компенсация температурных расширений трубопроводов
Компенсация температурных расширений
С. В. Комаров, ведущий специалист отдела промышленного оборудования, ros-pipe.ru
Любые перемещения, возникающие вследствие внешних воздействий на трубопровод (например, сейсмических и др.), должны быть учтены при его проектировании, также следует учитывать и температурное расширение трубопроводов.
Строительные изделия, такие как трубы, оборудование, строительные конструкции, изменяют свои размеры в результате изменения температур. В настоящей статье затронуты вопросы компенсации теплового расширения и сжатия трубопроводов.
Вследствие изменения температуры рабочей среды в трубах возникают температурные напряжения, которые могут передаваться на арматуру, насосное оборудование и т.д. в виде реактивных сил и моментов. Это создает потенциальную опасность разгерметизации стыков, разрушения арматуры или оборудования.
Три наиболее часто используемых способа компенсации перемещений трубопроводов:
Выбор способа компенсации зависит от вида системы трубопроводов, ее схемы, а также от особенностей ландшафта, наличия рядом других коммуникаций и прочих условий.
Перечисленные выше примеры представлены в качестве общих инженерных решений и не должны рассматриваться как единственно верные для конкретной системы трубопроводов. Мы будем рассматривать способ компенсации расширения прямолинейных участков трубопроводов при помощи осевых сильфонных компенсаторов.
Расширение трубопроводов
Первым шагом для решения вопроса компенсации температурных перемещений является вычисление точного изменения длины участков трубопроводной системы в соответствии с предъявляемыми условиями безопасности.
Определение (расчет) теплового расширения трубопровода производится по следующей формуле:
где а – коэффициент температурного расширения, мм/ (м·°С);
L – длина трубопровода (расстояние между неподвижными опорами), м;
∆t – разница значений между максимальным и минимальным значениями температур рабочей среды, °С.
Коэффициент температурного расширения берется из таблицы линейного расширения труб из различных материалов.
Как видно из таблицы, наиболее подвержены температурному расширению трубопроводы из полимерных материалов, в связи с этим способы компенсации полимерных труб несколько отличаются от способов компенсации стальных.
Значения коэффициента линейного расширения являются усредненными для каждого вида материала. Эти значения не должны применяться для расчетов трубопроводов из других материалов. Коэффициенты растяжения в разных источниках могут различаться на 5% и более, поскольку их вычисления проводятся при разных условиях и различными методами. Желательно применять для расчетов коэффициент линейного расширения, который представлен в технической документации производителя труб.
Рассмотрим реальный пример.
Возьмем прямолинейный участок трубопровода диаметром 219 мм из черной углеродистой стали длиной 100 м. Максимальная температура tmax = 140 °С, минимальная tmin = –20 °С.
Производим расчеты:
∆t = 140 – (–20) = 160 °С,
изменение длины трубопровода:
∆L = 0,0115 × 160 × 100 = 184 мм.
Полученный результат говорит о том, что трубопровод при заданных значениях меняет свою длину на 184 мм. Для обеспечения правильной работы трубопровода подходит осевой сильфонный компенсатор условным диаметром 200 мм и компенсирующей способностью 200 мм (например, КСО 200–16–200). При подборе данного типоразмера компенсатора имеется запас компенсирующей способности, а это положительно скажется на сроке работы трубопровода.
В случае, если полученное значение ∆L будет превышать значение компенсирующей способности производимых типоразмеров компенсаторов, то следует уменьшить длину участка трубопровода между двумя неподвижными опорами пропорционально имеющейся компенсирующей способности, а затем подобрать необходимый сильфонный компенсатор, пользуясь вышепредставленным расчетом.
Таблица | ||||||||||||||||||||||||||||
|
Установка сильфонных компенсаторов
Цель установки сильфонного компенсатора – это поглощение теплового расширения трубы. Обычно температура рабочей среды (жидкости) является основным источником изменения размеров трубопровода, однако в некоторых случаях температура окружающей среды может вызвать тепловое движение трубопровода, т.е. его удлинение или сжатие.
Рекомендации по установке
1. Устанавливая сильфонные компенсаторы, следует проверить соответствие их основных параметров указанным в проекте, таких как
2. Диаметр и давление трубопровода должны соответствовать выбираемому компенсатору.
3. При установке сильфонных компенсаторов необходимо монтировать не более одного компенсатора на участке трубопровода между каждыми двумя последовательно стоящими неподвижными опорами.
4. Скользящие опоры должны быть охватывающими (хомуты, рамочные и др.). Они не должны создавать большую силу трения. Целесообразно применение фторопластовых прокладок и т.п. При движении труб не должно быть заклиниваний и перекосов.
Максимальный размер люфтов для Ду ≤ 100 мм – 1 мм, а для Ду ≥ 125 мм – 1,6 мм.
5. При проведении расчетов трубопроводов необходимо учитывать влияющие силы (силы трения, силы упругости сильфонов и др.).
6. При выборе места установки сильфонных компенсаторов нужно выбрать наиболее оптимальный вариант их расположения на трубопроводе.
7. При опрессовке труб давление не должно превышать 1,25 × Ру.
8. Процесс опрессовки проводить только после полного монтажа трубопровода.
9. Напряжения скручивания, угловые усилия, поперечные перемещения должны быть полностью исключены на участке трубопровода, на котором установлен осевой сильфонный компенсатор.
Определение точек установки компенсаторов и направляющих опор для трубы
Для обеспечения правильной работы трубопровода в рабочем режиме следует разделить систему на отдельные участки с целью установки на них сильфонных компенсаторов. Основная задача компенсаторов – контроль расширения трубопровода между неподвижными опорами, перемещение должно происходить строго в осевом направлении для обеспечения жесткости конструкции.
Неподвижные же опоры предназначены для приема всех сил, действующих на трубопроводе.
Направляющие (скользящие) опоры для труб обеспечивают выравнивание движения сильфона компенсатора и предотвращают смещение относительно оси трубопровода. При отсутствии направляющих опор сильфонный компенсатор, обладающий высокой гибкостью в сочетании с внутренним давлением, может потерять устойчивость и деформироваться, что может привести к выходу из строя трубопровода.
Основная рекомендация состоит в установке осевого сильфонного компенсатора рядом с неподвижной опорой. Обычно осевой сильфонный компенсатор устанавливают на расстоянии не более 4Ду от неподвижной опоры. Данное условие обусловлено обеспечением жесткости конструкции.
Соблюдая правила монтажа сильфонных компенсаторов, вы продлите до максимума срок службы трубопровода, что сэкономит средства на его неплановый ремонт.
Схемы установки осевых сильфонных компенсаторов | |||||||||||||||||
Поделиться статьей в социальных сетях: Расчет температурных удлинений трубопроводов в системах водопровода и отопленияТрубы в системах отопления, а также холодного и горячего водоснабжения, независимо от материала, из которого они сделаны, подвержены температурным удлинениям и сокращениям. Чтобы найти величину линейного изменения длины трубопроводов при их расширении и сужении выполняется расчет. Если им пренебречь и не установить необходимые компенсаторы, то, при открытой прокладке трассы, трубы могут провиснуть или даже станут причиной выхода из строя всей системы. Поэтому расчёт температурных удлинений трубопроводов обязателен и требует профессиональных знаний. В данной части учебного курса «Системы водоснабжения и шумопоглощающей канализации», при участии специалиста компании REHAU, расскажем: Необходимость расчета температурных удлинений трубопроводов из полимерных материаловТемпературные удлинения или сокращения трубопроводов происходят под влиянием изменения рабочей температуры, перемещаемой по ним воды, а также температуры окружающей среды. Соответственно, при монтаже нужно обеспечить достаточную степень свободы трубопроводов, а также рассчитать необходимые допуски на увеличение их длины. Часто начинающие застройщики не учитывают эти изменения при монтаже водопроводной и отопительной разводки. Типичные ошибки: Учет температурных удлинений трубопроводов из полимерных материалов, в частности, из РЕ-Ха, следует производить только при их открытой прокладке. При скрытой прокладке компенсация температурных удлинений происходит за счет изгибов трубопроводов, уложенных в защитной гофротрубе или в теплоизоляции, при изменении направления трассы. В этом случае компенсация удлинений происходит благодаря напряжениям в стяжке или в штукатурке. Отметим, что стяжка выдерживает напряжение без разрушений, т.к. возникающие усилия очень малы и составляют незначительный процент от имеющегося запаса её прочности. Необходимо только проследить, чтобы при заливке стяжки или оштукатуривании стен раствор не попадал внутрь гофротрубы или под теплоизоляцию. Присоединение труб к водоразборной арматуре производится через настенные угольники, которые прочно закрепляются на строительной конструкции или на специальном кронштейне. В результате — осевые перемещения труб в теплоизоляции или защитной гофротрубе, за счет температурных удлинений, не оказывают усилий на узел присоединения. При присоединении трубопроводов к распределительным коллекторам выполняется поворот под 90° на выходе из стяжки или из-под штукатурки. При открытой прокладке температурные удлинения полимерных трубопроводов, в частности, трубопроводов из РЕ-Ха, будут очень заметны, т.к. эти трубопроводы имеют большой коэффициент температурного удлинения. Эта же величина имеет и обратный смысл, т.е. если трубопровод охладить на 1 градус, то коэффициент температурного удлинения покажет, на сколько миллиметров укоротится 1 м трубопровода. Расчет температурного удлинения трубопроводов из сшитого полиэтилена РЕ-ХаТемпературные удлинения или сокращения трубопроводов происходят из-за изменения рабочей температуры циркулирующей по ним воды, а также температуры окружающей среды. При открытой прокладке трубопровод должен свободно удлиняться или укорачиваться без перенапряжения материала труб, соединительных деталей и соединений трубопровода. Это достигается за счет компенсирующей способности элементов трубопровода. Например: Устройство компенсаторов необходимо только при значительных линейных удлинениях трубопроводов. Поскольку система должна быть рациональна, то сначала рассчитывается температурное удлинение трубопровода. Возьмём трубопроводы из сшитого полиэтилена РЕ-Ха. Для расчета нам потребуется: Таб. 1. Коэффициент температурного удлинения и константа материала для водопроводных труб.
Температурное удлинение участка трубопровода пропорционально его длине и разнице температур монтажа и максимальной рабочей температуры. Если мы, например, монтируем участок трубопровода горячей воды длиной 10 м, и температура окружающего воздуха, т.е. температура монтажа, составляет 20°С, а максимальная рабочая температура составит 70°С, то температурное удлинение можно посчитать по формуле ΔL = L • α • ΔТ (t макс. раб. – t монтажа). Где: Подставляем значения в формулу: ΔL = L • α • (t макс. раб. – t монтажа) = 10 • 0,15 • (70 – 20) = 75 мм. Т.е. 10-метровый участок при этом удлинится на 75 мм или 7.5 см. Это приведет к деформации системы и провисанию трубопровода. Данные деформации, прежде всего, нарушают внешний вид системы. Но на значительной длине могут разрушить, прежде всего, крепежные устройства или привести к поломке запорно-регулировочной арматуры или фасонной части. Человеческий глаз способен воспринимать прогиб трубопровода (ΔН), начиная от 5 мм. Следующий шаг — расчет величины прогиба (провисания) трубопровода. Расчет прогиба трубопровода и способы компенсации температурных деформаций полимерных трубопроводовЗная длину участка между хомутами (L) и его длину при максимальной рабочей температуре (L1), прогиб трубопровода определяется с помощью зависимости: Итого, при температурном удлинении трубопровода на 75 мм на 10-метровом отрезке прогиб составит: Бороться с температурными деформациями полимерных трубопроводов можно разными способами: Рассмотрим каждый из этих способов. Способы компенсации температурных деформаций полимерных трубопроводов1. Устройство дополнительных хомутов крепления. За счет устройства дополнительных хомутов крепления предотвращается провисание или прогиб трубопроводов. Рекомендуемое максимальное расстояние между хомутами для полимерных труб из РЕ-Ха приведены в таблице 2. 2. Устройство Г-образного компенсатора. Г-образные компенсаторы устраиваются так же, как и при прокладке стальных трубопроводов. Устраивать Г-образные компенсаторы на полимерных трубах из РЕ-Ха значительно эффективнее, т.к. эти трубы отличаются высокой эластичностью. При этом, в качестве Г-образных компенсаторов можно использовать места поворота трубопроводов под 90°. Необходимо по формуле, как было описано выше, определить температурное удлинение ΔL от прямого участка перед поворотом. Эта величина влияет на расстояние от трубопровода до строительной конструкции. Расстояние до строительной конструкции должно быть не менее величины ΔL. Кроме этого, необходимо дать трубе возможность свободно изгибаться. Для этого первый хомут крепления, после поворота, следует устанавливать на определенном расстоянии от поворота. Длина плеча компенсатора, в основном, зависит от материала (константы материала С). Компенсаторы обычно устанавливаются в местах изменения направления трубопровода. Длина плеча компенсатора определяется по формуле: Если температурное удлинение составило 75 мм, константа материала С = 12, а диаметр трубопровода равен 25 мм, то длина плеча компенсатора составит: Г-образный компенсатор – это самое экономичное устройство для компенсации температурных удлинений. Для его устройства не требуется никаких дополнительных устройств и элементов. 3. Устройство П-образного компенсатора. П-образные компенсаторы устраиваются в тех случаях, когда нежелательна компенсация температурных удлинений на краях участка. Его устраивают, как правило, посередине отрезка трубопровода, и компенсация температурных удлинений направлена к центру отрезка. Основания П-образного компенсатора смещаются к центру равномерно с обеих сторон, поэтому каждая сторона компенсирует половину температурного удлинения ΔL/2. Плечи П-образного компенсатора являются плечами компенсации LBS. Устройство П-образного компенсатора на полимерных трубах. 4. Фиксирующий желоб как компенсатор температурных удлинений. Фиксирующий желоб – это ложемент из оцинкованной стали трехметровой длины с отбортовкой по краям. Фиксирующие желоба выпускаются на соответствующие диаметры трубопроводов. Трубопроводы защелкиваются в фиксирующие желоба. При этом фиксирующий желоб охватывает трубу примерно на 60°. Коэффициент температурного удлинения трубы (α) из сшитого полиэтилена в фиксирующем желобе диаметром от 16 до 40 мм равен 0,04 мм/м·К, что в 3,75 раза меньше, чем у обычных труб из РЕ-Ха. Фиксирующий желоб легко режется ножовкой или отрезается болгаркой. При этом резать следует по полукруглой части, чтобы не загнуть края. С отрезанной кромки следует удалить заусенцы. На стык фиксирующих желобов надевается короткий обрезок фиксирующего желоба. 5. Использование неподвижных опор Если компенсацию температурных удлинений необходимо произвести на длинном участке трубопровода, на котором имеется много ответвлений, например, водопроводный стояк в 20-й этажном здании, на каждом этаже которого установлены тройники для поквартирной разводки, то компенсацию температурных удлинений можно произвести с помощью установки неподвижных опор. Для этого с обеих сторон тройника за надвижными гильзами устанавливаются обычные скользящие хомуты. Хомуты не позволят фасонной части сдвинуться ни вверх, ни вниз. Тем самым длинный участок разбит на много коротких участков, равных высоте этажа, приблизительно 3 м. Как мы помним из формулы расчета, температурное удлинение прямо пропорционально длине участка, а мы ее сократили. При устройстве неподвижных опор на каждом этаже на стояке не потребуется устройства никаких других компенсаторов температурного удлинения трубопровода. Если есть, например, «холостой» стояк, у которого по всей длине нет боковых отводов, то можно искусственно установить на этом стояке, например, равнопроходные муфты и на них сформировать неподвижные опоры, как было описано выше. Чтобы уменьшить затраты, можно установить на стояке Г или П-образные компенсаторы или поставить сильфонный компенсатор. Полимерные трубопроводы для устройства современной открытой водопроводной и отопительной разводкиСовременные металлополимерные трубопроводы — это труба из сшитого полиэтилена, в которой слой алюминия прочно приклеен к внутреннему самонесущему слою из РЕ-Ха. У таких трубопроводов наименьший коэффициент температурного удлинения, т.к. алюминиевый слой компенсирует температурные удлинения и удерживает внутренний полимерный слой от температурных деформаций. Температурное удлинение участка металлополимерного трубопровода длиной 10 м при температуре окружающего воздуха (т.е. температуре монтажа 20 °С и максимальной рабочей температуре 70 °С) составит всего: ΔL = L • α • (t макс. раб. – t монтажа) = 10 • 0,026 • (70 – 20) = 13 мм. Поэтому металлополимерные трубопроводы позиционируются как трубопроводы для открытой прокладки. Но вариант с металлополимерными трубами окажется дороже, т.к. эти трубы стоят больше, чем обычные трубы из сшитого полиэтилена РЕ-Ха. ЗаключениеНельзя игнорировать температурные удлинения трубопроводов из сшитого полиэтилена РЕ-Ха при открытой прокладке водопроводной разводки и монтаже отопительной системы. Для компенсации удлинений следует применять один из вышеперечисленных в статье методов, строго соблюдая рекомендации производителя.
|