когда высвобождается энергия сохраненная в форме атф
Когда высвобождается энергия сохраненная в форме атф
Несколько следующих статей данного раздела сайта посвящены обменным процессам в организме, под которыми подразумеваются химические реакции, обеспечивающие процессы жизнедеятельности клеток. При этом в данной книге не ставится цель подробно представить биохимические процессы и все возникающие при этом реакции клеток, поскольку это находится в компетенции такого предмета, как биохимия. В данных статьях по физиологии на сайте предполагается дать:
(1) обзорные представления об основных биохимических процессах в клетках;
(2) анализ реализации влияний этих процессов, особенно в отношении их участия в поддержании гомеостатических параметров организма.
а) Высвобождение энергии из пищевых продуктов. Концепция свободной энергии. Большинство химических реакций, осуществляющихся в клетках, связаны с извлечением энергии, необходимой для различных физиологических систем в клетках, из пищевых продуктов. Так, энергия необходима для поддержания мышечной активности, секреторных процессов в железах, формирования мембранных потенциалов в мышечных и нервных волокнах, синтеза веществ в клегках, всасывания веществ в желудочно-кишечном тракте и многих других функций.
1. Сопряженные реакции. Все источники энергии, содержащиеся в продуктах питания (белки, жиры и углеводы), должны окисляться в клетках; в ходе этих процессов высвобождается большое количество энергии. Те же продукты, окисляясь вне организма, т.е. сжигаясь, также высвобождают энергию, но в этом случае она выделяется сразу в виде тепла. Энергия, необходимая для осуществления физиологических процессов в клетках, не является тепловой, это другая форма энергии, которая необходима для передвижения в случае мышечного сокращения или концентрирования растворов в случае секреторных процессов в железах и других функций. Для обеспечения организма такими видами энергии химические реакции должны «сопрягаться» с деятельностью систем, ответственных за обеспе чение механизмов превращения энергии в нужные для организма формы.
Осуществление процессов сопряжения является функцией специальных клеточных ферментов и систем, работа которых излагается в следующих статьях.
2. Свободная энергия. Количество энергии, высвобождающейся при полном окислении питательных веществ, называют свободной энергией окисления пищи и чаще всего обозначают символом G. Свободная энергия обычно выражается количеством калорий на моль окисляемого субстрата. Например, количество свободной энергии, выделяющейся при полном окислении 1 моля (180 г) глюкозы, составляет 686000 калории.
б) Роль аденозинтрифосфата в обменных процессах. Аденозннтрифосфат — главное связующее звено между процессами использования и продуцирования энергии в организме (для облегчения понимания просим вас изучить рисунок ниже).
Пo этой причине АТФ является источником энергии, который образуется и расходуется непрерывно.
Энергия, высвобождающаяся при окислении углеводов, жиров и белков, необходима для превращения АДФ в АТФ, который, в свою очередь, используется в различных процессах в организме для:
(1) активного транспорта молекул через клеточные мембраны;
(2) сокращения мышц и осуществления работы мышц;
(3) синтеза различных гормонов, создания клеточных мембран и формирования прочих основных субстанций в организме;
(4) проведения нервных импульсов;
(5) клеточного деления и роста;
(6) других процессов, необходимых для поддержания и продолжения жизни.
АТФ — нестойкое химическое соединение, которое присутствует во всех клетках. Химическая структура этого соединения показана на рисунке ниже.
Химическая структура аденозинтрифосфата (АТФ)
АТФ состоит из аденозина, рибозы и трех фосфатных радикалов. Последние два остатка фосфорной кислоты связаны с остальной молекулой с помощью макроэргических связей, которые обозначают символом
Количество свободной энергии, заключенной в каждой из этих связей, составляет 7300 калорий на 1 моль АТФ в обычных условиях и почти 12000 калорий в температурных и концентрационных условиях, которые сопровождают эту молекулу в организме. В условиях организма количество энергии, которое высвобождается благодаря каждой из этих двух связей, составляет 12000 калорий. После отщепления одного из фосфатных радикалов от молекулы АТФ соединение превращается в АДФ; после отщепления еще одной — в аденозинмонофосфат. Взаимные превращения этих веществ выглядят следующим образом:
АТФ присутствует в цитоплазме и нуклеоплазме всех клеток, и все физиологические механизмы, требующие энергии для своего обеспечения, получают ее непосредственно из АТФ (или других макроэргических соединений, например, гуанозинмонофосфата). В свою очередь, питательные вещества, постепенно окисляясь, выделяют энергию, используемую для образования новых молекул АТФ, что сохраняет обеспечение организма энергией. Все механизмы превращения энергии осуществляются путем реакций сопряжения.
Основная цель этих статей по физиологии на сайте — показать, как энергия, заключенная в углеводах, преобразуется в клетках в энергию АТФ. В норме 90% всех углеводов, а иногда даже больше, используются в организме с этой целью.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
АТФ в бодибилдинге
Содержание
АТФ должна пройти через несколько ступеней, чтобы дать нам энергию. Сначала при помощи специального коэнзима отделяется один из трёх фосфатов (каждый из которых даёт десять калорий), высвобождается энергия и получается аденозин дифосфат (АДФ). Если энергии требуется больше, то отделяется следующий фосфат, формируя аденозин монофосфат (АМФ). Главным источником для производства АТФ служит глюкоза, которая в клетке инициально расщепляется на пируват и цитозол.
Во время отдыха происходит обратная реакция – при помощи АДФ, фосфагена и гликогена фосфатная группа вновь присоединяется к молекуле, формируя АТФ. Для этих целей из запасов гликогена берётся глюкоза. Вновь созданный АТФ готов к следующему использованию. В сущности АТФ работает как молекулярная батарея, сохраняя энергию, когда она не нужна, и высвобождая в случае необходимости.
Структура АТФ [ править | править код ]
Молекула АТФ состоит из трёх компонентов:
1. Рибоза (тот же самый пятиуглеродный сахар, что формирует основу ДНК)
2. Аденин (соединённые атомы углерода и азота)
3. Трифосфат
Молекула рибозы располагается в центре молекулы АТФ, край которой служит базой для аденозина. Цепочка из трёх фосфатов располагается с другой стороны молекулы рибозы. АТФ насыщает длинные, тонкие волокна, содержащие протеин, называемый миозином, который формирует основу наших мышечных клеток.
Системы АТФ [ править | править код ]
Запасов АТФ достаточно только на первые 2-3 секунды двигательной активности, однако мышцы могут работать только при наличии АТФ. Для этого существуют специальные системы, которые постоянно синтезируют новые молекулы АТФ, они включаются в зависимости от продолжительности нагрузки (см. рисунок). Это три основные биохимические системы:
1. Фосфагенная система (Креатин-фосфат)
2. Система гликогена и молочной кислоты
3. Аэробное дыхание
Фосфагенная система [ править | править код ]
Когда мышцам предстоит короткая, но интенсивная активность (приблизительно 8-10 секунд), используется фосфагенная система – АДФ соединяется с креатина фосфатом. Фосфагенная система обеспечивает постоянную циркуляцию небольшого количества АТФ в наших мышечных клетках. Мышечные клетки также содержат высокоэнергетический фосфат – фосфат креатина, который используется для восстановления уровня АТФ после кратковременной, высокоинтенсивной работы. Энзим креатин киназа отнимает фосфатную группу у креатина фосфата и быстро передаёт её АДФ для формирования АТФ. Итак, мышечная клетка превращает АТФ в АДФ, а фосфаген быстро восстанавливает АДФ до АТФ. Уровень креатина фосфата начинает снижаться уже через 10 секунд высокоинтенсивной активности. Пример использования фосфагенной системы энергоснабжения – это спринт на 100 метров.
Система гликогена и молочной кислоты [ править | править код ]
Система гликогена и молочной кислоты снабжает организм энергией медленнее, чем фосфагенная система, и предоставляет достаточно АТФ примерно для 90 секунд высокоинтенсивной активности. В ходе процесса из глюкозы мышечных клеток в результате анаэробного метаболизма происходит формирование молочной кислоты.
Учитывая тот факт, что в анаэробном состоянии организм не использует кислород, эта система даёт кратковременную энергию без активации кардио-респираторной системы точно так же, как и аэробная система, но с экономией времени. Более того, когда в анаэробном режиме мышцы работают быстро, они очень мощно сокращаются, перекрывая поступление кислорода, так как сосуды оказываются сжатыми. Эту систему ещё можно назвать анаэробно-респираторной, и хорошим примером работы организма в этом режиме послужит 400-метровый спринт. Обычно продолжать работать таким образом атлетам не даёт мышечная болезненность, возникающая в результате накопления молочной кислоты в тканях.
Аэробное дыхание [ править | править код ]
Если упражнения длятся более двух минут, в работу включается аэробная система, и мышцы получают АТФ вначале из углеводов, потом из жиров и наконец из аминокислот (протеинов). Протеин используется для получения энергии в основном в условиях голода (диеты в некоторых случаях). При аэробном дыхании производство АТФ проходит наиболее медленно, но энергии получается достаточно, чтобы поддерживать физическую активность на протяжении нескольких часов. Это происходит, потому что глюкоза распадается на диоксид углерода и воду беспрепятственно, не испытывая противодействия со стороны, например, молочной кислоты, как в случае анаэробной работы.
Когда высвобождается энергия сохраненная в форме атф
Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.
У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.
Подготовительный этап
Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.
Бескислородное окисление, или гликолиз
Полезный выход энергии этого этапа — две молекулы АТФ, что составляет 40%; 60% рассеивается в виде тепла.
Кислородное окисление, или дыхание
Наиболее важным является кислородный этап аэробного дыхания. Он протекает в митохондриях и требует присутствия кислорода.
Продукт гликолиза — пировиноградная кислота — заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь пировиноградная кислота подвергается ферментативному расщеплению.
Углекислый газ выделяется из митохондрий в цитоплазму клетки, а затем в окружающую среду.
Атомы водорода, акцептированные НАД и ФАД (кофермент флавинадениндинуклеотид), вступают в цепь реакций, конечный результат которых — синтез АТФ. Это происходит в следующей последовательности:
Аэробное дыхание, включающее бескислородный и кислородный этапы, можно выразить суммарным уравнением:
Подготовительный этап | Бескислородный этап | Кислородный этап | |
Место расщепления | Органы пищеварения, клетки под действием ферментов | Внутри клетки | Митохондрии |
Активатор расщепления | Ферменты пищеварительных соков | Ферменты мембран клеток | Ферменты митохондрий |
Результат расщепления соединений клетки | Глюкоза до 2 молекул пировиноградной кислоты + энергия | Пировиноградная кислота до СО2 и Н2О | |
Выделившаяся энергия | Рассеивается в виде тепла | 55 % запасается в виде АТФ | |
Количество энергии в виде АТФ | 2 молекулы | 36 молекул |
Анаэробное дыхание — эволюционно более ранняя и энергетически менее рациональная форма получения энергии из питательных веществ по сравнению с кислородным дыханием.
В основе анаэробного дыхания лежит процесс, в ходе которого глюкоза расщепляется до пировиноградной кислоты и высвобождаются атомы водорода. Акцептором атомов водорода, отщепляемых в результате дыхания, является пировиноградная кислота, которая превращается в молочную.
Молочнокислое брожение осуществляют молочнокислые бактерии (например, кокки из рода стрептококк). Образование молочной кислоты по такому типу происходит также в животных клетках в условиях дефицита кислорода.
В природе широко распространено спиртовое брожение, которое осуществляют дрожжи. В отсутствие кислорода дрожжевые клетки образуют из глюкозы этиловый спирт и СО;. Вначале спиртовое брожение идет аналогично молочнокислому, но последние реакции приводят к образованию этилового спирта. От каждой молекулы пировиноградной кислоты отщепляется молекула С02, и образуется молекула двууглеродного соединения —уксусного альдегида, который затем восстанавливается до этилового спирта атомами водорода.
Спиртовое брожение, кроме дрожжей, осуществляют некоторые анаэробные бактерии. Этот тип брожения наблюдается в растительных клетках в отсутствие кислорода.
Наиболее распространенным питательным веществом, которое используется для анаэробного высвобождения энергии, является глюкоза. Однако следует помнить, что любое органическое вещество при соответствующих условиях может выступать источником энергии для синтеза АТФ.
При недостатке в клетке глюкозы в дыхание могут вовлекаться жиры и белки. Продуктами брожения являются различные органические кислоты (молочная, масляная, муравьиная, уксусная), спирты (этиловый, бутиловый, амиловый), ацетон, а также углекислый газ и вода.
Молекула АТФ в биологии: состав, функции и роль в организме
Важнейшим веществом в клетках живых организмов является аденозинтрифосфорная кислота или аденозинтрифосфат. Если ввести аббревиатуру этого названия, то получим АТФ (англ. ATP). Это вещество относится к группе нуклеозидтрифосфатов и играет ведущую роль в процессах метаболизма в живых клетках, являясь для них незаменимым источником энергии.
Первооткрывателями АТФ стали учёные-биохимики гарвардской школы тропической медицины — Йеллапрагада Суббарао, Карл Ломан и Сайрус Фиске. Открытие произошло в 1929 году и стало главной вехой в биологии живых систем. Позднее, в 1941 году, немецким биохимиком Фрицем Липманом было установлено, что АТФ в клетках является основным переносчиком энергии.
Строение АТФ
Эта молекула имеет систематическое наименование, которое записывается так: 9-β-D-рибофуранозиладенин-5-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5-трифосфат. Какие соединения входят в состав АТФ? Химически она представляет собой трифосфорный эфир аденозина — производного аденина и рибозы. Это вещество образуется путём соединения аденина, являющегося пуриновым азотистым основанием, с 1-углеродом рибозы при помощи β-N-гликозидной связи. К 5-углероду рибозы затем последовательно присоединяются α-, β- и γ-молекулы фосфорной кислоты.
Таким образом, молекула АТФ содержит такие соединения, как аденин, рибозу и три остатка фосфорной кислоты. АТФ — это особое соединение, содержащее связи, при гидролизе которых высвобождается большое количество энергии. Такие связи и вещества называются макроэргическими. Во время гидролиза этих связей молекулы АТФ происходит выделение количества энергии от 40 до 60 кДж/моль, при этом данный процесс сопровождается отщеплением одного или двух остатков фосфорной кислоты.
Вот как записываются эти химические реакции:
Энергия, высвобожденная в ходе указанных реакций, используется в дальнейших биохимических процессах, требующих определённых энергозатрат.
Роль АТФ в живом организме. Её функции
Какую функцию выполняет АТФ? Прежде всего, энергетическую. Как уже было выше сказано, основной ролью аденозинтрифосфата является энергообеспечение биохимических процессов в живом организме. Такая роль обусловлена тем, что благодаря наличию двух высокоэнергетических связей, АТФ выступает источником энергии для многих физиологических и биохимических процессов, требующих больших энергозатрат. Такими процессами являются все реакции синтеза сложных веществ в организме. Это, прежде всего, активный перенос молекул через клеточные мембраны, включая участие в создании межмембранного электрического потенциала, и осуществление сокращения мышц.
Кроме указанной, перечислим ещё несколько, не менее важных, функций АТФ, таких, как:
Как образуется АТФ в организме?
Синтез аденозинтрифосфорной кислоты идёт постоянно, т. к. энергия организму для нормальной жизнедеятельности нужна всегда. В каждый конкретный момент содержится совсем немного этого вещества — примерно 250 граммов, которые являются «неприкосновенным запасом» на «чёрный день». Во время болезни идёт интенсивный синтез этой кислоты, потому что требуется много энергии для работы иммунной и выделительной систем, а также системы терморегуляции организма, что необходимо для эффективной борьбы с начавшимся недугом.
В каких клетках АТФ больше всего? Это клетки мышечной и нервной тканей, поскольку в них наиболее интенсивно идут процессы энергообмена. И это очевидно, ведь мышцы участвуют в движении, требующем сокращения мышечных волокон, а нейроны передают электрические импульсы, без которых невозможна работа всех систем организма. Поэтому так важно для клетки поддерживать неизменный и высокий уровень аденозинтрифосфата.
Каким же образом в организме могут образовываться молекулы аденозинтрифосфата? Они образуются путём так называемого фосфорилирования АДФ (аденозиндифосфата). Эта химическая реакция выглядит следующим образом:
АДФ + фосфорная кислота + энергия→АТФ + вода.
Фосфорилирование же АДФ происходит при участии таких катализаторов, как ферменты и свет, и осуществляется одним из трёх способов:
Как окислительное, так и субстратное фосфорилирование использует энергию веществ, окисляющихся в процессе такого синтеза.
Вывод
Аденозинтрифосфорная кислота — это наиболее часто обновляемое вещество в организме. Сколько в среднем живёт молекула аденозинтрифосфата? В теле человека, например, продолжительность её жизни составляет менее одной минуты, поэтому одна молекула такого вещества рождается и распадается до 3000 раз за сутки. Поразительно, но в течение дня человеческий организм синтезирует около 40 кг этого вещества! Настолько велики потребности в этом «внутреннем энергетике» для нас!
Весь цикл синтеза и дальнейшего использования АТФ в качестве энергетического топлива для процессов обмена веществ в организме живого существа представляет собой саму суть энергетического обмена в этом организме. Таким образом, аденозинтрифосфат является своего рода «батарейкой», обеспечивающей нормальную жизнедеятельность всех клеток живого организма.
Коротко и простым языком про молекулы АТФ
Что оно такое – молекулы АТФ?!
В наших клетках происходят различные энергетические процессы: запасание и использование энергии, ее трансформация и высвобождение. Кажется невероятным, что какая-то абстрактная энергия вдруг может преобразовываться и создавать другие молекулы, выполняя при этом полезную работу для организма.
Для справки: АТФ (аденозинтрифосфат) – молекула, которая выполняет роль источника энергии для всех процессов в организме, в том числе, и для движения. Открыта эта молекула была в 1929 году. Главным источником для производства молекулы АТФ служит глюкоза.
По сути, молекула АТФ – это своеобразная молекулярная батарея, которая сохраняет энергию в те моменты, когда она не используется, и потом высвобождает энергию при необходимости организма.
Структура и формула энергетических молекул
При расщеплении молекулы АТФ происходит сокращение мышечного волокна, из-за чего выделяется энергия, позволяющая мышцам сокращаться.
Для того чтобы дать организму энергию АТФ проходит несколько этапов. В процессе каждого этапа вырабатывается большее количество энергии, но всегда то, которое затребовано самим организмом.
Главный источник для выработки АТФ — это глюкоза, которая расщепляется в клетках. Молекулы АТФ насыщают энергией длинные волокна мышечных тканей, которые содержат протеин — миозин. Именно так формируются мышечные клетки.
Когда наш организм отдыхает – цепочка процессов преображения молекулы АТФ идёт в обратную сторону. И в этих целях также задействована глюкоза. Созданные молекулы АТФ будут вновь использоваться, как только это станет необходимо организму.
Когда созданная молекулами энергия не нужна, она сохраняется в организме и высвобождается тогда, когда это потребуется.
Молекулы АТФ синтезируют три основные биохимические системы:
– Система гликогена и молочной кислоты
Что это дает нашему организму?!
Фосфагенная система – будет использоваться когда мышцы работают недолго, но очень интенсивно (порядка 10 секунд). Благодаря этой системе происходит постоянная циркуляция небольшого количества молекул АТФ в мышечных клетках. Такой энергии хватит на короткий забег или интенсивную силовую нагрузку в бодибилдинге.
Гликоген и молочная кислота — снабжают энергией организм медленнее, чем предыдущая система. Используется энергия АТФ, которой может хватить на полторы минуты интенсивной работы. В анаэробном режиме мышцы сокращаются крайне мощно и быстро. Именно благодаря этой системе можно пробежать 400 метров спринтерского бега или рассчитывать на более длительную интенсивную тренировку в зале. Но долгое время так работать не позволит ощущение боли в мышцах, которая появляется из-за переизбытка молочной кислоты.
Аэробное дыхание — эта система включается, если тренировка продолжается более двух минут. Тогда мышцы начинают получать энергию молекул АТФ из углеводов, жиров и протеинов. В этом случае АТФ синтезируется медленно, зато энергии хватает надолго — физическая активность может продолжаться несколько часов. Это происходит благодаря тому, что глюкоза распадается без препятствий, у неё нет никаких сторонних противодействий — как препятствует молочная кислота в предыдущем анаэробном процессе.
Роль АТФ в организме
После описания синтеза трех биохимических систем становится понятно, что основная роль АТФ в организме — это обеспечение энергией всех многочисленных биохимических процессов и реакций организма.
То есть большинство энергозатратных процессов у живых существ происходит благодаря АТФ.
Но кроме этого молекула АТФ играет важную роль в синтезе нуклеиновых кислот, регулирует различные биохимические процессы, передает гормональные сигналы клеткам организма и другое.
Вместо выводов
Итак, АТФ – это молекула, которая даёт энергию всем процессам, происходящим в организме, в том числе, она даёт энергию для движения.
Важная роль АТФ в организме и жизни человека доказана не только учёными, но и многими спортсменами, бодибилдерами, фитнес-тренерами. Понимание важности этого вопроса помогает сделать тренировки более эффективными и правильно рассчитать свои физнагрузки.
Для всех, кто занимается силовыми тренировками в зале, фитнесом, бегом и другими видами спорта, нужно понимать и помнить – какие блоки упражнений необходимо выполнять в то или иное время тренировки. Благодаря этому можно откорректировать форму фигуры, проработать мышечную структуру, снизить лишний вес и добиться других улучшающих результатов для своего организма.