когда появились первые формы жизни на земле

Естествознание.ру

Этапы зарождения жизни. Первые одноклеточные и многоклеточные

Несмотря на разногласия, большинство ученых абсолютно уверены: жизнь зародилась в воде. Согласно эволюционной гипотезе советского биолога и биохимика А. И. Опарина, самые первые, примитивные формы жизни возникли в водной среде. Ученый считал, что зарождение жизни происходило в несколько этапов:

Большинство исследователей уверены, что зарождение жизни произошло в воде. Этому способствовало то, что в воде легче отыскать пищу, легче держать устойчивость своего тела, а кроме того, в море температура более постоянна, чем в воздухе.

В теплой, богатой солями морской воде и зародилась жизнь. В течение долгих веков и тысячелетий она становилась разнообразнее и обильнее. Одни виды стали вытеснять другие. Борьба за существование заставляла некоторых обитателей моря постепенно выходить на берег. Так морские обитатели покинули водную стихию и заселили сушу.

когда появились первые формы жизни на земле

Животные и растения состоят из воды: животные и рыбы — на 75%, медузы — на 99%, картофель — на 76%, яблоки — на 85%, томаты — на 90%, огурцы — на 95%, арбузы — на 96%. Человек состоит из воды на 86% при рождении и на 50% в старости.

ОТ ОДНОКЛЕТОЧНЫХ ДО НАШИХ ДНЕЙ

Возраст самой ранней из первобытных бактерий — 3,5 миллиарда лет. Вероятно, уже тогда на планете присутствовал наш общий предок — одноклеточный организм с базовыми чертами, характерными для современных существ. От него потомкам досталось клеточное строение, способ хранения генетического кода в закрученных спиралью молекулах ДНК и способ хранения энергии в молекулах АТФ.

От общего предка произошли три основные группы одноклеточных, существующих и по сей день. Сначала разделились между собой бактерии и археи, а от архей произошли эукариоты.

когда появились первые формы жизни на земле

ДРЕВНЕЙШИЙ ПРЕДОК. АРХЕИ

За миллиарды лет эволюции археи почти не изменились. С древних времен они приспособились к выживанию в экстремальных условиях. Некоторые виды выживают даже в кипятке. Археи неприхотливы в выборе пищи. Далеко не все высокоорганизованные потомки архей могут этим похвастаться.

ЭУКАРИОТЫ. ЖГУТИКОВЫЕ

Примерно 1,7 миллиарда лет назад от архей произошли эукариоты — ядерные одноклеточные организмы. Одноклеточные отрастили сзади жгутики и научились с их помощью передвигаться и фильтровать воду. Некоторые из них начали объединяться в колонии. Считается, что из одной такой колонии однажды произошли первые многоклеточные организмы.

когда появились первые формы жизни на земле

РАЗВИТИЕ МНОГОКЛЕТОЧНЫХ. БИЛАТЕРИИ

«Многие люди все больше укреплялись во мнении, что крупная ошибка была сделана прежде всего тогда, когда все спустились с деревьев. А некоторые говорили, будто даже влезание на деревья было ошибкой, и никому не следовало покидать океаны»

Дуглас Адамс. Автостопом по галактике

Около 1,2 миллиарда лет тому назад появились первые многоклеточные. Спустя время они разделились на группы:

когда появились первые формы жизни на земле

Трилобиты — обитатели кембрийских морей. Эти членистоногие — древние предки ракообразных. Тело трилобитов было защищено хитиновым панцирем. Длина тела этих существ достигала 72 сантиметров.

Источник

Как и когда на нашей планете возник предок всего живого?

Ученые Нагойского университета в Японии показали, что предшественниками живых организмов на Земле могли служить молекулы, похожие на ДНК, а не РНК. Рассказываем, что это значит и как развивалась жизнь на планете Земля.

Читайте «Хайтек» в

Когда началась эволюция жизни на Земле?

Эволюция жизни на Земле началась с момента появления первого живого существа — около 2,7 млрд (а по некоторым данным — 4,1 млрд лет назад) и продолжается по сей день. Сходство между всеми организмами указывает на наличие общего предка, от которого произошли все другие живые существа.

Цианобактериальные маты и археи были доминирующей формой жизни в начале архейского периода и явились огромным эволюционным шагом того времени. Кислородный фотосинтез, появившийся около 2,5 млрд лет назад, в конечном итоге привел к оксигенации атмосферы, которая началась примерно 2,4 млрд лет назад.

Самые ранние свидетельства эукариот датируются 1,8 млрд лет назад, хотя, возможно, они появились ранее — диверсификация эукариот ускорилась, когда они начали использовать кислород в метаболизме. Позже, около 1,7 млрд лет назад, стали появляться многоклеточные организмы с дифференцированными клетками для выполнения специализированных функций.

Примерно 1,2 млрд лет назад появляются первые водоросли, а уже примерно 450 млн лет назад — первые высшие растения. Беспозвоночные животные появились в эдиакарском периоде, а позвоночные возникли около 525 млн лет назад во время кембрийского взрыва.

Во время пермского периода из крупных позвоночных преобладали синапсиды — предки млекопитающих, но события пермского вымирания (251 млн лет назад) уничтожили 96% всех морских видов и 70% наземных видов позвоночных, в том числе и большинства синапсид.

В периоде восстановления после этой катастрофы архозавры стали наиболее распространенными наземными позвоночными и вытеснили терапсид в середине триаса. В конце триаса архозавры дали начало динозаврам, которые доминировали в течение юрского и мелового периодов.

Предки млекопитающих в то время представляли собой небольших насекомоядных животных. После мел-палеогенового вымирания, произошедшего около 66 млн лет назад, все нептичьи динозавры вымерли, и из архозавров остались только крокодилы и птицы.

После этого млекопитающие стали быстро увеличиваться в размерах и разнообразии, так как теперь им почти никто не составлял конкуренцию. Такие массовые вымирания, вероятно, ускоряли эволюцию путем появления у новых групп организмов возможностей для диверсификации.

Ископаемые остатки показывают, что цветковые растения появились в раннем меловом периоде (130 млн лет назад) или несколько раньше, и, вероятно, помогли эволюционировать опыляющим насекомым. Социальные насекомые появились примерно в то же время, что и цветковые растения. Хотя они занимают лишь небольшую часть «родословной» насекомых, в настоящее время они составляют более половины их общего количества.

Люди являются одними из приматов, начавших ходить вертикально около 6 млн лет назад. Хотя размер мозга их предков был сравним с размером мозга других гоминид, например, шимпанзе.

когда появились первые формы жизни на земле

Возникновение жизни

Согласно современной концепции мира РНК, рибонуклеиновая кислота (РНК) была первой молекулой, которая приобрела способность самовоспроизводиться. Могли пройти миллионы лет, прежде чем на Земле появилась первая такая молекула. Но после ее образования на нашей планете появилась возможность возникновения жизни.

Молекула РНК может работать как фермент, соединяя свободные нуклеотиды в комплементарную последовательность. Таким образом происходит размножение РНК.

Но эти химические соединения еще нельзя назвать живым существом, так как они не имеют границ тела. Любой живой организм имеет такие границы. Только внутри изолированного от внешнего хаотического движения частиц тела могут происходить сложнейшие химические реакции, позволяющие существу питаться, размножаться, двигаться, и так далее.

Появление изолированных полостей в океане — явление довольно частое. Их образуют жирные кислоты (алифатические кислоты), попавшие в воду. Все дело в том, что один конец молекулы гидрофильный, а другой — гидрофобный.

Попавшие в воду жирные кислоты образуют сферы таким образом, что гидрофобные концы молекул находятся внутри сферы. Возможно, молекулы РНК стали попадать в такие сферы.

когда появились первые формы жизни на земле

Умение воспроизводиться и наличие границ тела — это еще не все признаки, отличающие живое существо от неживой природы. Для воспроизведения внутри сферы из жирных кислот молекуле РНК нужно было наладить процесс обмена веществ.

Как начали делиться первые клетки, состоящие из молекулы РНК и мембраны из жирных кислот, в настоящее время неизвестно. Возможно, построенная внутри мембраны новая молекула РНК начинала отталкиваться от первой.

В конце концов, одна из них прорывала мембрану. Вместе с молекулой РНК уходила и часть молекул жирных кислот, которые образовывали вокруг нее новую сферу.

Докембрий или криптозой

Докембрий длился почти 4 млрд лет. В этот отрезок времени на Земле произошли значительные изменения: кора остыла, появились океаны и, что самое важное, появилась примитивная жизнь. Однако следы этой жизни в палеонтологической летописи редки, поскольку первые организмы были мелкими и не имели твёрдых оболочек.

На докембрий приходится большая часть геологической истории Земли — около 3,8 млрд лет. При этом его хронология разработана гораздо хуже, чем последовавшего за ним фанерозоя.

Причина этого в том, что органические остатки в докембрийских отложениях встречаются крайне редко, что является одной из отличительных особенностей этих древнейших геологических образований. Поэтому палеонтологический метод изучения для докембрийских толщ неприменим.

Исследования метеоритов, горных пород и других материалов того времени показывают, что наша планета сформировалась примерно 4,54 млрд лет назад. До этого времени вокруг Солнца был только размытый диск, состоящий из газа и космической пыли. Затем под действием силы притяжения пыль стала собираться в небольшие тела, которые в итоге превратились в планеты.

На протяжении многих миллионов лет на Земле не существовало никаких форм жизни. После архейского эпизода расплавления верхней мантии и ее перегрева с возникновением в этой геосфере магматического океана вся первозданная поверхность Земли вместе с ее первичной и изначально плотной литосферой очень быстро погрузилась в расплавы верхней мантии.

4,533 млрд лет назад Земля предположительно столкнулась с небесным телом размером с Марс, гипотетической планетой Тейей. Столкновение было таким сильным, что образовавшиеся при столкновении обломки были выброшены в космос и образовали Луну.

Образование Луны способствовало появлению жизни: она вызывала приливы, способствовавшие очищению и аэрации морей, и стабилизировала ось вращения Земли.

Катархейский эон, 4,54-4 млрд лет назад, известен как протопланетный этап развития Земли. Охватывает первую половину криптозоя. Земля в то время была холодным телом с разреженной атмосферой и без гидросферы. В таких условиях никакой жизни появиться не могло.

Во время катархея атмосфера не была плотной. Она состояла из газов и паров воды, появлявшихся при столкновении Земли с астероидами.

В связи с тем, что Луна тогда была слишком приближена (всего на 170 тыс. км) к Земле (длина экватора — 40 тыс. км), сутки длились недолго — всего 6 часов. Но по мере отдаления Луны сутки стали увеличиваться.

Первые химические следы жизни возрастом примерно 3,5 млрд лет были обнаружены в горных породах Австралии (Пилбара). Позднее органический углерод был обнаружен в породах, датируемых 4,1 млрд лет. Возможно, жизнь зародилась именно в горячих источниках, где было много питательных веществ, в том числе и нуклеотидов.

Жизнь в архее развилась до бактерий и цианобактерий. Они вели придонный образ жизни: устилали дно моря тонким слоем слизи.

Длился 4-3,6 млрд лет назад. Возможно, прокариоты появились уже в конце эоархея. Кроме того, к эоархею относятся древнейшие геологические породы — формация Исуа в Гренландии.

Палеоархей продолжался с 3,6 по 3,2 млрд лет назад. В Австралии найдена самая древняя форма жизни, относящаяся к этой эре — хорошо сохранившиеся остатки бактерий возрастом 3,46 млрд лет.

Строматолит мезоархейского периода.

Мезоархей длился 3,2-2,8 млрд лет назад. В мезоархее уже встречаются строматолиты.

Неоархей длился 2,8-2,5 млрд лет назад. В этом периоде появился кислородный фотосинтез, который стал причиной кислородной катастрофы, случившейся в палеопротерозое. В этом периоде активно развиваются бактерии и водоросли.

когда появились первые формы жизни на земле

Что было прародителем живых организмов?

Ученые Нагойского университета в Японии считают, что до появления первой живой клетки существовал мир пре-РНК, основанный на ксенонуклеиновых кислотах (XNA).

В отличие от РНК-цепочек, репликация и сборка XNA не требует ферментов. Цепи ксенонуклеиновых кислот достаточно стабильны, чтобы нести генетическую информацию.

Они также способны связываться с белками и обладать ферментативными функциями подобно рибозимам (так ученые называют рибонуклеиновые кислоты, способные катализировать биохимические реакции).

Ученые синтезировали фрагменты алифатической (не имеющей циклов) нуклеиновой кислоты L-треонинола (L-aTNA), которая, как считается, существовала до появления РНК.

Они также сделали более длинную цепочку L-aTNA, которая была комплементарна исходной последовательности фрагментов, подобно тому, как две комплементарные друг другу ДНК-цепочки создают двойную спираль.

В пробирке при контролируемых условиях более короткие фрагменты L-aTNA собирались вместе и связывались друг с другом на более длинной цепочке L-треонинола. Это произошло в присутствии соединения, называемого N-цианоимидазолом, и иона металла, такого как марганец, оба из которых, скорее всего, присутствовали на ранней Земле.

Фрагменты L-aTNA также могли связываться с ДНК и РНК. Это говорит о том, что генетический код может быть перенесен с ДНК и РНК на L-aTNA и обратно.

По словам ученых, результаты исследования помогут будущим разработкам по созданию искусственной жизни и высокофункциональных биотехнологических инструментов, состоящих из ациклических XNA.

Источник

От Бульона до Эукариот. Первый организм и наш древнейший предок

Древо Жизни, представленное по трехдоменной классификации Карла Вёзе. Первыми живыми организмами считаются представители РНК-мира — предшественники клетки в виде рибозимов (каталитических РНК). Условно всю допрокариотную организацию называют «прогенотами». Одной из следующих стадий эволюции является последний общий предок — клеточный организм, предшествующий разделению всего живого на три домена: Бактерии (Eubacteria), Археи (Archaea) и Эукариоты (Eukarya).

Автор
Редактор

Одной из главных причин, по которой мы изучаем биологию, является желание понять наше происхождение. Чем больше ископаемых остатков мы изучим, тем больше ветвей добавится к нашему биологическому древу. Но все ветви растут из единого ствола. Так кто же находится у корней?

Ранняя Земля

когда появились первые формы жизни на земле

Рисунок 1. Так художник Билл Карр (Bill Carr) изобразил последствия столкновения Земли с гипотетической Тейей

Впоследствии CO2 начал осаждаться в виде карбонатов, ослабляя парниковый эффект, — происходило так называемое «химическое выветривание». В результате конденсировалась влага и формировала первые океаны. Атмосфера состояла преимущественно из остаточного CO2 и водяного пара. С уменьшением парникового эффекта падала и температура, дав возможность образованию твердой поверхности Земли. Со временем температура падала все быстрее, достигнув в итоге пригодных для жизни

Когда возникла жизнь?

В 2015 году американский журнал Proceedings of the National Academy of Sciences опубликовал статью, которая подтверждает, что на Земле жизнь зародилась

4,1 миллиарда лет назад [3]. Геохимик Элизабет Белл и ее коллеги анализировали породы массива Джек Хиллс в Западной Австралии и нашли в одном из цирконов (его датируют 4,1 миллиардами лет) включения углерода. Авторы статьи настаивают на том, что этот циркон образовался среди органических соединений, попадавших в мантию в ходе столкновения тектонических плит. Возможно, именно в этом районе Земли впервые зародилась жизнь.

На вопросы «Когда, где и как появилось первое живое существо?», научное сообщество еще не может дать точного ответа, но оно может рассказать о ранних стадиях эволюции.

Мир РНК

Появление теории и ее предшественники

После открытия структуры ДНК и подробного цитологического анализа современных эукариот ученые пришли к выводу, что для формирования подобной структуры из первичного бульона ушло бы больше времени, чем существует Вселенная! Также было выяснено, что на тогдашней Земле отсутствовали в нужном объеме многие химические элементы, в частности фосфор, необходимые для формирования такой сложной структуры как эукариотическая клетка [2]. По этим и другим причинам господствующая теория абиогенеза отошла на второй план, и начались поиски другой теории, объясняющей появление современной клетки.

Самой очевидной и простой была теория панспермии (см. врезку) — внеземного происхождения жизни на более пригодной планете и ее распространения на Землю с одним из небесных тел (рис. 2) [4]. Одним из главных аргументов является малое количество на Земле молибдена — элемента, содержащегося во многих жизненно необходимых ферментах. Но все же гипотеза не объясняет происхождение самой жизни, а только указывает возможный путь ее попадания на нашу планету в далеком прошлом из неизвестного уголка Вселенной.

когда появились первые формы жизни на земле

Рисунок 2. В космическом пространстве находится множество молекул (в том числе и органических), способных попасть на Землю

Панспермия

когда появились первые формы жизни на земле

Рисунок 3. Отрывок комикса на тему теории панспермии

Первым высказал идею панспермии (рис. 3) древнегреческий мыслитель Анаксагор в 5 веке до нашей эры, но свое развитие теория получила лишь в 20 веке нашей эры. Фред Хойл и Чандра Викрамасингх были влиятельными сторонниками панспермии, и в 1974 году они выдвинули гипотезу о том, что некоторая пыль в межзвездном пространстве содержит углерод и является органической. Позже их гипотеза подтвердилась [5]. Хойл и Викрамасингх также утверждали, что некие формы жизни продолжают проникать в атмосферу Земли и могут быть ответственны за эпидемические вспышки, новые заболевания и генетическую новизну, необходимую для макроэволюции [6].

Особенно активно эта теория начала развиваться в 21 веке. На МКС с 2008 по 2015 годы проводили эксперименты, связанные с нахождением микроорганизмов в открытом космосе за пределами станции. В течение полутора лет микробы и их споры подвергались воздействию солнечных лучей и вакуума. Некоторые организмы сохранились в неактивном состоянии значительное время [7], и эти образцы, защищенные смоделированным метеоритным материалом, дают экспериментальные подтверждения гипотетического сценария панспермии.

В 2017 году группа российских ученых обнаружила на облицовке МКС споры земных бактерий, подобных микроорганизмам из вод Карского и Баренцева морей. Это означает возможный перенос бактерий из стратосферы в ионосферу с помощью восходящих потоков глобальной электрической цепи Земли [8].

Радикальная гипотеза

Концепцию РНК-мира предложили Френсис Крик [9], Лесли Орджел [10] и Карл Вёзе [11]. Согласно теории, первые молекулы РНК были синтезированы силами неживой природы — при помощи минералов, солнечного света и самопроизвольно идущих химических реакций. После возникла некая молекула РНК, способная копировать другие РНК-молекулы, и с этого момента началась эволюция под действием естественного отбора. Но для выполнения подобных действий РНК должна была обладать каталитической активностью. И это предположение основывалось на том, что РНК способна образовывать сложную вторичную структуру. Позже гипотезу подтвердили результаты исследования Томаса Чека. В 1982 году он изучал механизм сплайсинга РНК у инфузории Tetrahymena thermophila и открыл РНК, катализирующую сплайсинг самой себя (аутосплайсинг) [12]. Это исследование дало возможность представить РНК не только как посредника между ДНК и белками, а как нечто более функционально значимое. Так были открыты рибозимы (от слов «рибонуклеиновая кислота» и «энзим») — молекулы РНК с каталитической функцией (рис. 4).

когда появились первые формы жизни на земле

Позже выяснилось, что многие процессы в клетке происходят благодаря рибозимам. Очень ярким примером является рибосома, активный центр которой представлен катализирующей рРНК.

Итак, теория мира РНК гласит, что первыми прообразами организмов были автокаталитические циклы, состоящие из этих самых рибозимов и работающие в тем или иным образом ограниченном пространстве [13]. Как мы уже сказали выше, в какой-то момент нуклеотиды, самопроизвольно образовавшиеся в первичном бульоне, под действием высоких температур начали соединяться, и образовали макромолекулы — молекулы РНК, которые были способны копировать друг друга. Кроме такой уникальной возможности, РНК могла синтезировать белки на основе структуры других молекул РНК и хранить информацию. То есть все жизненно важные процессы проходили тогда исключительно на основе РНК.

Однако рибонуклеиновая кислота оказалась довольно плохим накопителем информации из-за своей нестабильности и склонности к быстрой деградации. (Исключение могут составлять, например, РНК-вирусы, генетический материал которых защищен капсидом от разрушительного воздействия окружающей среды. Такие вирусы имеют специальный фермент — обратную транскриптазу, — катализирующий синтез ДНК по матрице РНК после попадания вирусного генетического материала в клетку. Однако не стоит забывать, что вирусы не проявляют признаков жизнедеятельности за пределами клетки и полностью зависят от нее.) И впоследствии, с ходом эволюции, РНК передала свои ферментативные функции белкам, а длительное хранение генетической информации — ДНК.

К сожалению, пока исследования показывают, что ни один природный рибозим не может создать копию себя [14] (хотя синтетические уже могут), и поэтому теория мира РНК еще не является полностью доказанной.

Об особенностях РНК-мира вы можете прочитать в этой статье: «РНК у истоков жизни?» [15]. А на тему рибозимов также существует интересный комикс: «РНК: начало (мир РНК)» [16].

Возникновение клетки

Существуют две основные теории происхождения первой протоклетки, которую можно определенно назвать организмом в современном понимании. Оба предположения могли быть реализованы в условиях молодой Земли.

Сторонники первой теории утверждают, что первая протоклетка могла появиться в зонах с геотермической активностью. Под воздействием врéменных высоких температур вода на какой-то период почти полностью испарилась, и полимеры сконцентрировались в скоплениях жирных кислот — образовался прототип клетки. После сухого периода снова вернулась водная среда, и организм мог начать полноценно функционировать. Подобные геоактивные зоны сейчас находятся на Камчатке и в Йеллоустонском парке [17].

Вторая теория подразумевает, что первый организм мог образоваться в зоне океанических гидротермальных источников. Минеральная полупроницаемая оболочка, покрывающая горные породы жерла источника и поры в нем, эффективно отделяла щелочную среду от более кислой. В результате создавался градиент pH, с помощью которого могли синтезироваться первые органические вещества, такие как углекислый газ [17]. Сходство с живым организмом заключается в том, что гидротермальные источники также частично изолированы от внешней среды. Существование жизни в подобных геотермальных неорганических ячейках поддерживалось постоянным притоком необходимых биогенов, особенно водорода, которой не так легко найти где-то в чистом виде, и температурой магмы, шедшей из недр Земли. Сегодня эта гипотеза Уильяма Мартина и Майкла Рассела считается более правдоподобной и реалистичной [18], [19]. Современным аналогом гидротермальных источников могут служить черные курильщики, которые и сейчас являются оазисами жизни посреди пустынного океанского дна (более подробно курильщики описаны под рисунком 7).

Об исследованиях Майкла Рассела рассказывает статья «К вопросу о происхождении жизни» [37]. — Ред.

Прогеноты

В 1977 году Карл Вёзе и Жан Фокс определили прогенота как гипотетическую допрокариотную стадию эволюции клетки:

Эукариоты возникли из прокариот, но только с организационным различием, не филогенетическим. Аналогично прокариоты появились из более примитивных форм жизни. Самые эволюционно ранние организмы называются прогенотами, потому что они еще в процессе развития отношений между генотипом и фенотипом.

The concept of cellular evolution [20]

Как мы видим, термин «прогеноты» охватывает абсолютно всю допрокариотную клеточную организацию без строгой связи между гено- и фенотипом, и в современной литературе прогенотов ставят эволюционно выше представителей РНК-мира (рис. 6), тем самым обозначая все те промежуточные шаги, которые ведут к последнему общему предку (LUCA).

Вопрос о строении прогенотов остается открытым, но кое-что можно сказать уже сейчас. Это были куски генетической информации в виде рибозимной РНК без строго определенного количества генов, изолированные от внешней среды спонтанно собранными фосфолипидными мицеллами (в первичном бульоне содержались все компоненты для образования подобной структуры) [15], [16]. С этой РНК происходили все необходимые для жизнедеятельности процессы — трансляция, репликация и репарация, — но существовала одна значительная проблема. Внутриклеточные процессы зависели от множества факторов внутри- и внеклеточной сред, и по большей части от того, что РНК непригодна для длительного хранения генетической информации, поскольку в агрессивной среде очень быстро деградирует [15].

Однако мы видим явное преимущество прогенотов перед одинокими рибозимными молекулами (и даже их группами) в том, что:

Следующая стадия клетки должна была уже модернизировать внутреннюю систему, создать полупроницаемую мембрану и развить отношения между генотипом и фенотипом, то есть стать прокариотом.

Последним универсальным общим предком всего живого на Земле является LUCA (от англ. Last Universal Common Ancestor). LUCA («Лука») — это гипотетический прокариотный организм, от которого могли бы произойти все три современных домена существ. Теорию последнего универсального общего предка предложил еще Чарльз Дарвин в книге «Происхождение видов» 1859 года (рис. 5).

когда появились первые формы жизни на земле

Рисунок 5. Страница из книги Чарльза Дарвина Origin of species. «Поэтому я должен предположить, что, вероятно, все органические существа, которые когда-либо жили на этой земле, произошли от какой-то одной изначальной формы, в которую впервые вдохнули жизнь».

Насколько он древний?

LUCA жил еще до появления любого из современных представителей земной жизни (рис. 6), до разделения всего живого на эукариот, бактерий и архей (по трехдоменной системе Вёзе) [21–23]. LUCA появился в палеоархее, около 3,6 миллиардов лет назад [24]. Учитывая тот факт, что Земле 4,5 миллиарда лет [25], его можно считать эволюционно очень ранним организмом. Для примера, эукариоты появились только 1,84 миллиарда лет назад, в орозирии [25].

Важно не путать понятия «Луки» и первого живого организма на Земле! Сегодня разграничивают понятия LUCA и progenote.

«Термин “прогеноты” следовало бы использовать для описания гипотетической допрокариотной стадии клеточной эволюции, отличной от последнего общего предка» [26].

когда появились первые формы жизни на земле

Рисунок 6. Новый взгляд на клеточную эволюцию. На схеме старой парадигмы (А) мы можем видеть, что прогеноты были связующим звеном между РНК-миром и новым разнообразным ДНК-миром. Современный подход (В) говорит, что между прогенотами и тремя доменами существовал последний общий предок, который и выполнял эволюционно переходную функцию.

Как происходило приручение митохондрий, в сказочной форме рассказывает статья «Как появились митохондрии (рассказ, похожий на сказку)» [38]. — Ред.

Новая парадигма обзавелась еще одной перпендикулярной стрелкой — LGT (от англ. lateral gene transfer), или горизонтальным переносом генов (рис. 6). Это одна из главных проблем определения генома LUCA. Горизонтальный перенос генов и слияние ранее независимых линий превратили дерево жизни в сеть жизни. Если мы определим общий ген для архей и бактерий, то будет ли он присутствовать у LUCA как последствие обычной вертикальной передачи генов (по наследству) или же из-за этого самого горизонтального переноса? Приведем яркий пример, не пользуясь понятием LGT: у аэробных архей бактериальный тип дыхания. Значит ли это, что археи — потомки (или предки) аэробных бактерий? Как мы знаем, кислород вырабатывается цианобактериями, следовательно, аэробные археи должны были появиться позже них, и тогда о трех доменах не может идти и речи, т.к. у корня биологического древа следует поставить цианобактерий. Но если включить в систему горизонтальный перенос генов, то всё становится на свои места.

Условия обитания

Напомним, что LUCA жил на молодой Земле, с высокими температурами, другим химическим составом Мирового океана и очень изменчивыми погодными условиями. Нужно учитывать эти факторы при описании возможного местообитания. Об условиях жизни LUCA также рассказывает статья «В диких условиях: как жил последний всеобщий предок LUCA» [28].

Благодаря тогдашним климатическим условиям нашей планеты, можно считать LUCA крайним экстремофилом, в связи с чем связано наличие некоторых особенностей его физиологии:

когда появились первые формы жизни на земле

Рисунок 7. Гидротермальные источники срединно-океанических хребтов — «черные курильщики». Гипотетическое местообитание LUCA. Вода проникает в океаническую литосферу, разогревается магмой и выплескивается под большим давлением с температурой 300–400 градусов. По пути в ней растворяется много сероводорода, сульфидов и оксидов металлов, твердые частицы которых, выпадая при охлаждении воды, придают ей черную окраску. Черные курильщики — оазисы на океаническом дне, вокруг которых огромное разнообразие форм жизни. И это дает ученым право предположить, что гидротермальные источники являются местом зарождения жизни на Земле.

Как выглядел LUCA

Стоит отметить, что LUCA — прокариот [26] и стоит на эволюционно более высоком уровне, чем прогеноты. Время, ушедшее на преобразование из прогенотов в такой сравнительно сложный организм, было просто колоссальным. За этот период LUCA приобрел ряд усовершенствований, связанных в первую очередь с метаморфозами клеточной мембраны и генома. Наследственная информация была строго упорядочена и представлена в виде правильно оформленной молекулы ДНК (или РНК) в отличие от хаотично плавающих в замкнутом пространстве мицелл кусков РНК прогенотов.

Формированию внутриклеточных структур прогенотов препятствовала их зависимость от внешней среды. Отсутствие частично проницаемой мембраны не давало допрокариотам оставлять все нужные вещества внутри клетки. Но уже на уровне LUCA появляется частичная независимость от внешних факторов, фосфолипидная полупроницаемая мембрана [31], закодированная в геноме, и определенный клеточный цикл [32], [33].

Еще одну гипотезу о морфологии последнего общего предка выдвинул в своей книге «Логика случая. О природе и происхождении биологической эволюции» [39] Евгений Кунин — выдающийся советский и американский биолог с мировым именем, эксперт в эволюционной биологии, который, кстати, в 2014 году выступал судьей номинации «Биоинформатика и молекулярная эволюция» конкурса «био/мол/текст».

По его мнению, возможно, LUCA не имел клеточной организации в современном представлении, это была не отдельная клетка, а сеть организмов, не разделенных мембранами, но уже имеющих ряд важных мембранных белков, таких как компоненты АТФ-синтазы и SRP. Для подобной структуры Кунин предложил использовать обозначение LUCA(S) (Last Ancestral Universal Common State — последнее универсальное предковое состояние). LUCA(S) был разнородной популяцией генетических элементов, которые существовавали в сети неорганических ячеек — компартментов. Таким образом, в подобной системе могли одновременно существовать и РНК, и одноцепочечная ДНК, и даже двухцепочечная ДНК. Появление собственной клеточной мембраны и обособление генома произошли независимо у разных организмов, что и привело к образованию разных во многих смыслах доменов жизни.

Эта гипотеза подтверждается и тем фактом, что основные элементы системы репликации ДНК негомологичны, а также радикальным различием между фосфолипидами, ферментами липидного биосинтеза и эфирными связями у архей и бактерий. Гипотеза отодвигает эволюционное положение LUCA(S) к истокам возникновения клетки, чему не противоречат и гипотетические условия среды (см. главу «Возникновение клетки»).

Генетика LUCA

Существует две теории о геноме LUCA [18].

Первая говорит нам о том, что у эволюционно ранних прокариотов был смешанный геном из ДНК и РНК, которые слаженно работали вместе, а с течением эволюции разные группы организмов оставили что-то одно: либо РНК, либо ДНК.

Второй подход подразумевает, что генетическая информация у LUCA хранилась в РНК-молекулах, а ДНК появлялась у каждой группы независимо. Вторая теория выглядит минималистичней, и к ней склоняется и Уильям Мартин (см. ниже).

О генетике «Луки» на «Биомолекуле» уже писали [28]. Но все-таки напомним, о чем идет речь.

Точного подтверждения существования LUCA в виде секвенированного генома или каких-то окаменелостей, не существует, но его генетическая информация содержится в любом ныне живущем существе (рис. 6).

Для решения проблемы определения состава генома LUCA нужно установить:

Затем для генов бактерий и архей можно построить филогенетическое дерево. И если мы учтем все возможные потери и приобретения генов за время эволюции, то есть выясним историю каждого отдельно взятого гена, то свободно проследим путь прямиком до LUCA. При этом ограничение размера генома с учетом гипотетического местообитания LUCA, условий среды и т.п. сильно упрощает задачу [24], [34].

Профессор Дюссельдорфского университета Уильям Мартин на протяжении последних 20 лет собирал огромный генетический банк (шесть млн генов), на основе которого немецкие исследователи выявили 355 необходимых для выживания генов — так называемый «минимальный геном» (гипотетический геном LUCA) [35], [36]. Для примера, кишечная палочка имеет

5 тысяч генов, а человек

25 тысяч. Разумеется, у LUCA, скорее всего, генов было больше, чем 355, но гены «минимального генома» — основные, то, без чего клетка бы не выжила. Впоследствии, при изменении условий обитания у потомков LUCA многие его гены могли редуцироваться за ненадобностью, поэтому говорить о них можно только на основе местообитания LUCA, расширяя тем самым его «минимальный геном».

И еще немного о LUCA

До сих пор сложно говорить об эволюционном положении общего древнейшего предка. Был ли у него ДНК-геном? Какие приспособления давали ему возможность выжить в таких экстремальных условиях? Что двигало клеточную эволюцию? На многие вопросы еще не даны ответы, но точно можно сказать одно: LUCA — связующее звено между «миром прогенотов» и современностью, необходимое для понимания общей картины эволюции в целом.

Последующие преобразования LUCA привели к возникновению организмов, которые сейчас мы можем разделить на три домена жизни. LUCA является своеобразным стартом активного развития и дифференцировки организмов. Чем дальше, тем сложнее найти начало. Именно эта гипотетическая модель дает нам понять, как двигалась эволюция, и найти связь между совершенно разными на первый взгляд существами. Освоение фотосинтеза, расширение ареала обитания, метаморфозы мембраны [31] — все это длилось миллионы и миллиарды лет, чтобы дать начало всем существам, с которыми у нас ассоциируется понятие «жизнь».

Заключение

На ранних эволюционных стадиях мы можем видеть разительное отличие общего устройства и функционала некоторых структур в сравнении с современными. РНК-молекулы, выполнявшие все функции организма, и которые сами, по сути, были целыми организмами на первых стадиях, с ходом эволюции кардинально меняют свое назначение. Раньше РНК полностью заменяла и ДНК, и ферменты, поддерживала жизнь всего организма на основе своего огромного функционала. Однако время идет, жизнь склонна усложняться. Появляется клеточная мембрана, а значит, вскоре появятся и органоиды, и вот уже оказывается, что теперь нет времени на долгий катализ рибозимами, и необходимого срока хранения генетической информации РНК предоставить уже не может в связи с интенсивным увеличением генома. И вот организм вынужден образовывать новые структуры, новые органеллы, прибегать к помощи симбионтов. Таким образом, всего через пару миллиардов лет мы можем лицезреть эукариот, в основе эволюции которых лежит одна лишь макромолекула.

С течением времени и развитием технологий изучение ранних стадий эволюции становится проще, но все так же остается одной из сложнейших задач науки. В последние годы все больше старых гипотез доказывается или опровергается на новой научной базе. Столетие назад никто и подумать не мог об орбитальных экспериментах и космических исследованиях, но человечество и это делает возможным. Мы устанавливаем родство на основе генетики, ищем древнейших предков с помощью молекулярной биологии и пытаемся узнать непостижимое — тайну происхождения жизни.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *