компенсация линейного расширения полипропиленовых труб

Компенсация линейного расширения полипропиленовых труб

Компенсация линейного расширения решается конструктивно, для этого используются углы поворота (угловое расширение) или П-образные (петлеобразным) способом, скользящие и неподвижные опоры, а также готовые компенсаторы.

Способ углового расширения основывается на изменении прямолинейного направления прокладки трубопровода угловым соединением. В случаях, когда компенсация путем изменения направления прокладки невозможна, то есть направление прокладки трубопровода должно быть прямолинейным, применяется П-образный метод Компенсация линейного расширения. При этом часть часть креплений делают неподвижными, или фиксирующими: они направляют удлинение через подвижные (скользящие) крепления в сторону компенсирующих элементов.

Конструкция скользящей опоры должна обеспечивать перемещение трубы в осевом направлении.

Компенсация линейного расширения угловой метод:

Расчет компенсационного участка осуществляется по следующей формуле:

ЖО — жесткая опора,
СО — скользящая опора

Ls — длина компенсационного участка:
К — константа материала (для полипропилена) = 15;
ΔL — линейное расширение, (ΔL = α x L x ΔT)α = диаметр трубы

Пример:

расчет длины компенсационного участка трубы PN 20, где:

Компенсация линейного расширения П — образный метод:

ЖО — жесткая опора,
СО — скользящая опора

Формула для определения ширины петли:

Lw — ширина компенсационного колена;
Sw — безопасное расстояние, равное 150 мм (величина постоянная);
ΔL — линейное расширение (ΔL = α ч L x ΔT);

Пример:

Расчет ширины петли компенсационного участка для трубы PN20, где:

d = 40 мм;
L = 3 м;
ΔT = 55°С (ΔТ = Tw — Tm)
ΔL = 24,75 (мм) (вычислено ранее)
Lw = (2 ч 24,75 мм) + 150 мм = 199,55 мм

Вопрос теплового расширения полимерных трубопроводов во многом решается правильным использованием опор и выбором конфигурации трубной разводки. Нужно создать как можно более гибкую эластичную систему с минимумом жестких коротких узлов, имеющих малую способность к деформации.

При размещении труб на стенах и потолках не рекомендуется использовать неподвижные опоры. Для потолочных креплений хорошим решением являются опоры с ремешком. Количество поддерживающих опор должно быть небольшим, предпочтение на до отдавать специальным пластмассовым опорам, которые не повреждают поверхность трубы. Тем не менее рекомендуется использовать подвижные пластиковые опоры с интервалом 20–30 диаметров трубы.

Неподвижными опорами, как правило, фиксируют тяжелые трубные узлы или тяжелые элементы трубопровода, не имеющие собственных креплений (например, фильтры или краны). Во всех случаях необходимо продумать совместное размещение фитингов и подвижных опор: при линейном удлинении трубы, фитинги не должны будут упереться в буртики опор.

И другой случай, если подвижные опоры разместить с обеих сторон от фитинга вплотную к нему, то такой способ монтажа превращает это место крепления в неподвижную опору.

Источник

Онлайн-калькулятор компенсации тепловых удлинений ПП-труб

Изменение длины труб в зависимости от температуры их нагрева (тепловое линейное расширение) – явление, которое в обязательном порядке следует учитывать при проектировании трубопроводов инженерных систем. Для полимерных труб это особенно актуально. Отсутствие компенсирующих элементов или их недостаточная способность «гасить» увеличение либо уменьшение длины трубопроводов на практике оборачивается искривленными трубами, оторванными кронштейнами, опасными механическими напряжениями в конструкционном материале. Воспользуйтесь нашим онлайн-калькулятором компенсации тепловых удлинений полипропиленовых труб.

компенсация линейного расширения полипропиленовых труб компенсация линейного расширения полипропиленовых труб

Расстояние между опорами в зависимости от температуры воды в трубопроводе

Номинальный наружный
диаметр трубы, мм
Расстояние, мм
20°С30°С40°С50°С60°С70°С80°С
16
20
25
32
40
50
63
75
90
500
600
750
900
1050
1200
1400
1500
1600
500
600
750
900
1000
1200
1400
1500
1600
500
600
700
800
900
1100
1300
1400
1500
500
600
700
800
900
1100
1300
1400
1500
500
550
650
750
850
1000
1150
1250
1400
500
500
600
700
800
950
1150
1150
1250
500
500
550
650
750
900
1000
1100
1200

При проектировании вертикальных трубопроводов опоры устанавливаются не реже чем через 1000 мм для труб наружным диаметром до 32 мм и не реже чем через 1500 мм для труб большого диаметра.

Своды правил по проектированию и строительству СП 40-101-96

© 2021 ООО «ВЕСТА РЕГИОНЫ»
Все права защищены.

Источник

Компенсация температурных расширений

С. В. Комаров, ведущий специалист отдела промышленного оборудования, ros-pipe.ru

Любые перемещения, возникающие вследствие внешних воздействий на трубопровод (например, сейсмических и др.), должны быть учтены при его проектировании, также следует учитывать и температурное расширение трубопроводов.

Строительные изделия, такие как трубы, оборудование, строительные конструкции, изменяют свои размеры в результате изменения температур. В настоящей статье затронуты вопросы компенсации теплового расширения и сжатия трубопроводов.

Вследствие изменения температуры рабочей среды в трубах возникают температурные напряжения, которые могут передаваться на арматуру, насосное оборудование и т.д. в виде реактивных сил и моментов. Это создает потенциальную опасность разгерметизации стыков, разрушения арматуры или оборудования.

Три наиболее часто используемых способа компенсации перемещений трубопроводов:

Выбор способа компенсации зависит от вида системы трубопроводов, ее схемы, а также от особенностей ландшафта, наличия рядом других коммуникаций и прочих условий.

Перечисленные выше примеры представлены в качестве общих инженерных решений и не должны рассматриваться как единственно верные для конкретной системы трубопроводов. Мы будем рассматривать способ компенсации расширения прямолинейных участков трубопроводов при помощи осевых сильфонных компенсаторов.

Расширение трубопроводов

Первым шагом для решения вопроса компенсации температурных перемещений является вычисление точного изменения длины участков трубопроводной системы в соответствии с предъявляемыми условиями безопасности.

Определение (расчет) теплового расширения трубопровода производится по следующей формуле:

где а – коэффициент температурного расширения, мм/ (м·°С);
L – длина трубопровода (расстояние между неподвижными опорами), м;
∆t – разница значений между максимальным и минимальным значениями температур рабочей среды, °С.

Коэффициент температурного расширения берется из таблицы линейного расширения труб из различных материалов.

Как видно из таблицы, наиболее подвержены температурному расширению трубопроводы из полимерных материалов, в связи с этим способы компенсации полимерных труб несколько отличаются от способов компенсации стальных.

Значения коэффициента линейного расширения являются усредненными для каждого вида материала. Эти значения не должны применяться для расчетов трубопроводов из других материалов. Коэффициенты растяжения в разных источниках могут различаться на 5% и более, поскольку их вычисления проводятся при разных условиях и различными методами. Желательно применять для расчетов коэффициент линейного расширения, который представлен в технической документации производителя труб.

Рассмотрим реальный пример.

Возьмем прямолинейный участок трубопровода диаметром 219 мм из черной углеродистой стали длиной 100 м. Максимальная температура tmax = 140 °С, минимальная tmin = –20 °С.

Производим расчеты:
∆t = 140 – (–20) = 160 °С,
изменение длины трубопровода:
∆L = 0,0115 × 160 × 100 = 184 мм.

Полученный результат говорит о том, что трубопровод при заданных значениях меняет свою длину на 184 мм. Для обеспечения правильной работы трубопровода подходит осевой сильфонный компенсатор условным диаметром 200 мм и компенсирующей способностью 200 мм (например, КСО 200–16–200). При подборе данного типоразмера компенсатора имеется запас компенсирующей способности, а это положительно скажется на сроке работы трубопровода.

В случае, если полученное значение ∆L будет превышать значение компенсирующей способности производимых типоразмеров компенсаторов, то следует уменьшить длину участка трубопровода между двумя неподвижными опорами пропорционально имеющейся компенсирующей способности, а затем подобрать необходимый сильфонный компенсатор, пользуясь вышепредставленным расчетом.

Таблица
Материал трубопроводаКоэффициент линейного
расширения, мм/(м·°C)
Чугун0,0104
Сталь нержавеющая0,011
Сталь черная и оцинкованная0,0115
Медь0,017
Латунь0,017
Алюминий0,023
Металлопластик0,026
Поливинилхлорид (PVC)0,08
Полибутилен (PB)0,13
Полипропилен (PP-R 80 PN10 и PN20)0,15
Полипропилен (PP-R 80 PN25 алюминий)0,03
Полипропилен (PP-R 80 PN20 стекловолокно)0,035
Сшитый полиэтилен (PEX)0,024

Установка сильфонных компенсаторов

Цель установки сильфонного компенсатора – это поглощение теплового расширения трубы. Обычно температура рабочей среды (жидкости) является основным источником изменения размеров трубопровода, однако в некоторых случаях температура окружающей среды может вызвать тепловое движение трубопровода, т.е. его удлинение или сжатие.

Рекомендации по установке

1. Устанавливая сильфонные компенсаторы, следует проверить соответствие их основных параметров указанным в проекте, таких как

2. Диаметр и давление трубопровода должны соответствовать выбираемому компенсатору.

3. При установке сильфонных компенсаторов необходимо монтировать не более одного компенсатора на участке трубопровода между каждыми двумя последовательно стоящими неподвижными опорами.

4. Скользящие опоры должны быть охватывающими (хомуты, рамочные и др.). Они не должны создавать большую силу трения. Целесообразно применение фторопластовых прокладок и т.п. При движении труб не должно быть заклиниваний и перекосов.
Максимальный размер люфтов для Ду ≤ 100 мм – 1 мм, а для Ду ≥ 125 мм – 1,6 мм.

5. При проведении расчетов трубопроводов необходимо учитывать влияющие силы (силы трения, силы упругости сильфонов и др.).

6. При выборе места установки сильфонных компенсаторов нужно выбрать наиболее оптимальный вариант их расположения на трубопроводе.

7. При опрессовке труб давление не должно превышать 1,25 × Ру.

8. Процесс опрессовки проводить только после полного монтажа трубопровода.

9. Напряжения скручивания, угловые усилия, поперечные перемещения должны быть полностью исключены на участке трубопровода, на котором установлен осевой сильфонный компенсатор.

Определение точек установки компенсаторов и направляющих опор для трубы

Для обеспечения правильной работы трубопровода в рабочем режиме следует разделить систему на отдельные участки с целью установки на них сильфонных компенсаторов. Основная задача компенсаторов – контроль расширения трубопровода между неподвижными опорами, перемещение должно происходить строго в осевом направлении для обеспечения жесткости конструкции.

Неподвижные же опоры предназначены для приема всех сил, действующих на трубопроводе.

Направляющие (скользящие) опоры для труб обеспечивают выравнивание движения сильфона компенсатора и предотвращают смещение относительно оси трубопровода. При отсутствии направляющих опор сильфонный компенсатор, обладающий высокой гибкостью в сочетании с внутренним давлением, может потерять устойчивость и деформироваться, что может привести к выходу из строя трубопровода.

Основная рекомендация состоит в установке осевого сильфонного компенсатора рядом с неподвижной опорой. Обычно осевой сильфонный компенсатор устанавливают на расстоянии не более 4Ду от неподвижной опоры. Данное условие обусловлено обеспечением жесткости конструкции.

Соблюдая правила монтажа сильфонных компенсаторов, вы продлите до максимума срок службы трубопровода, что сэкономит средства на его неплановый ремонт.

Схемы установки осевых сильфонных компенсаторов

Компенсатор в середине прямого участка трубопровода

компенсация линейного расширения полипропиленовых труб

Компенсатор в крайнем положении прямого участка трубопровода

компенсация линейного расширения полипропиленовых труб

Компенсатор на прямом участке Z-образного участка трубопровода

компенсация линейного расширения полипропиленовых труб

Компенсатор на Т-образном участке трубопровода

Расстояния между компенсатором и опорами трубопровода

Первая направляющая опора должна быть расположена на расстоянии не более 4 диаметров труб от сильфонного компенсатора. Расстояние между первой и второй направляющими 14 диаметров трубы.

L1 = 4Ду (максимум).
L2 = 14Ду (максимум).
L3 см. график – максимальное расстояние между осями направляющих опор.

Максимальное рекомендуемое расстояние между скользящими опорами приведено на графике. На нем отображена зависимость расстояния между опорами и давления в системе от диаметра трубопровода.

Данные расстояния получены в результате расчетов трубопровода на прочность и устойчивость и являются стандартными.

Правильное расположение компенсаторов КСО, неподвижных и направляющих опор и влияние направляющих (скользящих) на состояние трубопровода при температурном расширении показаны на рисунке ниже.

Самокомпенсация трубопроводов

Наряду с использованием современных компенсаторов целесообразно применять эффект естественной компенсации или так называемой самокомпенсации. Этот эффект применим для любых способов прокладки теплосетей и широко используется на практике.

Эффект самокомпенсации или естественной компенсации термических расширений за счет упругости самого трубопровода применяется на участках, где трасса меняет свое направление (поворачивает).

Преимущество использования самокомпенсации:

Для осуществления эффекта естественной компенсации не требуется большого количества труб и специализированных опорных металлоконструкций. Снижение затрат на дополнительные металлоконструкции также может обеспечить установка сильфонных компенсаторов.

Грамотный проект трассировки трубопровода должен учитывать экономическую составляющую, т.е. должен быть выбран такой вариант, при котором система будет максимально надежной и простой в обслуживании при минимальных затратах на материал и работу.

Такой проект должен в первую очередь в максимальной степени использовать все естественные повороты и изгибы трубопроводов для компенсации температурных изменений труб. Рекомендуется применять сильфонные компенсаторы только после использования эффекта самокомпенсации или естественной компенсации.

Компенсаторы используют лишь в тех случаях, когда нет возможности применить эффект самокомпенсации, то есть при наличии длинных прямолинейных участков и также сложившихся условий расположения объектов и проходящих рядом коммуникаций.

Расположение опоры относительно компенсатора

Зависимость расстояния между опорами и давления в системе от диаметра трубопровода

Правильное расположение компенсаторов КСО, неподвижных и направляющих опор и влияние направляющих (скользящих) на состояние трубопровода при температурном расширении

Недостатки использования самокомпенсации

П-образный или сильфонный компенсатор?

Не раз проектировщики сталкивались с вопросом «Какой компенсатор поставить – П-образный или сильфонный?»

Отвечая на этот вопрос, мы пришли к выводу, что в большинстве случаев следует устанавливать сильфонные компенсаторы.

Применение П-образных компенсаторов, расположенных вертикально и горизонтально, при прокладке трубопроводов различного назначения бывает неэффективным. Увеличение их количества не решает проблему безопасности, поскольку при движении поверхности земли (грунта) нет возможности определить, в какой точке и в какую сторону будут действовать силы на трубопровод. В большинстве случаев можно только предположить, в какую сторону будет двигаться грунт, и расположить два компенсатора горизонтально и вертикально.

Если идеализировать ситуацию, то необходимо чтобы П-образные компенсаторы устанавливали в одной точке через каждые 15–30° (от 0 до 180° – см. рис.) для осуществления «полной» компенсации. Проблема решается путем применения в данной ситуации всего одного сильфонного компенсатора.

Выше была рассмотрена ситуация с надземной прокладкой трубопровода. Для подземной прокладки существуют специальные сильфонные компенсаторы для газо- и нефтепроводов, их установка в определенных точках дает возможность обходиться без дорогих подземных железобетонных каналов. Таким образом, применение сильфонных компенсаторов экономит деньги и время без ущерба качества работы трубопроводов.

компенсация линейного расширения полипропиленовых труб
компенсация линейного расширения полипропиленовых труб

Поделиться статьей в социальных сетях:

Источник

Линейное расширение полипропиленовых труб: что нужно знать и учитывать

Линейное расширение полипропиленовых труб возникает в результате воздействия разных температур, в результате чего, возникает более или менее явное изменение размеров. На практике оно может проявляться как в увеличение размеров в случае повышения температур, так и в уменьшении при снижении температур.

Поскольку полимерные материалы имеют увеличенный по сравнению с металлами коэффициент линейного удлинения, то при проектировании систем отопления, холодного и горячего водоснабжения, производят расчёт удлинений или укорочений трубопроводов при возникающих перепадах температур.

Линейное расширение полипропиленовых труб.

Проектирование и монтаж трубопроводов необходимо выполнять так, чтобы труба могла свободно двигаться в пределах величины расчетного расширения. Это достигается за счет компенсирующей способности элементов трубопровода, установкой температурных компенсаторов и правильной расстановкой опор (креплений). Неподвижные крепления труб должны направлять удлинения трубопроводов в сторону этих элементов.

Расчёт изменения длины трубопровода при изменении его температуры производится по формуле:

где ΔL — изменение длины трубопровода при его нагреве или охлаждении;
α — коэффициент теплового расширения константа мм/м С−¹;

L — расчётная длина трубопровода;
Δt — разница температуры трубопровода при монтаже и эксплуатации °С(°К);
Δt = Tw-Tm Tw — рабочая температура жидкости;
Tm — температура воздуха при монтаже.

Расчет линейного расширения труб:

Пример 1 (расширение):

Линейное расширение полипропиленовых труб которое необходимо учитывать при проектировании систем горячего водоснабжения и отопления.

— Труба PN20 α х L х ΔТ = 0,15 х 3 х 55 = 24,75 мм

— Труба PN25 (армированная) α х L х ΔТ = 0,03 х 3 х 55 = 4,95 мм

В этом случае труба подвергается положительному изменению (расширению) от своей первоначальной длины.

Пример 2 (сокращение)

Его необходимо учитывать при проектировании систем кондиционирования и охлаждения.

В этом случае труба подвергается отрицательному изменению (сокращению) от своей первоначальной длины.

Величину температурных изменений длины трубы можно также определить по таблицам:

Таблица линейного расширения (в мм): труба PP-R PN10 и PN20 (α = 0,15 мм/м x °С)

Длина трубы, мРазница температур Δt, ºС
1020304050607080
0,10,150,300,450,600,750,901,051,20
0,20,300,600,901,201,501,802,102,40
0,30,450,901,351,802,252,703,153,60
0,40,601,201,802,403,003,604,204,80
0,50,751,502,253,003,754,505,256,00
0,60,901,802,703,604,505,406,307,20
0,71,052,103,154,205,256,307,358,40
0,81,202,403,604,806,007,208,409,60
0,91,352,704,055,406,758,109,4510,80
1,01,503,004,506,007,509,0010,5012,00
2,03,006,009,0012,0015,0018,0021,0024,00
3,04,509,0013,5018,0022,5027,0031,5036,00
4,06,0012,0018,0024,0030,0036,0042,0048,00
5,07,5015,0022,5030,0037,5045,0052,5060,00
6,09,0018,0027,0036,0045,0054,0063,0072,00
7,010,5021,0031,5042,0052,5063,0073,5084,00
8,012,0024,0036,0048,0060,0072,0084,0096,00
9,013,5027,0040,5054,0067,5081,0094,50108,00
10,015,0030,0045,0060,0075,0090,00105,00120,00

Таблица линейного расширения (в мм): армированная труба PP-R PN 25 (α = 0,03 мм/м С−¹)

Длина трубы, мРазница температур Δt, °С
1020304050607080
0,10,030,060,090,120,150,180,210,24
0,20,060,120,180,240,300,360,48
0,30,090,180,270,360,450,540,630,72
0,40,120,240,360,480,600,720,840,96
0,50,150,300,450,600,750,901,051,20
0,60,180,360,540,720,901,081,281,44
0,70,210,420,630,841,051,261,471,68
0,80,240,480,720,961,201,441,681,92
0,90,270,540,811,081,351,621,892,16
1,00,300,600,901,201,501,802,102,40
2,00,601,201,802,403,003,604,204,80
3,00,901,802,703,604,505,406,307,20
4,01,202,403,604,806,007,208,409,60
5,01,503,004,506,007,509,0010,5012,00
6,01,803,605,407,209,0010,8012,8014,40
7,02,104,206,308,4010,5012,6014,7016,80
8,02,404,807,209,6012,0014,4016,8019,20
9,02,705,408,1010,8013,5016,2018,9021,60
10,03,006,009,0012,0015,0018,0021,0024,00

Таблица Линейное расширение полипропиленовых труб (в мм): армированная стекловолокном труба PP-R PN20 (а = 0,035 мм/м С −1 )

Длина трубы, мИзменение температуры Δt (°С)
102030405060708090100
0.10,030,070,100,140,170,210,240,280,310,35
0.20,070,140,210,280,350,420,490,560,630,70
0.30,100,210,310,420,520,630,730,840,941,05
0.40,140,280,420,560,700,840,981,121,261,40
0.50,170,350,520,700,871,051,221,401,571,75
0.60,210,420,630,841,051,261,471,681,892,10
0.70,240,490,730,981,221,471,711,962,202,45
0.80,280,560,841,121,401,681,962,242,522,80
0.90,310,630,941,261,571,892,202,522,833,15
1.00,350,701,051,401,752,102,452,803,153,50
2.00,701,402,102,803,504,204,905,606,307,00
3.01,052,103,154,205,256,307,358,409,4510,50
4.01,402,804,205,607,008,409,8011,2012,6014,00
5.01,753,505,257,008,7510,5012,2514,0015,7517,50
6.02,104,206,308,4010,5012,6014,7016,8018,9021,00
7.02,454,907,359,8012,2514,7017,1519,6022,0524,50
8.02,805,608,4011,2014,0016,8019,6022,4025,2028,00
9.03,156,309,4512,6015,7518,9022,0525,2028,3531,50
10.03,507,0010,5014,0017,5021,0024,5028,0031,5035,00

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *