когда образец считается электрически нейтральным
Электростатика. Взаимодействие зарядов. Два вида электрических зарядов.
Простые опыты по электризации различных тел иллюстрируют следующие положения.
1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.
2. Заряды (или заряженные тела) взаимодействуют друг с другом. Одноименные заряды отталкиваются, а разноименные заряды притягиваются.
3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда. При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — положительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями зарядов с помощью электрометров.
Элементарный электрический заряд (е) — это наименьший электрический заряд, положительный или отрицательный, равный величине заряда электрона:
Заряженных элементарных частиц существует много, и почти все они обладают зарядом +e или -e, однако эти частицы весьма недолговечны. Они живут меньше миллионной доли секунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.
Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома, вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электроцентралей.
В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными; тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.
Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приобретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся зарядов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.
Определение заряда.
Следует особо подчеркнуть, что заряд является неотъемлемым свойством частицы. Частицу без заряда представить себе можно, но заряд без частицы — нельзя.
Проявляют себя заряженные частицы в притяжении (разноименные заряды) либо в отталкивании (одноименные заряды) с силами, на много порядков превышающими гравитационные. Так, сила электрического притяжения электрона к ядру в атоме водорода в 10 39 раз больше силы гравитационного притяжения этих частиц. Взаимодействие между заряженными частицами называется электромагнитным взаимодействием, а электрический заряд определяет интенсивность электромагнитных взаимодействий.
В современной физике так определяют заряд:
Электрический заряд — это физическая величина, являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.
Закон сохранения электрического заряда
Электрический заряд
Электрический заряд — это физическая величина, которая определяет способность тел создавать электромагнитное поле и принимать участие в электромагнитном взаимодействии.
Мы состоим из клеток, клетки состоят из молекул, молекулы в свою очередь состоят из атомов, а атомы — из ядра и электронов. Ядро состоит из протонов и нейтронов.
Протон — это частица, которая заряжена положительно, нейтрон — нейтрально, а электрон — отрицательно. Электрон вращается по орбитам, которые во много раз больше, чем размер электрона.
Размер электрона с размером орбиты можно сравнить так: представьте футбольный мяч и футбольное поле. Во сколько раз поле больше мяча, во столько же раз орбита больше, чем электрон.
Как мы уже выяснили, электрические заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, разноименные притягиваются:
А вот измерять Электрический заряд мы будем в Кулонах [Кл]. Нет, не тех, что болтаются на цепочке. Шарль Кулон — это физик, который изучал электромагнитные явления.
Электризация
Чтобы разобраться с тем, как тело приобретает электрический заряд и сохраняет его, нам для начала нужно поближе познакомится с протоном и электроном. Протон — ленивый и неповоротливый — он точно не будет никуда перемещаться, если мы не переместим атом целиком.
А вот электрон — парень подвижный, и ему перебежать с одного атома на другой — ничего не стоит.
Мы поговорим о двух типах электризации: электризация соприкосновением и электризация трением.
Свободные электроны переходят с незаряженного тела на нейтральное. А если мы возьмем положительно заряженное тело вместо отрицательного, то свободные электроны перейдут с нейтрального тела, чтобы уравновесить заряды.
Электроны переходят от одного тела к другому и в отличии от электризации соприкосновением заряжаются противоположными по знаку и равными по модулю зарядами.
То есть при соприкосновении заряд раздают одного знака и поровну. Как если бы ты поделился с другом конфетами, которых у тебя с избытком.
При трении наоборот — заряды у тел будут разных знаков, но также в одинаковом количестве. Например, у вас есть равное количество денег в рублях и долларах, и у меня аналогичная ситуация с той же суммой. Вы решили лететь в США, а мне как раз доллары не нужны. Чтобы не ходить в банк, мы можем просто поменяться. Тогда у вас будут только доллары, а у меня — только рубли. Главное, договориться про курс 🙂
Давайте решим пару задач по этой теме.
Задачка один
Из какого материала может быть сделан стержень, соединяющий электрометры, изображённые на рисунке?
Решение:
Он может быть сделан либо из проводника, либо из диэлектрика. Проводник пропускает через себя заряды, а диэлектрик — нет. Если мы посмотрим на показания электрометров, то увидим, что они отличаются.
Как мы помним, при соприкосновении заряды уравниваются по величине (один электрометр делится конфетами с другим). В данном случае никто ни с кем не делился, это значит, что стержень не пропускает — он диэлектрик. И стекло, и эбонит являются диэлектриками. Значит подходят оба варианта!
Задачка два
В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен при трении не происходил?
А) количество протонов на стеклянной линейке
Б) количество электронов на шёлке
Решение:
Вспомните, как мы охарактеризовали протон: он ленивый и неподвижный! Значит количество протонов ни на стеклянной линейке, ни на шелке измениться просто не может. Мы же не отламываем кусок линейки вместе с атомами, из которых она состоит. А вот электроны охотно перемещаются. Нам известно, что линейка приобрела положительный заряд. Получается, электроны сбежали от нее к шелку. Следовательно, количество электронов на шелке увеличилось.
Электростатическая индукция
Кажется, с электризацией разобрались. Теперь разберемся, что произойдет, если мы поднесем одно тело к другому, но не вплотную. Произойдет такое явление, как электростатическая индукция — явление перераспределения зарядов в нейтрально заряженных телах.
Давай разбираться на примере задачи:
На нити подвешен незаряженный металлический шарик. К нему снизу поднесли положительно заряженную палочку. Как изменится при этом сила натяжения нити?
Решение:
Здесь важно подчеркнуть, что незаряженный — значит заряжен нейтрально. То есть в теле равное количество положительных и отрицательных зарядов.
Электроны металлического шарика будут притягиваться к поднесенной положительной палочке. В результате шарик притягивается к палочке, следовательно, сила натяжения нити увеличивается.
Ответ: сила натяжения нити увеличивается
Поляризация диэлектрика
Давайте возьмем два, на первый взгляд, одинаковых задания из ЕГЭ.
Задание 1
Если к незаряженному металлическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?
Мы только что это разобрали: то электростатическая индукция.
Задание 2
Если к незаряженному диэлектрическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?
Кажется, что очень похоже на электростатическую индукцию, но это явление будет называться поляризация. В чем разница:
В первом случае — это проводник, а во втором — диэлектрик. Если не вдаваться в подробности, то поляризация диэлектрика — процесс, очень похожий по природе своей на электростатическую индукцию, только происходит в непроводящих материалах.
Закон сохранения электрического заряда
И последнее, о чем мы сегодня поговорим — этот закон сохранения заряда
Алгебраическая сумма зарядов электрически замкнутой системы сохраняется.
Закон сохранения заряда
q1 + q2 + q3 + … + qn = const
q1, q2, q3, …, qn — заряды электрически замкнутой системы [Кл]
Задачка раз
Решение:
Для решения этой задачи нам нужно найти алгебраическую сумму зарядов.
Это суммарный заряд шариков и до, и после и во время взаимодействия.
Так как суммарный заряд сохраняется, но шарики соприкоснулись, суммарный заряд разделится между всеми шариками поровну. То есть нам нужно суммарный заряд просто поделить на количество шариков — на 2.
И это ответ к нашей задаче.
Задачка два
Металлическая пластина, имевшая положительный заряд, по модулю равный 10е, при освещении потеряла шесть электронов. Каким стал заряд пластины?
Решение:
q = q₀ — 6(— e) = 10e + 6e = 16e
Красный знак «минус» образуется из-за того, что мы «отнимаем» электроны, а зеленый — из-за того, что электрон отрицательный. «Минус на минус» дает плюс, поэтому мы получаем 10e + 6e = 16е.
Ответ: 16е
Задачка три
Решение:
По закону сохранения заряда сумма зарядов в замкнутой системе остается постоянной.
Два шарика привели в соприкосновение и развели, значит их суммарный заряд разделится между шариками поровну.
Ответ: заряды шариков равны 2q.
Закон Кулона и связь с гравитацией
Мы уже упоминали Шарля Кулона. В честь него названа единица измерения заряда — Кулон. Он придумал закон о взаимодействии зарядом.
Закон Кулона
k — коэффициент пропорциональности
E₀= 8,85 * 10-12Н*м²/Кл² — электрическая постоянная
E — диэлектрическая проницаемость среды — показывает во сколько раз сила электростатического взаимодействия в вакууме больше силы в среде (в вакууме равна 1)
q1 — заряд первого тела [Кл]
q2 — заряд второго тела [Кл]
r — расстояние между телами [м]
F — сила электростатического взаимодействия (кулоновская) [Н]
Мы уже знаем, что заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные — притягиваются. Это значит, что сила направлена туда же, куда заряд будет стремиться двигаться.
Например, у положительного заряда сила будет направлена в сторону отрицательного, если он есть где-то поблизости, и от положительного, так как одноименные заряды отталкиваются.
Согласно третьему закону Ньютона, силы одной природы возникают попарно, равны по величине, противоположны по направлению. Если взаимодействуют два неодинаковых заряда, сила, с которой больший заряд действует на меньший (В на А) равна силе, с которой меньший действует на больший (А на В).
Интересно, что у различных законов физики есть некоторые общие черты. Вспомним закон тяготения. Сила гравитации также обратно пропорциональны квадрату расстояния, но уже между массами. И невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество, как два разных проявления одной и той же сущности.
Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Нельзя говорить, что одно действует сильнее другого, ведь все зависит от того, какова масса и каков заряд.
Рассуждая о том, насколько сильно действует тяготение, мы не вправе говорить: «Возьмем массу такой-то величины», потому что мы выбираем ее сами. Но если мы возьмем то, что предлагает нам сама Природа: ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами — с любыми нашими мерами, вот тогда мы можем сравнивать.
Мы возьмем элементарную заряженную частицу, например, электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.
Закон Всемирного тяготения
G= 6,67 * 10⁻¹¹*11м³/кг*c² — гравитационная постоянная
m1 — масса первого тела [кг]
m2 — масса второго тела [кг]
r — расстояние между телами [м]
F — сила гравитационного притяжения [Н]
Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Да, это огромное число! Исследователи перебирали все большие числа, чтобы понять — откуда это взялось. Одно из таких больших чисел — это отношение диаметра Вселенной к диаметру протона — как ни удивительно, это тоже число с 42 нулями. Нормально так перебрали.
Если вы смотрели Рика и Морти, то знаете о теории параллельных вселенных и о том, что эти вселенные расширяются. Из-за расширения вселенной постоянная сила тяготения меняется. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная сила тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.
От расширяющихся вселенных и мультиков перейдем к чему-то более приземленному — к задачам.
Задачка раз
Расстояние между двумя точечными электрическими зарядами уменьшили в 3 раза, каждый из зарядов увеличили в 3 раза. Во сколько раз увеличился модуль сил электростатического взаимодействия между ними?
Решение:
Возьмем закон Кулона.
Если расстояние уменьшилось в 3 раза, то знаменатель уменьшился в 9 раз. Каждый из зарядов увеличился в три раза, значит числитель увеличился в 9 раз. Уменьшаем знаменатель в 9 раз, тем самым увеличивая всю дробь в 9 раз, увеличиваем числитель в 9 раз, получаем, что вся дробь увеличилась в 81 раз. И это ответ.
Ответ: модуль сил электростатического взаимодействия увеличится в 81 раз.
Задачка два (последняя!)
Два одинаковых маленьких отрицательно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F₁. Модули зарядов шариков отличаются в 5 раз.
Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F₂. Определите отношение F₂ к F₁.
Решение:
Для начала найдем заряд шариков после соприкосновения.
Теперь по закону кулона найдем силу F2
И находим отношение сил
Ответ: отношение сил равно 1,8
электростатика
Почему большинство тел в обычном сострянии электрически нейтрально? Что озночает их электрическая нейтральность?
Лучший ответ по мнению автора
Екатерина Александровна
Вот ответ на два вопроса:
Любое тело считается электрически нейтральным, если положительное и отрицательное электричество находятся в нем в равных количествах. В природе все тела обычно находятся в электрически нейтральном состоянии. При наличии свободных электронов электрическая нейтральность тела также сохраняется, так как свободные электроны продолжают оставаться в теле. Всякое нарушение количественного равенства обоих видов электричества в теле переводит его в электрически заряженное состояние. Наэлектризовать тело — значит зарядить его тем или другим видом электричества.
(Так как положительное электричество заключается в протонах и надежно удерживается ядрами атомов, то нарушить количественное равенство обоих видов электричества в теле, а стало быть, и его электрическую нейтральность можно лишь изменением отрицательного электричества, заключенного в электронах. Если, например, нужно зарядить тело положительным электричеством, то из него удаляют некоторое количество электронов (свободных или связанных). В теле остается такое же количество нескомпенсированных протонов, которые и заряжают тело положительно. Наоборот, когда тело необходимо зарядить отрицательно, то ему добавляют некоторое количество электронов. Эти электроны не компенсируются имеющимися в теле протонами и поэтому заряжают тело отрицательно.)
Закон сохранения электрического заряда
В обычных условиях микроскопические тела являются электрически нейтральными, потому что положительно и отрицательно заряженные частицы, которые образуют атомы, связаны друг с другом электрическими силами и образуют нейтральные системы. Если электрическая нейтральность тела нарушена, то такое тело называется наэлектризованное тело. Для электризации тела необходимо, чтобы на нём был создан избыток или недостаток электронов или ионов одного знака.
Отрицательный заряд тела обусловлен избытком электронов на теле по сравнению с протонами, а положительный заряд обусловлен недостатком электронов.
Когда происходит электризация тела, то есть когда отрицательный заряд частично отделяется от связанного с ним положительного заряда, выполняется закон сохранения электрического заряда. Закон сохранения заряда справедлив для замкнутой системы, в которую не входят извне и из которой не выходят наружу заряженные частицы. Закон сохранения электрического заряда формулируется следующим образом:
В замкнутой системе алгебраическая сумма зарядов всех частиц остаётся неизменной:
где q1, q2 и т.д. – заряды частиц.
Взаимодействие электрически заряженных тел
Взаимодействие тел, имеющих заряды одинакового или разного знака, можно продемонстрировать на следующих опытах. Наэлектризуем эбонитовую палочку трением о мех и прикоснёмся ею к металлической гильзе, подвешенной на шёлковой нити. На гильзе и эбонитовой палочке распределяются заряды одного знака (отрицательные заряды). Приближая заряженную отрицательно эбонитовую палочку к заряженной гильзе, можно увидеть, что гильза будет отталкиваться от палочки (рис. 1.2).
Рис. 1.2. Взаимодействие тел с зарядами одного знака.
Если теперь поднести к заряженной гильзе стеклянную палочку, потёртую о шёлк (положительно заряженную), то гильза будет к ней притягиваться (рис. 1.3).
Рис. 1.3. Взаимодействие тел с зарядами разных знаков.
Отсюда следует, что тела, имеющие заряды одинакового знака (одноимённо заряженные тела), взаимно отталкиваются, а тела, имеющие заряды разного знака (разноименно заряженные тела), взаимно притягиваются. Аналогичные вводы получаются, если приближать два султана, одноименно заряженные (рис. 1.4) и разноименно заряженные (рис. 1.5).
Билет №15. Электризация тел. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда
Определение
Электризацией называется процесс разделения электрических зарядов и накопление их в определенных местах предметов и тел. Явление происходит в результате трения, соприкосновения тел или в результате электростатической индукции. Простыми словами, когда рядом расположен какой-то предмет, обладающий электрическим полем.
: в физике выделяют два рода зарядов – положительные и отрицательные, или протоны и электроны. Между ними возникает электрическое поле. Одноименные заряды притягиваются, а разноименные отталкиваются.
Явление наблюдается на источниках питания и не только. На диэлектриках накапливаются заряды, все видели это в опытах, иллюстрирующих явление с эбонитовыми и стеклянными палочками, которые демонстрировали на уроках физики в школе.
Изначально все атомы, из них состоит всё что нас окружает, электрически нейтральны. В результате явления электризации на поверхности предметов появляются положительные или отрицательные заряды. Напомним школьный опыт: если потереть эбонитовую палочку шерстяной тканью, после прекращения трения палочка останется заряженной. Тогда говорят, что тело электризовано.
Таким образом, во время трения электроны переходили с одного предмета на другой. В результате, после прекращения трения избыточные электроны остались «не на своих» телах и получился избыточный заряд, и оно перестало быть нейтральным. В результате трения палочки о шерсть или мех на её поверхности образовался отрицательный заряд.
Статическое электричество в быту
Пенопластовые шарики прилипли к кошачьей шерсти из-за статического электричества
Статическое электричество широко распространено в обыденной жизни. Если, например, на полу лежит ковер из шерсти, то при трении об него человеческое тело может получить отрицательный электрический заряд, в то время как ковёр получит положительный. Другим примером может служить электризация пластиковой расчески, которая после причёсывания получает минус-заряд, а волосы получают плюс-заряд. Накопителем минус-заряда нередко являются полиэтиленовые пакеты, полистироловый пенопласт. Накопителем плюс-заряда может являться сухая полиуретановая монтажная пена, если её сжать рукой.
Электростатический разряд происходит при очень высоком напряжении и чрезвычайно низких токах. Даже простое расчёсывание волос в сухой день может привести к накоплению статического заряда с напряжением в десятки тысяч вольт, однако ток его освобождения будет настолько мал, что его зачастую невозможно будет даже почувствовать. Именно низкие значения тока не дают статическому заряду нанести человеку вред, когда происходит мгновенный разряд.[2]
С другой стороны, такие напряжения могут быть опасны для элементов различных электронных приборов — микропроцессоров, транзисторов и т. п. Поэтому при работе с радиоэлектронными компонентами рекомендуется принимать меры по предотвращению накопления статического заряда.
Условия возникновения явления и способы передачи зарядов
Мы рассказали, как объясняется это явление в природе, а теперь давайте рассмотрим, как можно наэлектризовать тела. Сразу отметим, что выполнение всех условий необязательно – электризация может происходить по тем или иным причинам, разделим их на две основных группы:
Вторая группа — электризация влиянием, то есть явление наблюдается при воздействии на тело внешних сил, среди которых:
Это и есть основные виды электризации.
Три способа электризации тел
Электрически нейтральное тело можно наэлектризовать разными способами:
Электризация трением
Электризация трением происходит, когда вы трёте один предмет о другой.
Проведите эксперимент. Возьмите небольшой лист бумаги и пластмассовую ручку. Потрите ручку о волосы, а потом прикоснитесь к бумаге. Вы наэлектризовали ручку трением о волосы.
Электризация прикосновением
При взаимодействии двух тел, одно из которых наэлектризовано, незаряженное тело получает электрический заряд, если к нему прикоснуться заряженным. Если поднести пластмассовую ручку, обладающую положительным зарядом, к нейтральному стержню электроскопа, то произойдёт перераспределение заряда. Электроны стержня будут притягиваться положительным зарядом ручки (перетекать на ручку). Соответственно, на стержне образуется недостаток электронов, то есть положительный заряд. Причём равный по величине заряду ручки.
Электризация наведением (электростатическая индукция)
Этот способ электризации означает, что вы подносите заряженный предмет к изолированному проводнику, но не прикасаетесь к нему. Тогда на проводнике появляются заряды, притом на той его части, которая ближе к предмету, эти заряды противоположного знака. А на дальнем конце образуется заряд того же знака, что и на заряженном предмете.
При удалении заряженного предмета заряды на проводнике пропадают. Но если до удаления предмета разделить проводник на две части, то заряды на них сохранятся.
Какие законы физики связаны с электризацией
Явление электризации связано с такими физическими законами как:
Мы уже рассматривали эти законы, вы можете ознакомиться подробнее в соответствующих статьях, на которые мы сослались.
Молнии
Основная статья: Молния
В результате движения воздушных потоков, насыщенных водяными парами, образуются грозовые облака, являющиеся носителями статического электричества. Электрические разряды образуются между разноименными заряженными облаками или, чаще, между заряженным облаком и озоновым слоем земли, с последующим разрядом на землю. При достижении критической разности потенциалов происходит разряд молнии между облаками, на земле или в околокосмическом слое планеты. Для защиты от молний устанавливаются молниеотводы, проводящие разряд напрямую в землю.
Помимо молний, грозовые облака могут вызывать на изолированных металлических предметах опасные электрические потенциалы из-за электростатической индукции.
В 1872 году экспедицией под руководством географа Генри Ганнетта[en] была покорена 13-я по высоте гора штата Монтана (США)[en]. Ей дали название Электрический пик
, так как у первопроходцев-покорителей, находящихся на вершине, после грозы начали сыпаться искры из пальцев рук и волос на голове[3][4][5].
Делимость электрического заряда. Электрон
В эксперименте с электрометрами металлическим стержнем часть заряда переносится от одного электрометра на другой. Из опыта видно, что заряд делится. Если коснуться стержня второго электрометра рукой, то заряд с него снимется, и распределится по всему телу (человеческое тело является хорошим проводником электричества). Если снова соединить приборы стержнем из металла, оставшийся заряд опять разделится. При повторении тех же шагов заряд каждый раз будет делиться. Кажется, что этот процесс будет происходить до бесконечности.
Заряды постепенно настолько уменьшаются, что электрометр уже не в состоянии их измерить. Уже очень точные опыты показали, что делить заряд до бесконечности нельзя, существует наименьший электрический заряд, который поделить уже нельзя. Называют его элементарным зарядом с абсолютной величиной e. Заряды измеряют в кулонах (Кл) в честь Шарля Кулона, французского физика.
Элементарным электрическим зарядом с отрицательным знаком обладает частица электрон (греч. «еlectron» – «янтарь»).
Передача (проведение) электричества
Все ли вещества могут одинаково передавать электрический заряд? Ответ можно получить с помощью двух электрометров, металлического стержня и эбонитовой палочки. Стержень и палочка крепятся к пластмассовой ручке.
Вещества, способные проводить электрические заряды, как в случае под буквой б, называются проводниками (металлы, кислотные, щелочные и солевые растворы). Вещества, с помощью которых нельзя передать заряды, называются диэлектриками (изоляторами). Хорошие диэлектрики – это резина, стекло, эбонит, фарфор, пластмассы, воздух и др.
В повседневной жизни
Вокруг нас постоянно происходит электризация тел. При трении некоторых предметов она становится настолько высокой, что к ним притягиваются даже габаритные тяжелые детали. В домашних условиях наблюдать процесс электризации можно следующим образом:
Телевизоры по этой же причине притягивают пыль к экранам и корпусу. А воздушный шарик, натертый о волосы головы, можно надолго подвесить к потолку. Происходит притяжение заряженной поверхности к обоям или другому покрытию.