Номинальное напряжение что это
Номинальное напряжение что это
Номинальные напряжения электрических сетей и области их применения
Номинальным напряжением U н источников и приемников электроэнергии (генераторов, трансформаторов) называется такое напряжение, на которое они рассчитаны в условиях нормальной работы.
Номинальные напряжения электрических сетей и присоединяемых к ним источников и приемников электрической энергии устанавливаются ГОСТом.
Для электрических сетей трехфазного переменного тока напряжением до 1 кВ и присоединенным к ним источников и приемников электроэнергии ГОСТ 721-78 устанавливает следующие значения номинальных напряжений:
Номинальное напряжение генераторов с целью компенсации потери напряжения в питаемой ими сети принимается на 5% больше номинального напряжения этой сети (см. табл. 1).
Номинальные напряжения первичных обмоток, повышающих трансформаторов, присоединяемых к генераторам, приняты также на 5% больше номинальных напряжений подключаемых к ним линий.
Первичные обмотки понижающих трансформаторов имеют номинальные напряжения, равные номинальным напряжениям питающих их линий.
Таблица 1.1. Номинальные напряжения трехфазного тока, кВ
Сети и приемники | Трансформаторы и автотрансформаторы | Наибольшее рабочее напряжение | |||
без РПН | c РПН | ||||
первичные обмотки | вторичные обмотки | первичные обмотки | вторичные обмотки | ||
6 | 6 и 6,3 | 6,3 и 6,6 | 6 и 6,3 | 6,3 и 6,6 | 7,2 |
10 | 10 и 10,5 | 10,5 и 11 | 10 и 10,5 | 10,5 и 11 | 12,0 |
20 | 20 | 22 | 20 и 21,0 | 22,0 | 24,0 |
35 | 35 | 38,5 | 35 и 36,5 | 38,5 | 40,5 |
110 | — | 121 | 110 и 115 | 115 и 121 | 126 |
220 | — | 242 | 220 и 230 | 230 и 242 | 252 |
330 | 330 | 347 | 330 | 330 | 363 |
500 | 500 | 525 | 500 | — | 525 |
750 | 750 | 787 | 750 | — | 787 |
Питание цепей управления, сигнализации и автоматизации электроустановок, а также электрифицированного инструмента и местного освещения в производственных цехах осуществляется на постоянном токе напряжениями 12, 24, 36, 48 и 60 В и на переменном однофазном токе 12, 24 и 36 В. Электроприемники постоянного тока питаются на напряжениях 110; 220 и 440 В. Напряжения генераторов постоянного тока 115; 230 и 460 В.
Электрифицированный транспорт и ряд технологических установок (электролиз, электропечи, некоторые виды сварки) получают питание на напряжениях, отличных от приведенных выше.
У повышающих силовых трансформаторов номинальное напряжение первичной обмотки совпадает с номинальным напряжением трехфазных генераторов. У понижающих трансформаторов первичная обмотка является приемником электроэнергии, и ее номинальное напряжение равно напряжению сети.
Номинальные напряжения вторичных обмоток трансформаторов, питающих электрические сети, на 5 или 10 % выше номинальных напряжений сети, что дает возможность компенсировать потери напряжения в линиях: 230, 400, 690 В и 3,15 (или 3,3); 6,3 (или 6,6); 10,5 (или 11); 21 (или 22); 38,5; 121; 165; 242; 347; 525; 787 кВ.
Напряжение 660 В рекомендуется для питания силовых электроприемников. По сравнению с напряжением 380 В оно имеет ряд преимуществ: меньшие потери энергии и расход проводникового материала, возможность применения более мощных электродвигателей, меньшее количество цеховых ТП. Однако для питания мелких двигателей, цепей управления электроприводом и сетей электроосвещения необходимо устанавливать дополнительный трансформатор на 380 В.
Напряжение 3 кВ используется только для питания электроприемников, работающих на этом напряжении.
Электроснабжение предприятий, внутризаводское распределение энергии и питание отдельных электроприемников выполняются на напряжениях свыше 1000 В.
Напряжения 500 и 330 кВ применяются для питания особенно крупных предприятий от сетей энергосистемы. На напряжениях 220 и 110 кВ осуществляется питание крупных предприятий от энергосистемы и распределение энергии на первой ступени электроснабжения.
На напряжении 35 кВ питаются предприятия средней мощности, удаленные электропотребители, крупные электроприемники и распределяется энергия по системе глубоких вводов.
Напряжения 6 и 10 кВ используются для питания предприятий малой мощности и в распределительных сетях внутреннего электроснабжения. Напряжение 10 кВ целесообразнее, если источник питания работает на этом напряжении, а число электроприемников на 6 кВ невелико.
Напряжения 20 и 150 кВ широкого применения на промышленных предприятиях не находят из-за использования их только в некоторых энергосистемах и отсутствия соответствующего электрооборудования.
Выбор напряжения сети производится одновременно с выбором схемы электроснабжения, а в некоторых случаях — на основе технико-экономического сравнения вариантов.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Номинальное напряжение
Действительные напряжения в различных точках системы могут несколько отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы.
Номинальным напряжением у источников и приёмников электроэнергии (генераторов, трансформаторов) называется такое напряжение, на которое они рассчитаны в условиях нормальной работы.
Номинальные напряжения электрических сетей и присоединяемых к ним источников и приёмников электрической энергии устанавливаются ГОСТом.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Двухмашинным агрегатом называется возбудитель и вспомогательный генератор тепловоза, собранные в общем корпусе. Якоря возбудителя и вспомогательного генератора собраны на общем валу, станины соединены болтами. Возбудитель питает независимую обмотку возбуждения тягового генератора, вспомогательный генератор предназначен для питания цепей собственных нужд тепловоза и заряда аккумуляторной батареи.
Номинальное напряжение
Номинальное напряжение — это базисное напряжение из стандартизированного ряда напряжений, определяющих уровень изоляции сети и электрооборудования.
Действительные напряжения в различных точках системы могут несколько отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы.
Номинальным напряжением у источников и приемников электроэнергии (генераторов, трансформаторов) называется такое напряжение, на которое они рассчитаны в условиях нормальной работы. Номинальные напряжения электрических сетей и присоединяемых к ним источников и приемников электрической энергии устанавливаются ГОСТом.
Стандартизированный ряд напряжений
Ряд номинальных напряжений, В [1]
220 | 380 | 660 |
Установки свыше 1000 В Ряд номинальных напряжений (наибольших рабочих напряженией) для сети и приемники электрической энергии, кВ [2]
Номинальное напряжение | Наибольшее рабочее напряжение |
---|---|
3 | 3,6 |
6 | 7,2 |
10 | 12 |
15 | 17,5 |
20 | 24 |
35 | 40,5 |
110 | 126 |
150 | 172 |
220 | 252 |
330 | 363 |
500 | 525 |
750 | 787 |
1150 | 1200 |
Номинальные напряжения для генераторов, синхронных компенсаторов, вторичных обмоток силовых трансформаторов приняты на 5-10 % выше номинальных напряжений соответствующих сетей, чем учитываются потери напряжения при протекании тока по линиям.
Примечания
Полезное
Смотреть что такое «Номинальное напряжение» в других словарях:
номинальное напряжение — Напряжение, установленное изготовителем для прибора [ГОСТ Р 52161.1 2004 (МЭК 60335 1:2001)] номинальное напряжение Uном, кВ Номинальное междуфазное напряжение электрической сети, для работы в которой предназначены коммутационные аппараты. [ГОСТ… … Справочник технического переводчика
номинальное напряжение — 3.17 номинальное напряжение (rated voltage): Напряжение, установленное для выключателя изготовителем. Источник: ГОСТ Р 51324.1 2005: Выкл … Словарь-справочник терминов нормативно-технической документации
номинальное напряжение Uн — 3.8 номинальное напряжение Uн: Действующее значение напряжения промышленной частоты, которое ограничитель может выдерживать в течение 10 с в процессе рабочих испытаний. Номинальное напряжение должно быть не менее 1,25 наибольшего длительно… … Словарь-справочник терминов нормативно-технической документации
Номинальное напряжение — Nominal stress Номинальное напряжение. Напряжение в точке, рассчитанное для чистого поперечного сечения без учета воздействия на напряжение геометрических разрывов, типа отверстий, пазов, шпунтов и т. д. Определение произведено на основе простой… … Словарь металлургических терминов
номинальное напряжение — vardinė įtampa statusas T sritis automatika atitikmenys: angl. nominal voltage; rated voltage; voltage rating vok. Nennspannung, f rus. номинальное напряжение, n pranc. tension assignée, f; tension de régime, f; tension nominale, f ryšiai:… … Automatikos terminų žodynas
номинальное напряжение — vardinė įtampa statusas T sritis Standartizacija ir metrologija apibrėžtis Įtampa, kuriai esant įtaisas arba matuoklis gali veikti, kai išorinės eksploatacinės vardinės apkrovos išlieka laiko tarpą, artimą projektiniam ilgalaikiškumui.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
номинальное напряжение — vardinė įtampa statusas T sritis fizika atitikmenys: angl. nominal voltage; rated voltage vok. Nennspannung, f rus. номинальное напряжение, n pranc. tension assignée, f; tension nominale, f … Fizikos terminų žodynas
номинальное напряжение изоляции цепи НКУ — Номинальное напряжение изоляции (Uc) цепи НКУ есть значение напряжения, которое характеризует конструкцию НКУ и в соответствии с которым проводят испытания диэлектрических свойств, проверяют зазоры и длины путей утечки. Максимальное номинальное… … Справочник технического переводчика
номинальное напряжение высокочастотного вакуумного выключателя (переключателя) — номинальное напряжение Максимальное напряжение, подаваемое в течение установленной наработки на разомкнутые контакты электрической цепи высокочастотного вакуумного выключателя (переключателя), которое он может выдержать в условиях, указанных в… … Справочник технического переводчика
номинальное напряжение конденсатора — Максимальное напряжение, при котором конденсатор может работать в течение минимальной наработки в условиях, указанных в нормативно технической документации [ГОСТ 21415 75] номинальное напряжение конденсатора Действующее значение синусоидального… … Справочник технического переводчика
Номинальное напряжение
Номинальное напряжение – действующее его значение в рассматриваемой цепи.
Благодарности
Сердечно благодарим Джеймса Кинга за рассказ об истории развития гальванических источников напряжения.
Стандартные номиналы
В РФ использовалось сетевое напряжение со средним действующим значением 220 В и частотой 50 Гц. Сказанное означает, что амплитуда напряжения переменная, но допустимо заменить постоянным, равным 220 В при расчётах потребляемой мощности и прочих параметров.
В быту распространены лампочки на 12 В переменного напряжения, которые по правилам (ГОСТ 50571.11) применяются на территории ванных комнат и санузлов. А постоянные 12 В царят среди автомобильных аккумуляторов. Заметим, что батарею с таким номиналом уже пора отдать на свалку. Рабочий аккумулятор заряжается до 14 В.
В литературе часто приходится сталкиваться с понятиями линейного и фазного напряжений. Это номиналы. Первый измеряется между двумя фазами, второй между любой фазой и нейтралью. Для сети 220 В цифры, соответственно, равны 380 и 220 В. Это средние действующие значения, амплитуда в корень из двух раз больше.
Согласно новым стандартам страна переходит сейчас на напряжение 230 В. Ни 380 В, ни 220 В в розетке больше обнаружить нельзя. Это противозаконно, согласно ГОСТу, поставщик отвечает за качество поставляемой энергии. Шаги предприняты правительством, чтобы бесперебойно работала импортная техника. В 10-х годах XXI века стали запрещать использование лампочек накала. Повышение напряжения сети лишь на 10% снижает срок их службы примерно вдвое. Нарушители, втихую использовавшие приборы, теперь платить станут чаще.
Переходите на светодиодное освещение! Одновременно плата за свет снизится вдесятеро.
История вопроса
Эталон напряжения
14 июля 1729 года произошло великое событие: Стивен Грей догадался проводить статическое электричество по шёлковым нитям и прочим материалам, создав первую цепь. До внедрения электричества предприятиям приходилось располагаться прямо на берегах рек. Что неудобно. Гораздо проще строить заводы вблизи ресурсов.
Сложно вести разработку природных ресурсов вдали от источников энергии. Людская сила не заменит электричество. Первой попыткой передать энергию на расстояние стал коммерческий телеграф в 1837 году длиной линии 20 км. Этим доказано, что возможно передавать энергию на дальние расстояния и выполнять там при помощи неё работу. Пятью годами ранее сэр Джозеф Генри демонстрировал устройство с бухтой провода в милю. Электромагнит поднимал весьма солидный даже по нынешнему времени груз.
Все совершалось при помощи вольтова столба – набора из кружков меди и цинка, разделённых слоем мокрой ткани, пропитанной солёной водой. Первая серьёзная конструкция появилась в 1836 году. Она стала первым эталоном номинального напряжения, измерявшего прочие источники, к примеру, термоэлектрические генераторы. Джон Фредерик Дэниэл пытался решить затруднение выделения газа (водорода) гальваническим источником при работе. Это привело его к идее использования двух электролитов вместо одного.
Дэниэл основывался на докладе профессора Дэви за 1801 год о химической природе вольтова столба, как результата оксидирования металла. Позднее тема затрагивалась Беккерелем. Дэниэл решил проверить электрохимические опыты Фарадея и искал подходящий источник. Как результат, появился новый тип гальванического элемента:
Неизвестно, что привело учёного к столь экзотической конструкции, но она действовала потрясающе. За сто лет до события учёного точно обвинили бы в колдовстве. В 1881 году на Международной конференции электриков решено, что напряжение, выдаваемое одной ячейкой Дэниэла, станет называться 1 В. Эта величина и сегодня используется для измерения номинального напряжения. С оговоркой: действительный потенциал ячейки Дэниэла при температуре 25 градусов Цельсия равен 1,1 В.
Конструктор отмечал, что бычий пищевод возможно заменить фаянсом, но эксплуатационные характеристики ячейки становились хуже. Позже Джон Гасьё предложил использовать неглазированный фарфор в качестве пористой мембраны. Высокое внутреннее сопротивление ячейки обуславливало малый ток, но постоянность потенциала (1,1 В) оказалась быстро замечена, и гальванический элемент использовался в качестве эталона до официального признания таковым в 1881 году. С этого времени говорят о номинальном напряжении.
Поставки энергии
Уже в 1843 году Луис Делеуи при помощи ячеек Бунзена и электрической дуги осветил Площадь Согласия в Париже. Это важный момент, как видно дальше, на французские шоу равнялись прочие видные деятели того времени.
Считается, что первый магнето построен Пикси в 1832 году, но массового применения ток не нашёл. В 1844 году пару ручных генераторов создал Вулрич для гальванизации металлов, и это первые промышленные образцы. В середине 50-х энергию стали использовать, получая её из пара и преобразуя при помощи коленвала и подобных штуковин в электричество. Уже были известны двигатели Пейджа, совершавшие прямо противоположное, толкая составы поездов.
Двухтонный двигатель на 600 оборотов, построенный по проекту Блэквэлла считается первой попыткой создания полностью автоматического парового генератора тока. В паре с ним использовался механический коммутатор для спрямления переменной составляющей. В 1858 году подобные генераторы начали использоваться в качестве оборудования английских маяков. Результат не превзошёл ожидания, но совершился первый шаг к поставкам энергии для нужд человечества.
Параллельно шли демонстрации электрического освещения во Франции. Там новинка служила скорее для развлечения публики. К началу 70-х годов отдельные маяки прочно перешли на электричество, включая одесский. На сцену выходят немцы, прежде остававшиеся в тени английских и французских экспериментов. Организатору и затейнику Оскару фон Миллеру захотелось превзойти иностранцев. Он заказал организовать передачу электрической энергии на расстояние 35 миль. Что стало первой высоковольтной сетью в мире.
Номинал всегда обозначен
Зачем повышать номинал напряжения
В разделе о двухполюсных автоматах дан краткий экскурс в развитие цепей передачи. Показано, что вольтаж постоянно стремились повысить. Это требуется для обеспечения приемлемого КПД, который сегодня не опускается ниже 90%. Объясняется это через закон Ома для участка цепи:
Согласно закону Ома эти величины, включая напряжение, связаны. Чем больше напряжение, тем меньше ток при аналогичной переданной мощности. Следовательно, пониже и потери. Получается, при передаче энергии на большие расстояния сечение провода требуется повышать, как и номинальное напряжение. Уже в 1923 году по линии пропускали 220 кВ. Все 20-е немецкая компания RWE AG строила такие трассы. Одна пересекает Рейн, переброшенная через два пилона высотой 138 метров в районе Фёрде. С 20-х годов необходимость располагать предприятия рядом с электростанциями отпала окончательно.
Параллельно шёл процесс электрификации США. Первая ГЭС на Ниагаре построена ещё в 90-х годах XIX века, не трёхфазная. Система Николы Теслы состояла из 4-х проводов и легко могла быть переоборудована. За описанными событиями номиналы напряжений линий передач росли:
С начала XXI века за постройку высоковольтных линий взялся Китай.
Известные номиналы напряжений
Все функционирующие сегодня ЛЭП большой протяжённости работают на номинальных напряжениях 115 – 1200 кВ трёхфазного тока. Дальнейшее повышение вольтажа неэффективно, приводит к появлению обильных коронных разрядов, обнаруживающих тенденцию перерастать в дугу. Самые большие потери возникают на низковольтной части. К примеру, во Франции ежегодные потери оцениваются в 325 ГВт часов, что составляет 2,5%, в США они достигают 7,5%. Это объясняется разницей номинального напряжения – 220 В против 110.
На 1980 год экономически эффективная длина линии составляла 7000 км, но реально существующие намного короче указанной цифры. На значительных расстояниях начинают играть роль ёмкостное и индуктивное сопротивление. Вместе они образуют реактивный импеданс, не дающий поставить энергию пользователям. Это блуждающие туда и сюда токи, представляющие собой целиком паразитный эффект. Этим определяется фактор мощности линии, не слишком большой.
Сегодня доказано, что выгоднее на больших дистанциях поставлять постоянный ток, не затекающий в индуктивные сопротивления – ёмкостное, образованное проводом и землёй, и индуктивное. Отсутствует понятие реактивной мощности. Доказывается факт, что Никола Тесла вёл борьбу за переменный ток преимущественно для причинения ущерба Эдисону.
Учитывая сэкономленное, выгодно строить на концах мощных линий преобразовательные станции для перевода токов. Одновременно уходят потери на излучение, просачивание сквозь экран в землю, снижается уровень коронного разряда. Уже сегодня кабели для подзарядки аккумуляторов подводных лодок питаются постоянным током, передавать по ним переменный нецелесообразно уже на расстоянии 30 км. Сегодняшние линии имеют в 20 раз большую протяжённость, успешно эксплуатируются. Для передачи переменного тока ограничения зависят от расстояния:
Номинальное напряжение (электрической установки): определение, особенности, диапазоны
Определение.
Примечание к определению: переходные напряжения, вызванные, например, коммутационными переключениями, и временные колебания напряжения из-за ненормальных условий, таких как повреждения в системе питания, не учитываются.
Харечко Ю.В. в своей книге [4] подытоживает:
« То есть каждая электроустановка, включая электроустановку здания, характеризуется одним или несколькими значениями номинального напряжения. Фактическое значение напряжения в электроустановке может отличаться от номинального напряжения в пределах допустимых отклонений. »
Особенности
О некоторых особенностях использования номинального напряжения писал в своей книге [2] Харечко Ю.В.
« Электроустановку здания, как правило, подключают к низковольтной распределительной электрической сети. Сама электроустановка здания представляет собой совокупность взаимосвязанного электрооборудования, выполняющего определенные функции. Поэтому посредством, в том числе, номинального напряжения выполняют согласование характеристик всего электрооборудования, применяемого и в распределительной электрической сети, и в электроустановке здания с целью обеспечения его нормального функционирования. »
Значения номинального напряжения для электроустановок зданий, а также для других низковольтных и высоковольтных электроустановок установлены стандартом ГОСТ 29322-2014 [2], который распространяется на:
Диапазоны значений
Стандарт ГОСТ 29322-2014 устанавливает значения стандартного напряжения, которые предназначены для применения в качестве [2]:
В таблице 1 подраздела 3.1 «Системы и электрооборудование переменного тока с номинальным напряжением от 100 В до 1000 В включительно» стандарта ГОСТ 29322-2014 приведены номинальные напряжения систем переменного тока в диапазоне от 100 В до 1000 В, которыми следует руководствоваться при выборе номинального напряжения в распределительных электрических сетях и подключаемых к ним электроустановках зданий.
Таблица 1. Системы и электрооборудование переменного тока с номинальным напряжением от 100 В до 1000 В включительно (на основе таблицы 1 из ГОСТ 29322-2014 [2] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Номинальное напряжение трехфазных четырехпроводных или трехпроводных систем, В | Номинальное напряжение однофазных трехпроводных систем, В | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
50 Гц | 60 Гц | 60 Гц | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 120/208 | 120/240 d | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
230 c | 240 c | – | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
230/400 a | 230/400 a | – | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 277/480 | – | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 480 | – | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 347/600 | – | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 600 | – | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
400/690 b | – | – | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1000 | – | – | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Таблица 6 стандарта ГОСТ 29322-2014 Электрооборудование переменного тока с номинальным напряжением менее 120 В и постоянного тока с номинальным напряжением менее 750 В | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Постоянный ток | Переменный ток | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Номинальные напряжения | Номинальные напряжения | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Предпочтительные, В | Дополнительные, В | Предпочтительные, В | Дополнительные, В | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 2,4 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 3 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 4 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 4,5 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 5 | – | 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | – | 6 | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 7,5 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 9 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | – | 12 | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 15 | – | 15 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
24 | – | 24 | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 30 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
36 | – | – | 36 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 40 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
48 | – | 48 | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
60 | – | – | 60 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
72 | – | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 80 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
96 | – | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | – | – | 100 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
110 | – | 110 | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 125 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
220 | – | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 250 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
440 | – | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
– | 600 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Сети и приемники | Трансформаторы и автотрансформаторы | Наибольшее рабочее напряжение | |||
без РПН | c РПН | ||||
первичные обмотки | вторичные обмотки | первичные обмотки | вторичные обмотки | ||
6 | 6 и 6,3 | 6,3 и 6,6 | 6 и 6,3 | 6,3 и 6,6 | 7,2 |
10 | 10 и 10,5 | 10,5 и 11 | 10 и 10,5 | 10,5 и 11 | 12,0 |
20 | 20 | 22 | 20 и 21,0 | 22,0 | 24,0 |
35 | 35 | 38,5 | 35 и 36,5 | 38,5 | 40,5 |
110 | — | 121 | 110 и 115 | 115 и 121 | 126 |
220 | — | 242 | 220 и 230 | 230 и 242 | 252 |
330 | 330 | 347 | 330 | 330 | 363 |
500 | 500 | 525 | 500 | — | 525 |
750 | 750 | 787 | 750 | — | 787 |
Питание цепей управления, сигнализации и автоматизации электроустановок, а также электрифицированного инструмента и местного освещения в производственных цехах осуществляется на постоянном токе напряжениями 12, 24, 36, 48 и 60 В и на переменном однофазном токе 12, 24 и 36 В. Электроприемники постоянного тока питаются на напряжениях 110; 220 и 440 В. Напряжения генераторов постоянного тока 115; 230 и 460 В.
Электрифицированный транспорт и ряд технологических установок (электролиз, электропечи, некоторые виды сварки) получают питание на напряжениях, отличных от приведенных выше.
У повышающих силовых трансформаторов номинальное напряжение первичной обмотки совпадает с номинальным напряжением трехфазных генераторов. У понижающих трансформаторов первичная обмотка является приемником электроэнергии, и ее номинальное напряжение равно напряжению сети.
Номинальные напряжения вторичных обмоток трансформаторов, питающих электрические сети, на 5 или 10 % выше номинальных напряжений сети, что дает возможность компенсировать потери напряжения в линиях: 230, 400, 690 В и 3,15 (или 3,3); 6,3 (или 6,6); 10,5 (или 11); 21 (или 22); 38,5; 121; 165; 242; 347; 525; 787 кВ.
Напряжение 660 В рекомендуется для питания силовых электроприемников. По сравнению с напряжением 380 В оно имеет ряд преимуществ: меньшие потери энергии и расход проводникового материала, возможность применения более мощных электродвигателей, меньшее количество цеховых ТП. Однако для питания мелких двигателей, цепей управления электроприводом и сетей электроосвещения необходимо устанавливать дополнительный трансформатор на 380 В.
Напряжение 3 кВ используется только для питания электроприемников, работающих на этом напряжении.
Электроснабжение предприятий, внутризаводское распределение энергии и питание отдельных электроприемников выполняются на напряжениях свыше 1000 В.
Напряжения 500 и 330 кВ применяются для питания особенно крупных предприятий от сетей энергосистемы. На напряжениях 220 и 110 кВ осуществляется питание крупных предприятий от энергосистемы и распределение энергии на первой ступени электроснабжения.
На напряжении 35 кВ питаются предприятия средней мощности, удаленные электропотребители, крупные электроприемники и распределяется энергия по системе глубоких вводов.
Напряжения 6 и 10 кВ используются для питания предприятий малой мощности и в распределительных сетях внутреннего электроснабжения. Напряжение 10 кВ целесообразнее, если источник питания работает на этом напряжении, а число электроприемников на 6 кВ невелико.
Напряжения 20 и 150 кВ широкого применения на промышленных предприятиях не находят из-за использования их только в некоторых энергосистемах и отсутствия соответствующего электрооборудования.
Выбор напряжения сети производится одновременно с выбором схемы электроснабжения, а в некоторых случаях — на основе технико-экономического сравнения вариантов.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Всё об энергетике
Электрические сети. Номинальные напряжения. Допустимые отклонения
Номинальные напряжения электрических сетей, источников и приёмников электрической энергии постоянного и переменного тока промышленной частоты определяются комплексом документов: ГОСТ 23366, ГОСТ 721, ГОСТ 21128, ГОСТ 6962 и ГОСТ 29322.
Ряд стандартных напряжений
При выборе напряжения следует отдавать предпочтение основному ряду.
Номинальное напряжение электрооборудования до 1000 В
Примечание:
В скобках указаны значения напряжения для электрических сетей согласно [6, таб.1]
Номинальное напряжение электрооборудования свыше 1000 В
Примечание:
1. Напряжения указанные в скобках не рекомендуются для вновь проектируемых сетей и электроустановок;
2. Напряжения, обозначенные «*» для трансформаторов и автотрансформаторов, присоединяемых непосредственно к шинам генераторного напряжения электростанций или к выводам генератора;
В РФ исторически сложились две системы напряжений (кВ):
Первая система напряжений (110 — 330 — 750) преобладает в западной части РФ, а вторая (110 — 220 — 500 — 150) — в её восточной части. В сетях центральной части РФ нет явного преобладания одной системы напряжений на другой, это своего рода переходная зона.
Номинальное напряжение тяговых систем (электрифицированного транспорта)
переменного тока
подъездные и карьерные пути переменного тока
(1650)
(600)
1500
600 (550)
Примечание:
В скобках указаны значения напряжения согласно [4, стр.3]
Допустимые отклонения напряжения
В реальности, при эксплуатации электрических сетей, источников, преобразователей и потребителей электрической энергии напряжения на них отличается от номинальных параметров. Это может быть связано с нарушением нормального режима работы оборудования, потерями электроэнергии при передаче и т.п. ГОСТ 29322-2014 частично регламентирует допустимые значения отклонения напряжения.
Допустимые отклонения напряжения для тяговых систем (электрифицированного транспорта) приведены в таблице 10 (источник — [6, таб.2] ).
Примечание:
1. Номинальные напряжения обозначенные «*» не рекомендуются для вновь проектируемых сетей и электроустановок;
2. В скобках указаны значения напряжения согласно [4, стр.3]
Допустимые отклонения напряжения для электрооборудования 35 ÷ 230 кВ регламентированы ГОСТ 29322-2014 частично, а для электрооборудования напряжением свыше 230 кВ не регламентированы вовсе. Но это, вообще говоря, предмет отдельной статьи.
Историческая справка
Номинальные напряжения электрических сетей, источников и приёмников электрической энергии постоянного и переменного тока промышленной частоты до 1992 определялись комплексом документов ГОСТ 23366, ГОСТ 721, ГОСТ 21128, ГОСТ 6962. ГОСТ 23366 устанавливал ряд стандартных напряжений для электроустановок, ГОСТ 21128 регламентировал номинальное напряжение в электроустановках до 1000 В, для электроустановок свыше 1000 В — ГОСТ 721, а ГОСТ 6962 — номинальные напряжения для городского электрифицированного транспорта и железных дорог.
Второе издание ГОСТ 29332 выпало на 2014 год. В этот раз ГОСТ 29332-2014 был составлен «методом перевода» стандарта IEC 60038:2009 и уже не опирался на ГОСТ 721/21128/23366/6962, хотя последние не утратили свою юридическую силу.