компенсация емкостного тока замыкания на землю
Компенсация тока замыкания на землю
Компенсация тока замыкания на землю
Уменьшения емкостного тока замыкания на землю в системах с изолированной нейтралью до значения, при котором гаснет дуга в месте повреждения, достигают заземлением нейтрали генератора или трансформаторов через дугогасящие реакторы, индуктивное сопротивление которых приблизительно равно емкостному сопротивлению системы, то есть ω*L=1/(3*ω*С).
Наибольшее распространение получили дугогасящие реакторы, состоящие из сердечника и обмотки, расположенных в кожухе, заполненном трансформаторным маслом. Индуктивность реактора L регулируют изменением числа витков или зазора сердечника. Активное сопротивление реактора r мало по сравнению с индуктивным.
При компенсации емкостного тока Iз в месте замыкания индуктивным током IL система может длительно работать с замкнутой на землю фазой, при этом напряжения во всех точках сети имеют те же значения, что и в системе с изолированной нейтралью. показателем эффективности компенсации является отношение количества замыканий на землю, не развившихся в КЗ, к общему числу замыканий. В компенсированных системах этот показатель составляет 0,6-0,9, а в системах с изолированной нейтралью 0,3. В системах с компенсацией емкостного тока на землю не требуется релейная защита от замыкания на землю, действующая на отключение линий, трансформаторов и генераторов, а также электродвигателей, подключенных непосредственно к сети, а достаточно установки избирательной сигнализации. Исключение составляют системы напряжением 3-35 кВ с повышенной опасностью обслуживания оборудования, в которых замыкания на землю должны избирательно отключаться. К ним относятся системы электроснабжения шахт, открытых горных разработок, торфяных разработок и др. компенсация емкостных токов обладает следующими выгодными для эксплуатации качествами: уменьшает ток через место повреждения до безопасного значения, обеспечивая этим надежное дугогашение; облегчает требования к ЗУ; снижает скорость восстановления напряжения на поврежденной фазе, вследствие чего вероятность повторного зажигания дуги и возникновения коммутационных напряжений мала; при сохранении устойчивой дуги уменьшает вероятность перехода замыкания на землю в многофазное КЗ и др.
Системы с изолированной нейтралью и нейтралью, заземленной через реактор, относят к системам с малыми токами замыкания на землю (Iз
Рассмотрим систему, нейтраль которой заземлена через дугогасящий реактор (рисунок а)). Если I(L)=0, y1=y2=y3, Ua+Ub+Uc=0, то векторная диаграмма напряжений и токов системы с компенсацией емкостного тока на землю не отличается от векторной диаграммы для системы с изолированной нейтралью (рисунок в)). В случае однофазного замыкания на землю, например фазы А, токи и напряжения в фазах можно определить по формулам из статьи: Система с изолированной нейтралью.
Как видно из векторной диаграммы, приведенной на рисунке б), векторы тока реактора I(L) и емкостного тока замыкания на землю Iз сдвинуты относительно друг друга на 180⁰. Поэтому при резонансной настройке реактора [ω*L = 1/(3*ω*С)] его индуктивный ток компенсирует емкостные токи фаз. Однако практически через место замыкания протекает незначительный ток, состоящий из активной и реактивной составляющих. Первая обусловлена активным сопротивлением реактора и системы, вторая — неточной настройкой реактора. Кроме того, этот ток может быть вызван короной на проводах, которая иногда возникает при повышенных в √3 раз напряжениях на неповрежденных фазах и может привести к увеличению емкостных токов и появлению дополнительных активных составляющих токов в фазах, а также токами высших гармоник.
При резонансной или близкой к ней настройке реактора исключается возможность существования устойчивой дуги, что является основным преимуществом рассматриваемого способа заземления нейтрали по сравнению с изолированной нейтралью. Амплитуда перенапряжений при такой настройке не превышает 2,6 Uф. Однако при расстройке компенсации более чем на ±5% перенапряжения в компенсированных системах принимают такие же значения, как и в системах с изолированной нейтралью. При невозможности достичь резонансной настройки предпочтительно иметь небольшую перекомпенсацию (I(L)>3Iс), так как недокомпенсация емкостного тока в аварийных случаях и при несимметрии емкостей фаз может привести к появлению перенапряжений более высокого порядка, чем в системах с изолированной нейтралью.
Эффективность компенсации во многом зависит от совершенства дугогасящих реакторов. Эффективность компенсации при неизменной настройке реактора составляет 0,6. а при использовании реактора с подмагничиванием и автоматической быстродействующей настройкой 0,9.
Дугогасящие реакторы необходимо устанавливать практически во всех системах напряжением 35 кВ, если ток замыкания составляет более 10 А, а также в системах напряжением 3-20 кВ, имеющих линии электропередачи с железобетонными и металлическими опорами с токами замыкания также более 10 А. Компенсация емкостного тока замыкания на землю должна применяться при значениях этого тока в нормальных режимах в системах, не имеющих железобетонных и металлических опор на воздушных линиях: более 30 А при напряжении 3-6 кВ; более 20 А при напряжении 10 кВ; более 15 А при напряжении 15-20 кВ; более 5 А в схемах напряжением 6-20 кВ блоков генератор-трансформатор (на генераторном напряжении). При токах замыкания на землю более 50 А рекомендуется применение не менее двух заземляющих дугогасящих реакторов. Реактор может быть включен в нейтраль одного работающего трансформатора, который при этом получает дополнительную нагрузку. Допускают включение реактора мощностью, равной 50 % мощности трансформатора, при условии, что он будет работать с наибольшим током компенсации не более 2 часов.
К недостаткам систем с нейтралью, заземленной через дугогасящий реактор, можно отнести: повышенные капитальные затраты, вызываемые повышенными требованиями к уровню изоляции электроустановок; сложность эксплуатации из-за необходимости вести постоянное наблюдение за состоянием компенсации и трудности определения места повреждения, если оно не развивалось; возможность повышения напряжения неповрежденных фаз относительно земли более межфазного и существование перенапряжении, если нет точной настройки и дуга устойчива; повышение напряжения в системе при нормальном режиме и аварийном, если система обладает хотя бы небольшой несимметрией; увеличение капитальных затрат и эксплуатационных расходов в связи с установкой дугогасящих аппаратов по сравнению с системой с изолированной нейтралью.
Компенсация емкостного тока замыкания на землю
Самым частым видом повреждения (до 95%) в сетях 6, 10, 35 кВ являются однофазные замыкания на землю (ОЗЗ), сопровождающиеся протеканием через место замыкания емкостного тока и перенапряжениями высокой кратности на элементах сети (двигателях, трансформаторах) в виде высокочастотного переходного процесса. Такие воздействия на сеть приводят в лучшем случае к срабатыванию земляных защит. Отыскание поврежденного присоединения представляется трудоемкой и длительной организационной задачей – поочередное отключение присоединений затягивается на продолжительное время и сопровождается комплексом оперативных переключений для резервирования потребителей. И, как правило, большинство междуфазных замыканий начинается с ОЗЗ. Развитие однофазных замыканий на землю сопровождается разогревом места замыкания, рассеиванию большого количества энергии в месте ОЗЗ и заканчивается отключением потребителя уже защитой МТЗ при переходе ОЗЗ в короткое замыкание. Изменить ситуацию можно применением резонансного заземления нейтрали.
При ОЗЗ на землю через место повреждения протекает емкостный ток, обусловленный наличием электрической емкости между фазами сети и землей. Емкость сконцентрирована, в основном, в кабельных линиях, длина которых и определяет общий емкостный ток ОЗЗ (ориентировочно на 1 А емкостного тока приходится 1 км кабеля).
Все ОЗЗ делятся на глухие (металлические) и дуговые. Наиболее частым (95% всех ОЗЗ) и наиболее опасным видом ОЗЗ являются дуговые ОЗЗ. Опишем каждый вид ОЗЗ отдельно.
1) с точки зрения уровней перенапряжений на элементах сети наиболее безопасны металлические замыкания на землю (например, падение провода воздушной ЛЭП на землю). В этом случае через место пробоя протекает емкостный ток, не сопровождающийся большими перенапряжениями в виду специфики такого рода ОЗЗ.
Способы подавления токов ОЗЗ
Существует два способа подавления токов ОЗЗ.
1) отключение поврежденного присоединения – этот способ ориентирован на ручное либо автоматическое (с использованием средств РЗА) отключение. При этом потребитель в соответствии с категорией переводится на резервное питание или остается без питания. Нет напряжения на поврежденной фазе – нет тока через место пробоя.
2) компенсация емкостного тока в месте замыкания установленным в нейтрали сети реактором, обладающим индуктивными свойствами.
Суть компенсации емкостных токов ОЗЗ
Необходимость автоматической настройки в резонанс
Принцип действия АСКЕТ
О соотношении величин естественной и искусственной несимметрии
. В сети с изолированной нейтралью напряжение на разомкнутом треугольнике НТМИ с учетом коэффициента трансформации соответствует напряжению естественной несимметрии. Величина и угол этого напряжения нестабильны и зависят от различных факторов (погодных,…..и т.д.), поэтому для правильной работы АСКЕТ необходимо создать более стабильный сигнал как по величине, так и по фазе. Для этой цели в КНПС вводится источник возбуждения нейтрали (источник искусственной несимметрии). Если использовать терминологию теории автоматического управления, искусственная несимметрия представляет собой полезный сигнал, используемый для управления КНПС, а естественная – помеха, от которой необходимо отстроиться путем выбора величины искусственной несимметрии. В сетях с наличием кабельных линий с емкостным током 10 и более ампер величина естественной несимметрии, как правило, очень мала [2]. П.5.11.11. ПТЭЭСиС [4] ограничивает величину напряжения несимметрии (естественной + искусственной) в сетях, работающих с компенсацией емкостного тока, на уровне 0,75% фазного напряжения, а максимальную степень смещения нейтрали на уровне не выше 15% фазного напряжения. На разомкнутом треугольнике НТМИ эти уровни будут соответствовать значениям 3Uo= 0,75В и 15В. Максимальная степень смещения нейтрали возможна в режиме резонанса (рис.2).
Приведем ниже формулы для расчета напряжения 3Uo в режиме резонанса для двух способов создания искусственной несимметрии:
в случае применения конденсатора Co
где Ксм – переключаемый коэффициент смещения фазы В специального трансформатора.
Из формул видно, что в случае применения конденсатора Co величина 3Uo в точке резонанса зависит от емкостного тока сети (Ioz), а в случае применения специального несимметричного трансформатора не зависит.
Минимальное значение 3Uo выбирается, исходя из условия надежной работы устройства УАРК.101М, и составляет 5В.
В вышеприведенных формулах не учитывается величина напряжения естественной несимметрии сети ввиду ее небольших значений. Пример суммарного вектора показан на рис. 3 внизу.
Компенсация емкостного тока замыкания на землю
ТИПОВАЯ ИНСТРУКЦИЯ
ПО КОМПЕНСАЦИИ ЕМКОСТНОГО ТОКА ЗАМЫКАНИЯ НА ЗЕМЛЮ
В ЭЛЕКТРИЧЕСКИХ СЕТЯХ 6-35 кВ
РАЗРАБОТАНО Производственным объединением по наладке, совершенствованию технологии и эксплуатации электростанций и сетей «Союзтехэнерго»
ИСПОЛНИТЕЛЬ А.И.Левковский (цех электрических сетей)
УТВЕРЖДЕНО Главным научно-техническим управлением энергетики и электрификации 06.06.87 г.
Заместитель начальника К.М.Антипов
Настоящая Типовая инструкция (далее Инструкция) содержит основные указания по выполнению компенсации емкостного тока замыкания на землю в электрических сетях, а также по производству специальных измерений с целью настройки компенсации емкостного тока.
При разработке данной Инструкции учтен опыт эксплуатации электрических сетей с компенсацией емкостного тока в энергосистемах Белглавэнерго, Куйбышевэнерго, Саратовэнерго, Свердловэнерго и др.
В Инструкцию внесены изменения и дополнения, учитывающие особенности эксплуатации дугогасящих реакторов, требования новых стандартов и технических условий на конкретные типы реакторов.
При эксплуатации сетей с компенсацией емкостного тока необходимо руководствоваться также инструкциями заводов-изготовителей электрооборудования и требованиями ПТЭ и ПУЭ.
Настоящая Инструкция предназначена для персонала служб РЭУ (ПЭО), занимающегося эксплуатацией электрических сетей 6-35 кВ.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Компенсация емкостного тока замыкания на землю в сетях 6-35 кВ применяется для уменьшения тока замыкания на землю, снижения скорости восстановления напряжения на поврежденной фазе после гашения заземляющей дуги, уменьшения перенапряжений при повторных зажиганиях дуги и создания условий для ее самопогасания.
Основные определения, используемые при характеристике сетей с компенсацией емкостного тока, приведены в приложении 1.
1.2. Компенсация должна применяться при следующих значениях емкостного тока замыкания на землю сети в нормальных режимах ее работы:
Компенсацию допускается применять также в воздушных сетях 6-10 кВ при емкостном токе менее 10 А.
1.3. Для компенсации емкостного тока замыкания на землю должны применяться дугогасящие заземляющие реакторы с плавным или ступенчатым регулированием индуктивности.
Основные технические характеристики дугогасящих реакторов приведены в приложении 2 (табл.1-7).
1.4. В электрических сетях, где в процессе эксплуатации емкостный ток замыкания на землю изменяется не более чем на ±10%, рекомендуется применять дугогасящие реакторы со ступенчатым регулированием индуктивности.
В электрических сетях, где в процессе эксплуатации емкостный ток замыкания на землю изменяется более чем на ±10%, рекомендуется применять реакторы с плавным регулированием индуктивности, настраиваемые вручную или автоматически.
Автоматическая настройка компенсации рекомендуется в сетях 35 кВ при емкостном токе замыкания на землю более 10 А и в сетях 6-10 кВ при емкостном токе более 50 А.
Если установленные в сетях 6-20 кВ дугогасящие реакторы со ступенчатым регулированием индуктивности имеют большую разность токов смежных ответвлений, допускается настройка с индуктивной составляющей тока замыкания на землю не более 10 А.
В сетях 35 кВ при емкостном токе менее 15 А допускается степень расстройки не более 10%.
В воздушных сетях 6-10 кВ с емкостным током замыкания на землю менее 10 А степень расстройки не нормируется.
Настройка с недокомпенсацией допускается только при недостаточной мощности дугогасящего реактора и при условии, что любые аварийно возникающие несимметрии емкостей фаз сети (обрыв проводов, растяжка жил кабеля) не могут привести к появлению напряжения смещения нейтрали, превышающего 70% фазного напряжения. При недокомпенсации расстройка не должна превышать 5%.
1.6. В сетях с компенсацией емкостного тока степень несимметрии фазных напряжений не должна превышать 0,75% фазного напряжения, а напряжение смещения нейтрали 15% фазного напряжения.
1.7. Измерения емкостных токов, напряжений несимметрии и смещения нейтрали с целью настройки компенсации емкостного тока должны проводиться при вводе дугогасящих реакторов в работу и при значительных изменениях схемы сети, но не реже одного раза в 6 лет.
2. ВЫБОР ПОДСТАНЦИЙ ДЛЯ УСТАНОВКИ ДУГОГАСЯЩИХ РЕАКТОРОВ
2.1. Дугогасящие реакторы должны устанавливаться на питающих подстанциях, связанных с электрической сетью не менее чем двумя линиями электропередачи. Установка реакторов на тупиковых подстанциях не допускается.
2.2. Выбор подстанций для установки дугогасящих реакторов должен производиться с учетом возможного разделения сети на отдельно работающие участки. Реакторы должны размещаться таким образом, чтобы в каждой части сети после ее разделения сохранялась возможность настройки компенсации емкостного тока, близкой к резонансной.
3. ВЫБОР МОЩНОСТИ ДУГОГАСЯЩИХ РЕАКТОРОВ
И ТРАНСФОРМАТОРОВ ДЛЯ ИХ ПОДКЛЮЧЕНИЯ
3.1. Мощность реакторов должна выбираться по значению емкостного тока сети с учетом ее развития в ближайшие 10 лет.
При отсутствии данных о развитии сети мощность реакторов следует определять по значению емкостного тока сети, увеличенному на 25%.
Определение емкостного тока сети для выбора мощности дугогасящих реакторов можно производить путем расчетов (приложение 3).
Расчетная мощность реакторов (кВ·А) определяется по формуле
, (1)
— емкостный ток замыкания на землю, А.
3.2. При применении в сети дугогасящих реакторов со ступенчатым регулированием тока количество и мощность реакторов следует выбирать с учетом возможных изменений емкостного тока сети с тем, чтобы ступени регулирования тока позволяли устанавливать настройку, близкую к резонансной при всех возможных схемах сети.
При емкостном токе замыкания на землю более 50 А рекомендуется применять не менее двух реакторов.
В сетях 35 кВ для этой цели могут использоваться трехобмоточные трансформаторы 110/35/10 (6) кВ с обмоткой 10 (6) кВ, соединенной в треугольник.
В сетях 6-10 кВ могут использоваться ненагруженные трансформаторы или трансформаторы собственных нужд (ТСН) с обмоткой 0,4 (0,23) кВ, соединенной в треугольник. В этом случае ТСН должны быть проверены по длительно допустимой нагрузке. Допустимая нагрузка трансформатора определяется по формуле (2).
, (2)
где — номинальный ток трансформатора, А;
— ток компенсации реактора, А.
Трансформаторы, используемые для подключения реакторов, приведены в приложении 4 (табл.12).
3.4. При отсутствии трансформаторов со схемой соединения обмоток «звезда-треугольник» для подключения реакторов допускается использовать ненагруженные трехфазные трансформаторы со схемой соединения обмоток «звезда-звезда». Мощность трансформаторов при этом должна не менее чем в четыре раза быть больше мощности реакторов.
Трансформаторы броневого типа или группы однофазных трансформаторов со схемой соединения обмоток «звезда-звезда» использовать для подключения реакторов недопустимо.
4. СХЕМЫ ВКЛЮЧЕНИЯ ДУГОГАСЯЩИХ РЕАКТОРОВ
4.1. Рекомендуемые схемы включения дугогасящих реакторов приведены на рис.1.
Рис.1. Схемы включения дугогасящих реакторов:
Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока.
Трансформаторы 6 (10) кВ с дугогасящими реакторами в нейтрали должны подключаться к шинам подстанций выключателями. При использовании трансформаторов только для подключения реакторов допускается замена выключателей на трехполюсные разъединители.
4.2. На двухтрансформаторных подстанциях схемы включения дугогасящих реакторов должны предусматривать возможность подключения реакторов как к одному, так и к другому трансформатору (рис.1, а; 1, б). Нейтрали трансформаторов должны быть разделены разъединителями.
4.3. Применение предохранителей в схемах питания трансформаторов с дугогасящими реакторами в нейтрали недопустимо.
4.4. Установка дугогасящих реакторов в распределительных устройствах должна выполняться в соответствии с действующими Правилами устройства электроустановок и инструкциями заводов-изготовителей.
Неиспользуемые обмотки ненагруженных трансформаторов, в нейтрали которых включены дугогасящие реакторы, должны быть, как правило, заземлены путем соединения одного из выводов обмотки с заземляющим устройством подстанции.
4.5. Рекомендуемые схемы сигнализации и контроля работы дугогасящих реакторов приведены в приложении 5.
На сооружаемых и реконструируемых подстанциях приводы разъединителей, которыми дугогасящие реакторы подключаются к нейтралям трансформаторов, должны выполняться с электромагнитной блокировкой, запрещающей отключение под нагрузкой.
На действующих подстанциях, на которых разъединители дугогасящих реакторов выполнены без электромагнитной блокировки, допускается эксплуатация реакторов без блокировки. При этом возле разъединителей должны быть установлены две параллельно включенные сигнальные лампы, подключенные к сигнальной обмотке реакторов (две лампы на случай повреждения одной из них).
5. НАСТРОЙКА И ЭКСПЛУАТАЦИЯ ДУГОГАСЯЩИХ РЕАКТОРОВ
5.1. В сети с компенсацией емкостного тока замыкания на землю напряжение несимметрии и смещения нейтрали не должно превышать указанных в п.1.6 значений.
В сетях 35 кВ выравнивание емкостей фаз относительно земли должно выполняться транспозицией проводов (рис.2), а также распределением конденсаторов высокочастотной связи.
Рис.2. Транспозиция фазных проводов на воздушных линиях
Предварительную оценку напряжения несимметрии сети, а также емкостного тока замыкания на землю следует производить на основании расчетов по удельным емкостям проводов и кабелей относительно земли. Значения удельных емкостей проводов и кабелей и степени несимметрии некоторых линий приведены в приложении 3.
Пример расчета напряжения несимметрии сети и выравнивания емкостей фаз приведен в приложении 6.
5.2. Настройка дугогасящих реакторов должна быть выполнена в соответствии с требованиями п.1.5.
5.3. В случае выбора настройки с недокомпенсацией допустимость такого режима должна быть проверена расчетом значения напряжения смещения нейтрали при появлении несимметрии емкостей фаз сети.
Пример расчета зависимости степени смещения нейтрали от степени однофазной несимметрии в сети с недокомпенсацией емкостного тока замыкания на землю при появлении несимметрии емкостей фаз, приведен в приложении 7.
5.4. Методы измерений напряжений несимметрии, смещения нейтрали и определения емкостного тока замыкания на землю с целью настройки компенсации емкостного тока приведены в приложении 8.
5.5. При выборе ответвлений дугогасящих реакторов со ступенчатым регулированием тока необходимо учитывать снижение тока реакторов вследствие влияния сопротивления трансформаторов, в нейтрали которых включены реакторы.
Однофазные замыкания на землю. Компенсация емкостных токов замыкания на землю. ДГР
1. Основные характеристики ОЗЗ
В сетях, где используется заземленная нейтраль, замыкание фазы на землю приводит к короткому замыканию. В данном случае ток КЗ протекает через замкнутую цепь, образованную заземлением нейтрали первичного оборудования. Такое повреждение приводит к значительному скачку тока и, как правило, незамедлительно отключается действием РЗ, путем отключения поврежденного участка.
Электрические сети классов напряжения 6-35 кВ работают в режиме с изолированной нейтралью или с нейтралью, заземленной через большое добавочное сопротивление. В этом случае замыкание фазы на землю не приводит к образованию замкнутого контура и возникновению КЗ, а ОЗЗ замыкается через емкости неповрежденных фаз.
Величина этого тока незначительна (достигает порядка 10-30 А) и определяется суммарной емкостью неповрежденных фаз. На рис. 1 показаны схемы 3-х фазной сети в режимах до и после возникновения ОЗЗ.
Рисунок 1 – Схема сети с изолированной нейтралью а) в нормальном режиме; б) при ОЗЗ
Такое повреждение не требует немедленного отключения, однако, его длительное воздействие может привести к развитию аварийной ситуации. Однако при ОЗЗ в сетях с изолированной нейтралью происходят процессы, влияющие на режим работы электрической сети в целом.
На рис. 2 представлена векторная диаграмма напряжений.
Рисунок 2 – Векторные диаграммы напряжений а) в нормальном режиме; б) при ОЗЗ
При ОЗЗ происходит нарушение симметрии линейных фазных напряжений, напряжение поврежденной фазы снижается практически до 0, а двух “здоровых” фаз поднимаются до уровня линейных. При этом линейные напряжения остаются неизменными.
2. Последствия ОЗЗ
Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:
Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.
3. Расчет суммарного тока ОЗЗ
При замыкании на землю фазы одной из нескольких ЛЕП, что включенные к общему источнику, суммарный ток в месте замыкания за счет емкостных токов всех ЛЕП можно рассчитать несколькими методами.
Первый метод заключается в использовании удельных емкостей ЛЭП. Этот способ расчета даст наиболее точный результат и является предпочтительным. Удельные емкости ЛЭП можно взять из справочной литературы, или же из технических характеристик кабеля, предоставляемых заводом-изготовителем.
Выражение для определения тока ОЗЗ:
,
где С∑ – суммарная емкость фазы всех ЛЕП, причем С∑ = Суд l;
Суд – удельная емкость фазы сети относительно земли, Ф/км;
l – общая длина проводника одной фазы сети.
Второй метод применим для сетей с кабельными ЛЭП. Ток замыкания на землю для такой сети можно определить по эмпирической формуле:
,
Кроме этих методов для расчета суммарного тока ОЗЗ, можно использовать значения емкостных токов каждого кабеля взятых из справочной литературы.
4. Компенсационные меры защиты
Из-за распределённой по воздушным и кабельным линиям электропередач ёмкости, при ОЗЗ в месте повреждения протекает ёмкостный ток. В наиболее тяжелых случаях, возможно возникновение электрической дуги, горение которой может приводить к переходу ОЗЗ в двух- или трёхфазное замыкание и отключению линии релейной защитой. Вследствие этого потребитель электроэнергии может временно лишиться электроснабжения.
В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.
Для предотвращения возникновения дуги и уменьшения емкостных токов применяют компенсацию емкостных токов. Значения емкостных токов, при превышении которых требуется компенсация согласно ПУЭ и ПТЭ, приведены табл. 1.
Таблица 1 – Значения токов требующие компенсации
Напряжение сети, кВ | 6 | 10 | 20 | 35 |
Емкостный ток, А | 30 | 20 | 15 | 10 |
При более низких уровнях токов считается, что дуга не загорается, или гаснет самостоятельно, применение компенсации в этом случае не обязательно.
5. Дугогасящий реактор
Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (рис. 3).
Рисунок 3 – Дугогасящий реактор
Этот способ является наиболее эффективным средством защиты электрооборудования от замыканий на землю и компенсации емкостного тока. С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.
6. Основные характеристики ДГР
Дугогасящий реактор (ДГР) – это электрический аппарат, предназначенный для компенсации емкостных токов в электрических сетях с изолированной нейтралью, возникающих при однофазных замыканиях на землю (ОЗЗ). Главным нормативным документом регламентирующим работу, установку и надстройку ДГР является Р 34.20.179.
Дугогасящие реакторы должны подключаться к нейтралям трансформаторов, генераторов или синхронных компенсаторов через разъединители. В цепи заземления реакторов должен быть установлен трансформатор тока. Рекомендуемые схемы подключения ДГР представлены на рис. 4.
Рисунок 4 – Схема подключения ДГР: а) подключение ДГР к трансформаторам СН; б) подключение ДГР к нейтрале силового трансформатора
Индуктивность ДГР подбирается из условия равенства емкостной проводимости сети и индуктивной проводимости реактора. Таким образом, происходит компенсация ёмкостного тока. Ёмкостный ток суммируется в месте замыкания равным ему и противоположным по фазе индуктивным, в результате остается только активная часть, обычно очень малая, это утечки через изоляцию кабельных линий и активные потери в ДГР (как правило, не превышают 5 А), которой недостаточно для возникновения электрической дуги и шагового напряжения. Токоведущие цепи остаются неповреждёнными, потребители продолжают снабжаться электроэнергией.
Современные ДГР имеют различные конструктивные особенности и производятся для огромного диапазона мощностей. В таблице 2 приведен ряд параметров дугогасящих реакторов разных производителей.