух.

Стр. 133. Вопросы после параграфа

№ 1. Что такое фотосинтез?

Фотосинтез – это процесс, когда во всех клетках, содержащих хлорофилл, происходит образование из неорганических веществ (вода, углекислый газ) органических под воздействием энергии света.

№ 2. Какие приспособления имеют растения к улавливанию световой энергии?

В результате влияния различных условий светового режима у растений выработались особые приспособительные свойства. Например, величина листовой пластинки – они могут быть широкие и узкие, длинные и короткие. У растений-светолюбов ориентация листьев вертикальная, либо имеет разный угол по отношению к лучам солнца, чтобы исключить перегрев и избыточный свет.

У многих представителей такого вида растений поверхность листовой пластины блестящая, густо опушена, покрыта светлым восковым налетом. Это способствует хорошему отражению чрезмерно палящих солнечных лучей, либо послаблению их воздействия.

У теневыносливых растений листья ориентированы к свету всей поверхностью своей листовой пластины и располагаются таким образом, чтобы не затемнять соседние листья. Благодаря тонкой прозрачной кожице на листьях солнечные лучи также хорошо попадают на их поверхность.

№ 3. Какова роль хлорофилла в процессе фотосинтеза?

Хлорофилл, который содержится в хлоропластах растения, не только придает его листьям, побегам и другим частям зеленую расцветку. Он также выполняет функцию поглощения, преобразования и дальнейшей транспортировки энергии солнечного света. Улавливание света является главным условием для процесса фотосинтеза – преобразования неорганических веществ (воды и углекислого газа) в органические.

№ 4. Почему у растений, растущих рядом с цементным заводом, фотосинтез идёт менее интенсивно?

В результате работ на цементном заводе происходит выброс большого количества пыли, микроскопические частички которой оседают на листьях растения, покрывая их поверхность тонким слоем. Из-за этого прозрачная кожица пластинок листьев становится мутной, сквозь нее начинает плохо поступать солнечный свет. Соответственно, и процесс фотосинтеза в растениях, которые растут вблизи цементного завода, замедляется, происходит менее активно.

№ 5. В чём проявляется космическая роль растений?

Первым, кто подчеркнул космическую роль растений, был К. А. Тимирязев. Он говорил, что растение является своеобразным посредником между небом и землей, неким Прометеем, похитившим энергию солнца, луч которого приводит в движение маховик гигантской паровой машины.

Важность растений подтверждается еще и их жизнеопределяющей ролью на нашей планете. Все организмы, обитающие на Земле, нуждаются в энергии, основным и первоначальным источником которой является энергия Солнца. Однако возможностей использовать ее в таком виде у бактерий, грибов и животных нет. Растения же могут воспринимать солнечную энергию и преобразовывать ее в энергию химических связей органических молекул. Благодаря этому они и дают пищу всем живым организмам на Земле.

Стр. 133. Подумайте

Почему можно считать, что жизнь на Земле зависит от фотосинтеза?

Потому что, когда жизнь на Земле только зарождалось, растений не было, а кислород в атмосфере отсутствовал. С появлением первых растений, содержащих в своих листьях хлорофилл и способных к фотосинтезу – преобразованию из неорганических веществ, а именно воды и углекислого газа, органических соединений, концентрация кислорода в атмосфере стала повышаться. А кислород, как известно, является жизненно необходимым для всех живых существ на нашей планете.

Более того, кислород важен не только для дыхания. На высоте около 25 км в атмосфере под воздействием солнечного излучения из кислорода образуется озон. Озоновый слой способен удерживать губительные для живых организмов ультрафиолетовые лучи. Таким образом, растения обеспечивают безопасность и возможность жизни для всех существ на планете.

Стр. 135. Задачи

Решение:

1) 1500 : 25 = 60 (чел.) – сможет обеспечить кислородом один дуб с площадью листвы 1500 м 2 ;

2) 50 * 60 = 3000 (чел.) – сможет обеспечить кислородом дубовая роща, состоящая из одинаковых 50 дубов.

Ответ: 60 человек и 3000 человек.

№ 2. Люди специально озеленяют города, особенно промышленные районы. Объясните, с какой целью это делается. Выясните, какие растения высаживают в вашем городе для этой цели.

Благодаря способности к фотосинтезу растения хорошо обогащают воздух в городах кислородом, который необходим для дыхания всех живых существ на планете. Это особенно актуально для промышленных районов, воздух в которых часто загрязнён выбросами, выхлопами, пылью и т.д.

Зеленые насаждения способны смягчать климат, потребляя солнечную энергию, контролировать концентрацию углекислого газа в атмосфере и создавать органические вещества в почве, обеспечивая их плодородие.

На улицах моего города регулярно проводится озеленение путем высаживания лиственных хвойных деревьев, кустарников, цветов и трав.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *