компенсация реактивной мощности в домашних условиях

Возможности компенсации реактивной энергии в быту с помощью Saving Box

Рекламные трюки продавцов бытовой техники для экономии электроэнергии

компенсация реактивной мощности в домашних условияхНавязчивая реклама в интернете и даже на государственных каналах телевидения через телемагазин настойчиво предлагает населению устройство для экономии электроэнергии в виде «новинок» электронной промышленности. Пенсионерам предоставляется скидка 50 % от общей стоимости.

«Saving Box» — так называется один из предлагаемых приборов. О них уже писалось в статье «Приборы для экономии электроэнергии: миф или реальность?». Пришла пора продолжить тему на примере конкретной модели, объяснив более подробно:

что такое реактивное сопротивление;

каким образом создается активная и реактивная мощность;

как осуществляется компенсация реактивной мощности;

на основе чего работают компенсаторы реактивной мощности и устройство для экономии электроэнергии.

Людям, купившим такое устройство, приходит по почте посылка с красивой коробочкой. Внутри расположен элегантный пластмассовый корпус с двумя светодиодами на лицевой стороне и вилкой для установки в розетку — с обратной.

Чудо-прибор для экономии электроэнергии (для увеличения нажмите на рисунок):

компенсация реактивной мощности в домашних условиях

На приложенной фотографии показаны заявленные производителем характеристики: 15000 Вт при напряжении в сети от 90 до 250 В. Оценим их с точки зрения электрика-практика по приведенным под картинками формулам.

При наименьшем указанном напряжении такое устройство должно пропускать через себя ток 166,67 А, а при 250 В — 60 А. Сравним полученные расчеты с нагрузками сварочных аппаратов переменного напряжения.

Ток сварки для стальных электродов диаметром 5 мм составляет 150÷220 ампер, а для толщины 1,6 мм достаточно — 35÷60 А. Эти рекомендации есть в любом справочнике электросварщика.

Вспомните вес и габариты сварочного аппарата, который варит электродами 5 мм. Сравните их с пластмассовой коробочкой, величиной с зарядное устройство мобильного телефона. Подумайте, почему от тока 150 А плавятся стальные электроды 5 мм, а остаются целыми контакты вилки этого «прибора», да и вся проводка в квартире?

Внимание! В этой схеме отсутствует устройство для экономии электроэнергии или ее компенсации.

Неужели обман? Попробуем разобраться с помощью основ электротехники и действующих промышленных компенсаторов электроэнергии, работающих на предприятиях энергетики.

Принципы электроснабжения

Рассмотрим типовую схему подключения к генератору переменного напряжения потребителей электричества, как маленький аналог питающей электросети квартиры. Для наглядности его характеристик индуктивности, емкости и активной нагрузки показаны обмотка трансформатора, конденсатор и ТЭН. Будем считать, что они работают в установившемся режиме при прохождении по всему контуру тока одной величины I.

Электрическая схема (для увеличения нажмите на рисунок):

компенсация реактивной мощности в домашних условиях

Здесь энергия генератора с напряжением U распределится составными частями на:

обмотку индуктивности UL;

обкладки конденсатора UC;

активное сопротивление ТЭН UR.

Если представить рассматриваемые величины векторной формой и выполнить их геометрическое сложение в полярной системе координат, то получится обыкновенный треугольник напряжений, в котором величина активной составляющей UR по направлению совпадает с вектором тока.

UХ образован сложением падений напряжений на обмотке индуктивности UL и обкладках конденсатора UС. Причем это действие учитывает их направление.

В итоге получилось, что вектор напряжения генератора U отклонен от направления тока I на угол φ.

Еще раз обратите внимание на то, что ток в цепи I не меняется, он одинаков на всех участках. Поэтому разделим составляющие треугольника напряжений на величину I. На основании закона Ома получим треугольник сопротивлений.

Общее сопротивление индуктивности XL и емкости ХС принято называть термином «реактивное сопротивление» Х. Приложенное к клеммам генератора полное сопротивление нашей цепи Z состоит из суммы активного сопротивления ТЭН R и реактивного значения Х.

Выполним другое действие — умножение векторов треугольника напряжений на I. В итоге преобразований формируется треугольник мощностей. Активная и реактивная мощность у него создают полную приложенную величину. Суммарная энергия, выдаваемая генератором S, расходуется на активную Р и реактивную Q составляющие.

Активная часть расходуется потребителями, а реактивная выделяется при магнитных и электрических преобразованиях. Емкостные и индуктивные мощности потребителями не используются, но нагружают токопроводы с генераторами.

Внимание! Во всех 3-х прямоугольных треугольниках сохраняются пропорции между сторонами, а угол φ не меняется.

Теперь будем разбираться, как проявляется реактивная энергия и почему счетчики бытовые ее не учитывали.

Что такое компенсация реактивной мощности в промышленности?

В энергетике страны, а более точно — государств целого континента, производством электричества занято огромнейшее число генераторов. Среди них встречаются как простые самодельные конструкции мастеров-энтузиастов, так и мощнейшие промышленные установки ГЭС и атомных станций.

Вся их энергия суммируется, трансформируется и распределяется конечному потребителю по сложнейшим технологиям и транспортным магистралям на огромные расстояния. При таком способе передачи электрический ток проходит через большое количество индуктивностей в виде обмоток трансформаторов/автотрансформаторов, реакторов, заградителей и других устройств, создающих индуктивную нагрузку.

Воздушные провода, а особенно кабели, создают в цепи емкостную составляющую. Ее величину добавляют различные конденсаторные установки. Металл проводов, по которым протекает ток, обладает активным сопротивлением.

Таким образом, сложнейшая энергетическая система может быть упрощена до рассмотренной нами схемы из генератора, индуктивности, активной нагрузки и емкости. Только ее необходимо еще объединить в три фазы.

Задача энергетики — дать потребителю качественное электричество. Применительно к конечному объекту это подразумевает подачу на вводной щиток электроэнергии напряжением 220/380 В, частотой 50 Гц с отсутствием помех и реактивных составляющих. Все отклонения этих величин ограничены требованиями ГОСТ.

При этом потребителя интересует не реактивная составляющая Q, создающая дополнительные потери, а получение активной мощности Р, которая совершает полезную работу. Для характеристики качества электричества пользуются безразмерным отношением Р к приложенной энергии S, для чего применяется косинус угла φ. Активную мощность Р учитывают все бытовые электрические счетчики.

Устройства компенсации электрической мощности приводят в норму электроэнергию для распределения между потребителями, уменьшают до нормы реактивные составляющие. При этом также осуществляется «выравнивание» синусоид фаз, в которых убираются частотные помехи, сглаживаются последствия переходных процессов при коммутациях схем, нормализуется частота.

Промышленные компенсаторы реактивной мощности устанавливаются после вводов трансформаторных подстанций перед распределительными устройствами: через них пропускается полная мощность электроустановки. Как пример, смотрите фрагмент однолинейной электросхемы подстанции в сети 10 кВ, где компенсатор принимает токи от АТ и только после его обработки электричество поступает дальше, а нагрузка на источники энергии и соединительные провода уменьшается.

Промышленные компенсаторы электроэнергии в сети 10 кВ:

компенсация реактивной мощности в домашних условиях

компенсация реактивной мощности в домашних условиях

Вернемся на мгновение к прибору «Saving Box» и зададим вопрос: как он может компенсировать мощности при расположении в конечной розетке, а не на вводе в квартиру перед счетчиком?

Смотрите на фото, как внушительно выглядят промышленные компенсаторы. Они могут создаваться и работать на разной элементной базе. Их функции:

плавное регулирование реактивной составляющей с быстродействующей разгрузкой оборудования от перетоков мощностей и снижения потерь энергии;

повышение динамической и статистической устойчивости схемы.

Выполнение этих задач обеспечивает надежность электроснабжения и уменьшение затрат на конструкцию тоководов нормализацией температурных режимов.

Что такое компенсация реактивной мощности в квартире?

Электроприборы домашней электрической сети также обладают индуктивным, емкостным и активным сопротивлением. Для них справедливы все соотношения рассмотренных выше треугольников, в которых присутствуют реактивные составляющие.

Только следует понимать, что они создаются при прохождении тока (учитываемого счетчиком, кстати) по уже подключенной в сеть нагрузке. Генерируемые индуктивные и емкостные напряжения создают соответствующие реактивные составляющие мощности в этой же квартире, дополнительно нагружают электропроводку.

Их величину никак не учитывает старый индукционный счетчик. А вот отдельные статические модели учета способны ее фиксировать. Это позволяет точнее анализировать ситуацию с токовыми нагрузками и термическим воздействием на изоляцию при работе большого количества электродвигателей. Емкостное напряжение, создаваемое бытовыми приборами, очень маленькое, как и ее реактивная энергия и счетчики ее часто не показывают.

Компенсация реактивной составляющей в таком случае заключается в подключении конденсаторных установок, «гасящих» индуктивную мощность. Они должны подключаться только в нужный момент на определенный промежуток времени и иметь свои коммутационные контакты.

Такие компенсаторы реактивной мощности имеют значительные габариты и подходят больше для производственных целей, часто работают с комплектом автоматики. Они никак не снижают потребление активной мощности, не могут сократить оплату электроэнергии.

Рекламируемый чудо-прибор «Saving Box» и другие аналогичные устройства не имеет ничего общего с подобными конструкциями. Как устройство для экономии электроэнергии он работать не может.

Заключение

Заявленные производителем возможности и технические характеристики «Saving Box» не соответствуют действительности, используются для рекламы, построенной на обмане.

Обществу защиты прав потребителей и правоохранительным органам давно пора принять меры к прекращению продаж в стране некачественной продукции хотя бы через государственные каналы информации.

Потребляемая активная и реактивная мощность в квартире может быть снижена при выполнении простых рекомендаций, изложенных в статье: «Как экономить электроэнергию в квартире и частном доме».

Источник

Расчет и компенсация реактивной мощности.

Доброго времени суток. Сегодня, в рубрике «Советы и рекомендации» — Расчет и компенсация реактивной мощности.

Возможно, Вас заинтересует – «Простой выпрямитель».

Прежде чем говорить о реактивной мощности, давайте разберемся, что такое электрическая мощность? Говоря простым языком, мощность — это работа, совершаемая электрическим током в единицу времени. Измеряется она в ваттах (Вт или W).

Расчет и компенсация реактивной мощности. Расчет реактивной мощности.

Если с постоянным током при определении мощности проблем нет, то с переменным начинают твориться чудеса. По отношению к резистивным нагрузкам (нагревательные элементы, лампы накаливания) переменный электроток ведет себя также как и постоянный. Но когда в цепи появляются индуктивные (трансформаторы, дроссели, электродвигатели) и емкостные (конденсаторы) электронагрузки – возникают паразитные токи, не только не участвующие в полезной работе, но и создающие ей помехи. В индуктивностях ток начинает отставать от напряжения, а в емкостях наоборот – опережает. Это называется сдвигом фаз, угол которых принято обозначать символом ϕ.

компенсация реактивной мощности в домашних условиях

В итоге, мощность разделяется на активную и реактивную. Первая участвует в работе, а реактивная или ничего не делает или мешает. Зависимость угла сдвига фаз принято выражать через cos ϕ.

COS φ = Р/S

Где Р – активная мощность, S – реактивная. Это отношение называется коэффициентом мощности (Pf) и может варьироваться от 0 до 1. И чем эта величина ближе к единице, тем меньше реактивная мощность, а значит выше КПД.

Опираясь на то, что S находится в зависимости от угла ϕ, мы имеем возможность сделать ее расчет по формуле:

Q = U*I*sinφ.

Где Q– реактивная составляющая, единицей измерения является вар или квар.

P = U*I*cosφ — производят расчет активной составляющей.

Расчет и компенсация реактивной мощности. Компенсация реактивной составляющей.

Поскольку реактивная энергия оказывает влияние на работу электрооборудования, имеющего индуктивные и емкостные электропотребители, для них применяются специальные компенсирующие устройства. Схема действия компенсации основана на способностях емкостных и индуктивных нагрузок сдвигать фазы в противоположные направления. Ввиду того, что основную часть реактивной энергии создают индуктивности, для ее компенсации используют конденсаторы большой емкости, присоединяемые параллельно нагрузке. Казалось бы что вопрос решен. Но на практике, на производстве с большим процентом электродвигателей не все так гладко. Электромоторы на конвейерах и другом оборудовании не включаются все сразу, а работают по своему алгоритму. В иные моменты одновременно могут находиться в работе как большое, так и минимальное количество электропотребителей этого типа. А перекомпесация не менее вредна недокомпенсации.

И поэтому, подключением конденсаторных блоков управляет контроллер на микропроцессоре, измеряющий реактивную энергию в каждый момент времени. И в зависимости от потребности, выбирает и присоединяет к потребителям определенное количество конденсаторов.

компенсация реактивной мощности в домашних условияхАвтоматическая установка компенсации реактивной энергии УКРМ.

Компенсация реактивной энергии в быту.

Современные квартиры напичканы всевозможным электрическим оборудованием разной мощности. Основная часть приборов большого энергопотребления, это активные потребители с cosφ = 1. (электрочайник, утюг, нагревательный элемент стиральной машины, электродуховка…). Но есть и домашние помощники с реактивной нагрузкой (СВЧ печь, двигатель стиральной машины, блендеры, кухонные комбайны, холодильник…). Но их электропотребление настолько мало (кроме СВЧ печи, работающей по полчаса – час в сутки), что устраивать компенсацию нет смысла.

Вас может заинтересовать – «Расчет и выбор сечения кабеля».

Однако, если у Вас свой дом, с мастерской, оборудованной станками с асинхронными электродвигателями, стоит задуматься о компенсации реактивной мощности.

Стоит ли покупать рекламируемые устройства компенсации.

Интернет и телевидение пестрит рекламируемыми устройствами компенсации реактивной мощности. Такими как Saving box, Smart Boy, EkoEnerji, Electricity Energy Electric Power Saver. Стоит ли покупать эти чудо-приборы? Ответ однозначный – НЕТ! Вышеназванные устройства ни в коей мере неспособны компенсировать реактивную мощность даже самых неэнергоемких потребителей. Все эти мини и микро компенсаторы – полный развод на деньги.

Источник

Компенсация реактивной мощности в быту

Станислав Пе написал :
Збережение реактивной мощности применимое на предприятии по енергозбережению

Вообще, если интересует экономический эффект от внедрения мер по компенсации реактивной мощности, то:

А если коэффициент мощности ниже чем в договоре на электроснабжение, то ещё и учитываете оплату реактивной энергии.

Если платите за кВт, то нисколько не сэкономите, ибо не получится сэкономить за что не платите компенсация реактивной мощности в домашних условиях

Станислав Пе написал :
Приобретаем установку по сбережению электричества.

Очень интересно. Она так и называется? компенсация реактивной мощности в домашних условиях

Станислав Пе написал :
Приобретаем установку по сбережению электричества.

требуйте наклейку на лоб: «МЕНЯ НАЕБАЛИ» компенсация реактивной мощности в домашних условиях
Должна идти в комплекте, но многие производители подобной продукции почему-то недоукомплектовывают свои устройства подобными аксессуарами. компенсация реактивной мощности в домашних условиях

ksiman написал :
Если платите за кВт, то нисколько не сэкономите, ибо не получится сэкономить за что не платите

другое дело что это может быть всего лишь каплей в море

Solovey написал :
это может быть всего лишь каплей в море

другое дело что это может быть всего лишь каплей в море

Косвенным образом потери действительно немного снижаются компенсация реактивной мощности в домашних условиях

Надо сильно постараться, чтобы реактивная мощность была сравнима с активной, например включить все станки в цеху на холостой ход компенсация реактивной мощности в домашних условиях

ksiman написал :
Надо сильно постараться, чтобы реактивная мощность была сравнима с активной, например включить все станки в цеху на холостой ход

Выход нажать наверное большого ума не надо.Но вот в цыфрах ето понять наверное нужно не один литр выпить водки.Ребята может кто в цыфрах может без конструкторского бюро растолковать.Можно мне в лычку телефон сбросте.А сын Вам перезвонит.

Станислав Пе написал :
Ребята может кто в цыфрах может без конструкторского бюро растолковать.Можно мне в лычку телефон сбросте.А сын Вам перезвонит.

Без этого все пустой треп будет.

но вот сколько это реально в рублях.

Чем больше исходных данных будет, тем выше шансы на победу.

В Раше в платежных требованиях за поставленную электроэнергию/мощность отдельной строки по оплате за ее реактивную составляющую нет(пока нет). Можно предполагать, что она учитывается в общей цене как слагаемое и определяется как некий процент/коэффициент от активной.
Исходя из этого экономить удается только активную электроэнергию/мощность.
Применение же устройств компенсации реактивной мощности во вновь вводимых в эксплуатацию ВРУ является по сути принудительным актом со стороны сетевых организаций (ТСО), исходя из принятой в их интересах процедуры получения технических условий на присоединение/реконструкцию энергопринимающих устройств Заявителя и позволяет за его счет разгружать от реактива центры питания ТСО.
Кароч. Про реактив (пока) не заморачиваемся.
А Вас как? Полный майдан?

Источник

О пивной пене – или мифы о компенсации реактивной мощности

Всем привет! Мои постоянные читатели, вероятно помнят мою статью про реактивную мощность. Там я подробно изложил теорию, откуда она появляется, и как её компенсируют. Рассмотрел и случай на реальном предприятии.

Сегодня открою небольшую тайну. Предприятие, о котором я писал в той статье – это пивзавод! Поэтому давайте попробуем рассмотреть проблему реактивной мощности с этой, освежающей стороны)

Как выглядит реактивная мощность?

Итак, давайте обсудим популярную тему в сфере сбережения электроэнергии – компенсацию реактивной мощности. Пожалуй, лучшей иллюстрации того, что такое реактивная мощность и не придумаешь:

компенсация реактивной мощности в домашних условиях

Иллюстрация о реактивной мощности – сравнение с пивом

Бокал – это выделенная или полная мощность, пиво – активная, а пена – реактивная мощность.

Она заполняет бокал, но пользы от неё нет. Лучше, если весь бокал будет заполнен пивом, не так ли?

Наглядно процесс образования реактивной мощности, которая возникает при питании электродвигателя, изображен на картинке. Кстати, именно электродвигатели – главные “виновники” появления реактивной составляющей мощности в питающих сетях.

компенсация реактивной мощности в домашних условиях

Как выглядит полная мощность при питании электродвигателя

Как решается вопрос снижения «пены»? При помощи устройств для компенсации реактивной мощности: на основе конденсаторов (классическое устройство компенсации реактивной мощности, УКРМ) или специализированных инверторов (Статком или SVG). УКРМ становятся локальным «источником» компенсационной реактивной мощности, и, тем самым, высвобождают выделенную мощность, поступающую из внешней электросети.

компенсация реактивной мощности в домашних условиях

Компенсация реактивной мощности на конденсаторной установке

В принципе это всё, что нужно знать о компенсации реактивной мощности, если не погружаться в специфику. Но тут возникают вопросы, связанные с экономическим аспектом внедрения УКРМ, а также особенности совместной работы с другим оборудованием.

Разбор экономических аспектов компенсации реактивной мощности

Экономия на оплате электроэнергии

Во-первых, большинство потребителей – частных, коммерческих и промышленных – не платят за потреблённую реактивную мощность, а платят только за активную, т.е. не за пиво с пеной, а только за пиво. Поэтому снижение реактивной мощности (кВАр) не позволит напрямую снизить плату за активную энергию (кВт).

Во-вторых, промышленные потребители при подключении к электросетям единовременно платят за выделение мощностей – за строительство подстанции и за подведение кабельных сетей. Поэтому если вам нужно много пива, а покупать новый стакан дорого, имеет смысл снизить уровень пены: это мера временная, но действенная.

В-третьих, промышленные потребители платят не только за поставленную мощность, но и за выделенную, т.е. полную мощность, которая измеряется в кВА и состоит из активной и реактивной. Тут тоже актуально снизить полную мощность, скомпенсировав реактивную.

Снижение потерь электроэнергии

Проходя через систему электроснабжения, часть мощности теряется в виде нагрева проводов, трансформаторов и оборудования. Эти потери омические, то есть расходуется активная мощность (кВт). Но следует учесть, что доля потерь во внутренней сети электроснабжения по причине нескомпенсированной реактивной мощности вряд ли достигает единиц процентов. Ими можно пренебречь на фоне изменчивого напряжения в сети питания, провалов напряжения, гармонических искажений, взаимного влияния нелинейной или резко переменной нагрузки и других проблем электросети, которые вызывают нерациональное использование электроэнергии.

Как возместить реактивную мощность – пример с бокалом

Разбор технических аспектов решения

Снижение загруженности электросети

Во-первых, в результате снижения реактивной мощности и уменьшения перетоков энергии между сетью и конечным оборудованием мы получим уменьшение падения напряжения во внутренней электросети. Это важно если на предприятии есть протяжённые кабельные трассы. Как следствие, снизятся суточные колебания напряжения при минимальном и пиковом потреблении.

Однако нужно учесть, что превышение номинала напряжения вызовет проблемы в оборудовании, такие, как ускоренное старение осветительных приборов, а также повышение энергопотребления, но этот вопрос можно решить регулировкой прямо на подстанции.

В целом снижение диапазона колебаний напряжения в течение суток положительно скажется на работе оборудования с точки зрения энергопотребления и ресурса.

Влияние гармоник на работу УКРМ

Во-вторых, подключив классическую установку компенсации реактивной мощности можно столкнуться с проблемой гармоник. Современное силовое и бытовое оборудование в целях повышения энергоэффективности использует импульсные блоки питания. В качестве контрпримера можно привести лампы накаливания и обычные электрические обогреватели, которые, напротив, нельзя назвать энергоэффективными. Импульсные блоки питания потребляют ток из сети не линейно, а импульсно, и, при этом, генерируют помехи обратно в сеть. Форма сигнала отличается от гармонической синусоиды с частотой 50Гц и содержит компоненты с частотой кратной 50 Гц: 150 Гц, 250 Гц, 350 Гц и выше.

Для рабочего элемента классической УКРМ – конденсатора – это проблема, так как с ростом частоты снижается полное сопротивление и повышается его электрическая мощность. Ток на частоте, выше чем 50 Гц преодолевает меньшее сопротивление и быстрее нагревает конденсатор. В свою очередь это увеличивает уровень высоких гармоник, повышает напряжение в сети, повышает энергопотребление и потери, снижает эффективность работы всей системы электроснабжения. Тут уже стоит говорить не столько об энергоэффективности, а о надежности и безопасности работы электроустановок.

Для устранения этой проблемы современные компенсаторные установки (УКРМ) содержат фильтр низкой частоты, подавляющий гармоники.

Выводы по мифам

Компенсация реактивной мощности как способ экономии оплаты за электроэнергию – вот главный миф, который правдив лишь в некоторых ситуациях. Грубо говоря, если потребители не платят за реактивную мощность, то и экономический эффект от внедрения установки находится на уровне погрешности измерения. В дополнение к этому нужно обратить внимание, где внедряется установка компенсации реактивной мощности, насколько “загрязнена” электрическая сеть. И получается, что при неправильном внедрении вместо экономии возникают дополнительные проблемы.

Поделитесь в комментариях, как решают вопрос компенсации реактивной мощности на вашем предприятии?

компенсация реактивной мощности в домашних условиях

ЗевсЭлектро: Электричество измеримо

Статья предоставлена спонсором – лабораторией качества электроэнергии ZEUSELECTRO www.zeuselectro.com

Лаборатория занимается сложными случаями, там, где некачественная электроэнергия является проблемой. Гармоники, провалы напряжения, пробои изоляции, импульсные помехи и много другое, что доставляет головную боль энергетикам.

Они консультируют, измеряют, внедряют и снова измеряют. Это гарантирует результат.

Специально для тех, кто обратится и сообщит кодовое слово «САМЭЛЕКТРИК» получит дополнительную скидку 5% на услуги и приборы и бесплатный бумажный каталог решений для качества электроэнергии изданный совместно с немецкой компанией Janitza на 400 страницах.

Рекомендую похожие статьи:

компенсация реактивной мощности в домашних условиях

компенсация реактивной мощности в домашних условиях

компенсация реактивной мощности в домашних условиях

Я че-то не увидел мифа по поводу компенсации электроэнергии. Просто указаны дополнительные источники помех в сети, помимо реактивной, не вижу здесь ни какого мифа. Просто физика. Само собой есть пробел не знания многих потребителей об этом, то это да. Но ничего общего с мифами тут нет. Я уже подумал что сама компенсация реактивной мощности на заводе это миф. Не удачное название стати.

Спасибо за комментарий. Компенсация реактивной мощности как способ экономии оплаты за электроэнергию – вот главный миф, который правдив лишь в некоторых ситуациях. Грубо говоря, если потребители не платят за реактивную мощность, то и экономический эффект от внедрения установки находится на уровне погрешности измерения. В дополнение к этому нужно обратить внимание, где внедряется установка компенсации реактивной мощности, насколько “загрязнена” электрическая сеть. И получается, что при неправильном внедрении вместо экономии возникают дополнительные проблемы. Статья об этом.

Тоже хочу работать электриком на пивзаводе!
еееееееслиб было море пива.

Хочу сказать своё мнение об содержании этой статьи, второй по счёту этого автора, первая называлась- “6 проблем с проводкой и заземлением, которые приводят к низкому качеству электроэнергии”
https://samelectric.ru/powersupply/6-problem-s-provodkoj-i-zazemleniem.html
пока сложилось впечатление, что автор профессионал и хорошо разбирается в вопросе, но не может, или не хочет объяснить доступным языком суть проблем, с которыми умеет справляться лаборатория качества электроэнергии ZEUSELECTRO. Возникает противоречие, с одной стороны – статья написана для специалиста, который сталкивался с этими проблемами и поймёт о чём речь, с другой стороны статья-это рекламный продукт с красивыми картинками – для основной массы подписчиков samelectric, которые в этой статье ничего интересного для себя не найдут. Мне кажется, что подобные статьи, основной массе подписчиков samelectric, читать должно быть интересно, то есть читателю хочется узнать что то. Так подобные интересные статьи будут распространяться самими читателями, и реклама лаборатории качества электроэнергии ZEUSELECTRO будет эффективнее.
Ждём третью статью, где картинки будут не просто красивые, нужно пару схем, применение закона Ома, графики или осциллограммы, хочется узнать всё таки, что компенсация реактивной мощности для индуктивной нагрузки и для импульсных блоков питания – это не одно и тоже, что нужен разный подход. Что компенсацию нужно делать в непосредственной близости от потребителя с фактором мощности ниже единицы. Тут пригодится закон Ома для мощности потерь в проводах P=I²R. Зная мощность потребителя считаем по формуле I=√P/R, после чего ток нужно умножить на коэффициент PF, подставив значение тока в первую формулу, рассчитать мощность потерь в проводах.
В случае модернизации освещения например, перехода на светодиодные светильники, не нужно гнаться за более дешёвым вариантом, что нужно обращать внимание на PF, можно привести пару реальных примеров, ещё можно подсмотреть что делают в странах ЕС, это будет наглядно и интересно, в чём же тут проблема, не очевидная на первый взгляд, будет интересно почитать для общего развития

Спасибо за комментарий, учтем. Мы только начали, и ваш отклик хороший ориентир, куда двигаться дальше. Да статья рекламная только в последнем абзаце. Дальше будет интереснее. У нас много материала, и мы думаем как его изложить и полезно и интересно.

Отправляя комментарий, Вы соглашаетесь с Правилами комментирования и разрешаете сбор и обработку персональных данных. Политика конфиденциальности.

От какого тока всё-таки срабатывает УЗО? Разбираемся в терминологии

Ток утечки, ток замыкания на землю, дифференциальный ток – от чего же срабатывает УЗО? Пусть это будет.

Как отличить качественный кабель ВВГнг от некачественного?

Кабель ВВГнг – силовой кабель с медными жилами и оболочкой из ПВХ пониженной горючести. Предназначен для.

Как выбрать дизельный генератор для дома

Периодическое отключение электроэнергии — крайне неприятное явление, которое может нарушить планы человека.

Уличная подсветка частного дома, особенности и советы

Любой владелец частного дома хочет выделиться на общем фоне. Строят высокие дома с необычной архитектурой, ставят.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *