Сопромат что это такое

Сопромат что это такое

iSopromat.ru

Сопромат что это такое

Сопротивление материалов

Сопромат что это такое

Сопротивление материалов (сокр. — сопромат) — это инженерная наука, изучающая методы расчёта элементов машин и сооружений на прочность, жесткость и устойчивость для обеспечения их надежной и безопасной эксплуатации.

Другими словами, сопромат — это грамотное проектирование конструкций.

Сопромат — наука о прочности

С точки зрения сопромата, машины и сооружения должны быть прочными и надежными, но при этом желательно, чтобы они были как можно легче и дешевле.

Видео о том, что такое сопромат и для чего он нужен:

Типовая задача сопромата

Для стальной двухопорной балки с консолью в левой части, нагруженной силой, моментом и распределенной нагрузкой как показано на схеме,
Сопромат что это такое
требуется:

Решение
Швеллер для балки подбирается по максимальному значению изгибающего момента в опасном сечении, которое определяется по эпюре Mx.
Для построения эпюр требуется рассчитать реакции в шарнирных опорах.

Вычерчиваем в масштабе расчетную схему нагружения балки, с указанием числовых значений приложенных нагрузок.
Показываем оси системы координат y-z и обозначаем характерные сечения балки.

Определение реакций в шарнирных опорах балки.

Направим реакции опор вверх
Сопромат что это такое
и запишем уравнения суммы моментов нагрузок приложенных к балке относительно точек на опорах
Сопромат что это такое
Из составленных уравнений выражаем и находим величину реакций.
Сопромат что это такое
Здесь, отрицательное значение реакции в точке C говорит о том, что она направлена в противоположную сторону (в данном случае вниз).
Сопромат что это такое
Выполним проверку найденных реакций опор, спроецировав все силы на вертикальную ось y
Сопромат что это такое
Равенство суммы проекций сил нулю показывает что реакции опор рассчитаны верно.

Построение эпюр внутренних силовых факторов

Для построения эпюр внутренних силовых факторов определим значения поперечных сил и изгибающих моментов в сечениях балки на каждом силовом участке методом РОЗУ.

Балка имеет 2 силовых участка.
Сопромат что это такое
Проводим сечение в произвольном месте 1-го участка и рассматриваем левую отсеченную часть балки
Сопромат что это такое
Для сечения 2-го участка расчет значений будем вести по нагрузкам правой части балки.
Сопромат что это такое
Так как значения Qy второго силового участка меняются линейно и на границах имеют одинаковый знак, на эпюре Mx экстремума не будет.

По результатам вычислений построим эпюры.
Сопромат что это такое

Подбор номера швеллера по условию изгибной прочности

Опасным является сечение балки, в котором изгибающий момент принимает максимальное значение. Это сечение B где Mx=-36кНм.
Из условия прочности на изгиб
Сопромат что это такое
выразим и определим минимальное значение момента сопротивления сечения при котором будет обеспечена прочность балки
Сопромат что это такое
По сортаменту прокатной стали выбираем швеллер №24 с моментом сопротивления Wx=242см 3

Определение сопротивления материалов

Общепринятое определение науки «сопротивление материалов» звучит так:

Сопротивление материалов — раздел технической механики, в котором изучаются экспериментальные и теоретические основы и методы расчета наиболее распространенных элементов различных конструкций, находящихся под воздействием внешних нагрузок, на прочность, жесткость и устойчивость, с учетом требований надежности, экономичности, технологичности изготовления, удобства транспортировки и монтажа, а также безопасности при эксплуатации.

Сопротивление материалов является одной из фундаментальных дисциплин общеинженерной подготовки специалистов в сфере высшего технического образования.

База знаний для изучения сопромата

Студенты высших технических учебных заведений приступают к изучению дисциплины «Сопротивление материалов» после освоения курса теоретической механики. Кроме того необходимы базовые знания физики и высшей математики.

Основные характеристики и строение металлов рассматривается в курсе материаловедения.

Объект изучения

В сопромате главным объектом для расчета является брус, нагруженный системой внешних усилий (сил, моментов и распределенных нагрузок).

Для него могут проводится следующие виды расчетов:

Расчет на прочность является основным, т.к. абсолютно все конструкции должны быть прочными.

При расчетах на жесткость определяются деформации бруса и перемещение его сечений, на основании чего делается заключение о жесткости бруса. При невыполнении условия жесткости определяются необходимые размеры сечения.

Структура курса «Сопротивление материалов»

Курс сопротивления материалов в ВУЗах имеет, как правило, следующую структуру:

Изучение дисциплины включает выполнение расчетно-графических и лабораторных работ с последующей защитой, после чего студенты сдают экзамен.

Учебные материалы по сопромату

Для успешного освоения данного курса предлагаем следующие материалы для самостоятельного изучения:

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Сопротивление материалов

Сопромат что это такое

Сопромат что это такое

Сопротивление материалов (в обиходе — сопромат) — часть механики деформируемого твёрдого тела, которая рассматривает методы инженерных расчётов конструкций на прочность, жесткость и устойчивость при одновременном удовлетворении требований надежности, экономичности и долговечности. Сопротивление материалов относится к фундаментальным дисциплинам общеинженерной подготовки специалистов с высшим техническим образованием, за исключением специальностей, не связанных с проектированием объектов, для которых прочность является важным показателем.

Содержание

Определение

Сопротивление материалов базируется на понятии «прочность», что является способностью материала противостоять приложенным нагрузкам и воздействиям без разрушения. Сопротивление материалов оперирует такими понятиями как: внутренние усилия, напряжения, деформации. Приложенная внешняя нагрузка к некоторому телу порождает внутренние усилия в нём, противодействующие активному действию внешней нагрузки. Внутренние усилия, распределенные по сечениям тела называются напряжениями. Таким образом, внешняя нагрузка порождает внутреннюю реакцию материала, характеризующуюся напряжениями,которые в свою очередь прямо пропорциональны деформациям тела. Деформации бывают линейные такие как удлинение,укорочение, сдвиг и углы поворота сечений. Основные понятия сопротивления материалов оценивающие способность материала сопротивляться внешним воздействиям являются:

Связь с другими науками

В теоретической части сопротивление материалов базируется на математике и теоретической механике, в экспериментальной части — на физике и материаловедении и применяется при проектировании машин, приборов и конструкций. Практически все специальные дисциплины подготовки инженеров по разным специальностям содержат разделы курса сопротивления материалов, так как создание работоспособной новой техники невозможно без анализа и расчета её прочности, жёсткости и надёжности.

Задачей сопротивления материалов, как одного из разделов механики сплошной среды, является определение деформаций и напряжений в твёрдом упругом теле, которое подвергается силовому или тепловому воздействию.

Эта же задача среди других рассматривается в курсе теории упругости. Однако методы решения этой общей задачи в том и другом курсах существенно отличаются друг от друга. Сопротивление материалов решает её главным образом для бруса, базируясь на ряде гипотез геометрического или физического характера. Такой метод позволяет получить, хотя и не во всех случаях, вполне точные, но достаточно простые формулы для вычисления напряжений. Также поведением деформируемых твёрдых тел под нагрузкой занимается теория пластичности и теория вязкоупругости.

Гипотезы и допущения

Расчет конструкций и их элементов является или теоретически невозможным, или практически неприемлемым по своей сложности. Поэтому в сопротивлении материалов существует модель идеализированного деформируемого тела.

Эти положения ограниченно применимы к решению конкретных закдач. Например, для решения задач устойчивости утверждения 4-6 не справедливы, утверждение 3 справедливо не всегда.

Теории прочности

Прочность конструкций определяется с использованием теории разрушения — науки о прогнозировании условий, при которых твердые материалы разрушаются под действием внешних нагрузок. Материалы, как правило, подразделяются на разрушающиеся хрупко и пластично. В зависимости от условий (например, температура, состояние напряжений, виды нагрузки) большинство материалов может быть отнесено к хрупким или пластичным или обоим видам одновременно. Тем не менее, для большинства практических ситуаций, материалы могут быть классифицированы как хрупкие или пластичные. Несмотря на то, что теория разрушения находится в разработке уже более 200 лет, уровень её приемлемости для механики сплошных сред, не всегда достаточен.

В математических терминах, теория разрушения выражается в виде различных критериев разрушения, которые справедливы для конкретных материалов. Критерием разрушения является поверхность разрушения, выраженная через напряжения или деформации. Поверхность разрушения разделяет «поврежденное» и «не поврежденное» состояния. Для «поврежденного» состояния трудно дать точное физическое определение. Поэтому это понятие следует рассматривать как рабочее определение, используемое в инженерном сообществе. Термин «поверхность разрушения», используемый в теории прочности, не следует путать с аналогичным термином, который определяет физическую границу между поврежденными и не поврежденными частями тела. Довольно часто феноменологические критерии разрушения одного и того же вида используются для прогнозирования хрупкого и пластичного разрушения.

Среди феноменологических теорий прочности наиболее известными являются следующие теории, которые принято называть «классическими» теориями прочности:

1. Теория наибольших нормальных напряжений.

2. Теория наибольших деформаций.

3. Теория наибольших касательных напряжений Треска (Tresca).

4. Теория наибольшей удельной потенциальной энергии формоизменения фон Мизеса (von Mises).

Классические теории прочности имеют существенные ограничения для их применения. Так теории наибольших нормальных напряжений и наибольших деформаций применимы лишь для расчета прочности хрупких материалов, причём только для некоторых определённых условий нагружения. Поэтому эти теории прочности сегодня применяют весьма ограниченно. Из перечисленных теорий наиболее часто используют теорию Мора, которую также называют критерием Мора-Кулона. Кулон (Coulomb) в 1781 г. на основе выполненных им испытаний установил закон сухого трения, который использовал для расчета устойчивости подпорных стенок. Математическая формулировка закона Кулона совпадает с теорией Мора, если в ней выразить главные напряжения через касательные и нормальные напряжения на площадке среза. Достоинством теории Мора является то, что она применима к материалам, имеющим разные сопротивления сжатию и растяжению, а недостатком то, что она учитывает влияние только двух главных напряжений — максимального и минимального. Поэтому теория Мора не точно оценивает прочность при трехосном напряженном состоянии, когда необходимо учитывать все три главных напряжения. Кроме того, при использовании эта теория не учитывается поперечное расширение (дилатацию) материала при сдвиге. На эти недостатки теории Мора неоднократно обращал внимание А. А. Гвоздев, который доказал неприменимость теории Мора для бетона [2].

На смену «классическим» теориям прочности в современной практике пришли многочисленные новые новые теории разрушения. Большинство из них используют различные комбинации инвариантов тензора напряжений Коши (Cauchy) Среди них наиболее известны следующие критерии разрушения:

Перечисленные критерии прочности предназначены для расчета прочности однородных (гомогенных) материалов. Некоторые из них используются для расчёта анизотропных материалов.

Для расчета прочности неоднородных (не гомогенных) материалов используется два подхода, называемые макро-моделированием и микро-моделированием. Оба подхода ориентированы на использование метода конечных элементов и вычислительной техники. При макро-моделировании предварительно выполняется гомогенизация — условная замена неоднородного (гетерогенного) материала на однородный (гомогенный). При микро-моделировании компоненты материала рассматриваются с учётом их физических характеристик. Микро-моделирование используют в основном в исследовательских целях, так как расчет реальных конструкций требует чрезмерно больших затрат машинного времени. Методы гомогенизации широко используются для расчета прочности каменных конструкций, в первую очередь для расчета стен-диафрагм жесткости зданий. Критерии разрушения каменных конструкций учитывают многообразные формы разрушения каменной кладки. Поэтому поверхность разрушения, как правило. принимается в виде нескольких пересекающихся поверхностей, которые могут иметь разную геометрическую форму.

Применение

Методы сопротивления материалов широко используются при расчете несущих конструкций зданий и сооружений, в дисциплинах связанных с проектированием деталей машин и механизмов.

Как правило, именно из-за оценочного характера результатов, получаемых с помощью математических моделей этой дисциплины, при проектировании реальных конструкций все прочностные характеристики материалов и изделий выбираются с существенным запасом (в несколько раз относительно результата, полученного при расчетах).

В студенческой среде сопротивление материалов считается одной из наиболее сложных общепрофессиональных дисциплин, что дало богатую пищу студенческому фольклору и породило целый ряд шуток и анекдотов.

См. также

Литература

Источник

Сопромат или сопротивление материалов: основные понятия и задачи

Сопромат (сопротивление материалов) — инженерная дисциплина, которая является введением в науку о прочности, жесткости и устойчивости конструкций.

Сопромат — это важная дисциплина в высших технических учебных заведениях. Изучение этой дисциплины направлено на развитие творческих способностей будущих специалистов, на приобретение специальных навыков для предстоящей профессиональной деятельности. Перед началом любого строительства (зданий, сооружений, любых конструкций, машин) разрабатывается проект, выбираются материалы, рассчитываются габариты элементов, основные размеры. В сопромате учитываются величины и характеристики сил, которые будет воспринимать каждый элемент сооружения, условия эксплуатации. Это необходимо, чтобы создаваемая конструкция, раньше времени, не деформировалась и не разрушалась. Имея минимальные размеры отдельных деталей она должна быть достаточно надежной.

В этой статье поговорим более подробно о задачах, которые решает сопромат, о нагрузках и деформациях, изучаемых в рамках дисциплины. Рассказу об элементах конструкций, которые рассчитываются в сопротивлении материалов, зачем нужен этот предмет будущему инженеру, а также о курсах по сопромату, которые есть на сайте.

Основные задачи сопромата

Прикладная дисциплина о сопротивлении материалов решает несколько задач.

Прочность

Конструкция (ее отдельные детали) считается прочной, если она способна противостоять воздействию внешних нагрузок, не разрушаясь. Вводится понятие запаса прочности — обеспечение целостности конструкции при нагрузках, превышающих расчетные.

Сопромат что это такое

Жесткость

Жесткость — способность конструкции, её элементов, материала, из которого они созданы, сопротивляться изменению первоначальных размеров и форм. Расчетами на жесткость определяются оптимальные размеры, формы и материал конструкций.

Сопромат что это такое

Устойчивость

Под устойчивостью в сопромате понимается способность конструкции, под воздействием приложенных сил, сохранять требуемое равновесие. Колонна (длинный стержень) может отвечать требованиям прочности, жесткости, но не выдерживать нагрузок вдоль оси и изогнуться — потеря устойчивости.

Сопромат что это такое

Виды деформаций рассматриваемые в сопромате

Под действием этих сил конструктивные элементы подвергаются различным деформациям, изменяются их изначальные формы, заданные размеры.

Различают несколько основных видов деформаций:

Растяжение и сжатие

Это самые простые и наиболее часто встречающиеся виды деформаций. Они возможны, когда силы, приложенные к брусу (к его концам) направлены вдоль оси, навстречу друг другу. В одном случае действующие силы стремятся уменьшить размер бруса, в другом — увеличить.

Растяжению и сжатию подвергаются различные элементы конструкций:

Сопромат что это такое

Кручение

В сопротивлении материалов рассматривается данный вид нагружения, возникающий во взаимном повороте поперечных сечений стержня относительно друг друга. Деформация происходит под воздействием имеющихся пар сил, называемых моментами.

Момент — это произведение силы на ее плечо. Плечом принято называть перпендикуляр, опущенный от оси вращения бруска к линии ее действия. Вращающиеся и работающие на кручение бруски получили наименование валов. Моменты работают в плоскости, находящейся под прямым углом к оси вала.

Моменты приложенных пар сил называются внешними (скручивающими). Они могут находиться в определенном сечении вала или быть распределенными на некотором участке. Пары сил обычно создают нагрузку в тех местах, где на вал насаживаются зубчатые колеса, шкивы, шестерни и т.д. Если вал уравновешен, сумма всех действующих на него моментов приравнивается к нулю.

Сопромат что это такое

Изгиб

Одним из самых популярных разделов в сопротивлении материалов считается рассмотрение деформаций при изгибе. У большинства специалистов когда-либо изучавших эту дисциплину, она ассоциируется с расчетом балок и построением эпюр по их результатам. В технических ВУЗах этому разделу уделяется большое внимание. Ему посвящается не менее шестой части содержания в каждом учебнике сопромата и этому есть объяснение.

Фактически все детали конструкций, одни больше, другие меньше, подвергаются воздействию сил, вызывающих данный тип деформации. Более того, знание процессов, имеющих место при прямом, по другому — поперечном изгибе, способствует лучшему усвоению протекающих процессов, происходящих при других более сложных видах деформаций (внецентренном сжатии или растяжении). При анализе этого вида деформации рассчитываются балки (горизонтальный брус) и рамы. В обоих случаях, по результатам расчетов, создаются графики, проверяется соответствие требуемой прочности, или в соответствии с заданной прочностью подбираются оптимальные размеры элементов конструкций.

Сопромат что это такое

В сопротивлении материалов это малая часть того, что требуется делать с различными конструкциями при их расчете. Это всего лишь начальный этап. Большое внимание, при деформации, уделяется перемещению поперечных сечений отдельных элементов. Их определение считается более сложным чем при других видах деформаций, так как кроме перемещения в вертикальной плоскости имеет место поворот на определенный угол.

Элементы конструкций и нагрузки

В курсе сопротивление материалов, все методики расчетов, основные законы рассматриваются на примере нескольких типов элементов, из которых формируются реальные конструкции.

Глобально все элементы можно подразделить на следующие виды:

В инженерной практике и при решении задач по сопромату, чаще всего, приходится работать со стержнями или стержневыми системами.

В зависимости от деформации, которую испытывает стержень, рассчитываемому объекту можно присвоить свое название. Например, стержень, который работает на растяжение или сжатие, называют брусом. А стержень, который работает на изгиб – балкой. Некоторые типы стержневых систем, тоже имеют свои уникальные названия. Например, система, состоящая из стержней, которые жестко соединены между собой и преимущественно работают на изгиб, именуется как рама. В свою очередь, система у которой стержни соединены шарнирно и работают на растяжение (сжатие), принято называть фермами.

Нагрузки

Нарушение форм и размеров элементов конструкций происходит под воздействием внешних нагрузок:

Зачем нужен сопромат?

Представление о сопротивлении материалов необходимо иметь любому человеку. Эти знания нужны даже при строительстве простого сарая, чтобы в нем кого-нибудь не придавило. В последнее время важность сопромата только возрастает, так как строятся все более крупные сооружения, высотные здания. Создаются новейшие конструкции самолетов, кораблей, машин. Подвижные детали узлов работают на все более высоких скоростях, при возрастающих мощностях, давлениях и температурах. При строительстве используются новые, мало изученные материалы, созданные с применением новых технологий.

Сложные по началу задачи дисциплины становятся привычными при систематическом решении задач, проведении занятий на практике. На место страха перед сложной дисциплиной приходит опыт и уверенность в своих силах.

Современные расчеты

Давайте поговорим немного о современных методах расчета. Понятно, что в 21 веке, никто, вручную, рассчитывать инженерные сооружения, детали машин и т.д. уже не будет. Так как для этого есть достаточно быстрые и мощные компьютеры. Задачей же инженера является – правильная постановка задачи ЭВМ. Кроме того, проектировщик должен уметь правильно считывать показания машины, анализировать полученные значения и принимать правильные решения при проектировании. Все эти навыки, молодому специалисту помогает развить такая дисциплина как сопротивление материалов.

Источник

Что такое сопромат

Сопромат занимается вопросами прочности, жесткости и устойчивости

Прочность это способность конструкции и ее элементов выдерживать нагрузку, к ней приложенную без разрушений в виде пластических деформаций или хрупких трещин

Жесткость это способность элементов конструкции получая деформации (изгиб, растяжение — сжатие и др.) не ревышать при этом допустимые значения

При продольном сжатии длинных и тонких стержней может появиться изгиб. Переход из прямолинейного состояния в изогнутое — есть потеря устойчивости.

Сопротивление материалов — это наука, которая занимается расчетом на прочность, жесткость и устойчивость.

Сопромат что это такое

Сопромат, сопротивление материалов что это?

Всего три вопроса, но вот разнообразие этих расчетов очень широкое. Сопромат занимается, например расчетами на прочность при следующих видах деформаций:

После проверки элемента конструкции на прочность нужно провести расчет на жесткость.

Что изучает сопротивление материалов — видео урок

Видео урок в котором объясняется что изучает сопротивление материалов и о чем предмет сопротивление материалов:

Сопромат что это такое

Расчет на прочность

При расчете на прочность мы даем ответ вопрос: выдержит ли, не разрушится ли (сломается) наша конструкция, тело, объект.

Сопромат что это такоеПример как разрушается хрупкий материал при потере прочности

Как видно из рисунков пластичные материалы, такие как медь, сталь при потере прочности меняют свои размеры значительно и еще говорят «текут» (за пределом текучести).

Хрупкие материалы, когда нагрузка превышает допустимую разрушаются в виде трещин. Это и характеризует хрупкие материалы.

Подробнее о прочности можно посмотреть видео по разрушению стального образца

Сопромат что это такое

Испытания стали на разрыв. Определение предела текучести, предела пропорциональности, предела прочности, а также упругих и пластичных деформаций

Расчет на жесткость

Дает ответ на второй вопрос: не будет ли прогиб, растяжение-сжатие, или другой вид деформации слишком большим.

Конечно же не комфортно ходить по полу в доме, который прогибается под ногами. Или когда крыша над головой «висит». Это и есть не жесткая конструкция. Она прочная, выдерживает, не «ломается», но, при этом, не жесткая.

Итак расчет на жесткость проверяет существующее перемещение в конструкции (деформация изгиба, растяжения или сжатия, кручения и др) с допустимым изменением этой величины, например прогиба.

Если расчетная величина меньше допустимой — условие жесткости соблюдается.

Расчет на устойчивость

Расчет на устойчивость дает ответ на еще один вопрос. Часто, колонны, поддерживающие крыши, балконы и другие конструкции, бывают большой длины (высоты).

В механических конструкциях тоже встречаются различные стержни, которые тонкие и длинные. Так вот, это и есть гибкость, такое понятие, которое определяется двумя показателями — длинное и тонкое сечение.

Ну линейка, например (только длинная сантиметров на 100). Если к ней приложить нагрузку на сжатие, то увеличивая ее все больше и больше в определенный момент времени, она изогнется.

Это явление называют потеря устойчивости. Она еще не «сломалась» (т.е. условие прочности соблюдается), но уже не такая какой мы ее запроектировали в конструкции. А это и есть потеря устойчивости. Мы должны заранее предусмотреть и рассчитать.

Какие бывают виды деформации

В нашей жизни, в природе, в строительных конструкциях, машинах и механизмах внешние воздействия: ветер, собственный вес объекта, вес других предметов и объектов вызывают различные изменения, которые мы называем деформацией. А деформации, которые возникают, разделяют на соответствующие виды:

Есть и другие, но пока остановимся на том, что названо. Так вот определение изменения усилий, вызывающих эти деформации, построение графиков этих изменений — называют построением эпюр внутренних усилий. Об этом сняты видео в соответствующих разделах. Так например при изгибе строят эпюры изгибающих моментов M и поперечных сил Q. При растяжении сжатии — строят эпюры продольных сжимающих и растягивающих внутренних усилий N. Пример решения такой задачи, на построение эпюр приведен по ссылке выше. Ну и в задачах на кручение — строят эпюры крутящих моментов.

Источник

Для студентов технических факультетов и вузов сопромат означает ни больше ни меньше огромный стресс и страх. Даже те, кто не знает, что такое сопромат, готовятся к тому, что его очень сложно сдать. На самом деле если студент будет ходить на все занятия и внимательно слушать преподавателя, то для него не составит сложности изучить сопромат.

Но в этой статье мы подскажем, как сдать сопромат ничего не зная. Прочитайте статью до конца, чтобы найти ответы на все свои вопросы.

Что такое сопромат

Кто должен сдавать сопромат

Как сдают сопромат в университете

Как сдать сопромат ничего не зная

Чего делать не нужно при сдаче сопромата

Как научиться строить эпюры по сопромату

Сколько раз можно сдавать сопромат

Как сдать сопромат – реальная история

Как пройти проверку уникальность по курсовой

Что такое сопромат

Сопромат что это такое

Сопромат – это сокращение от названия предмета «сопротивление материалов». Если говорить простыми словами, то сопромат – это соединение знаний по механике, высшей математике, физике и теории механики. Нужен сопромат для того, чтобы правильно распределить нагрузку на конструкцию, чтобы она не развалилась через пару дней от ветра, внутренней силы растяжения и тяжести материала. А теперь предоставим определение сопромата для ответа на экзамене. (постараемся объяснить попроще).

Этот предмет изучает устойчивость разных предметов, сооружений и конструкций. Необходимо понимать, что такие сложные сооружение, например, как мост, высотка, да и любые инженерные конструкции, не могут быть созданы от балды. Необходимо проводить серьезные расчеты и делать чертежи, чтобы выяснить надежность конструкции. Ее можно определить через вычисление трех факторов: жесткость, прочность и устойчивость.

Прочность – это вычисление, какую нагрузку сможет выдержать сооружение за определенный период. К примеру, чтобы стержень долгое время оставался прочным, его растягивающая сила не должна превышать определенного значения. Если она станет больше, то начнется процесс разрушения.

Жесткость – это способность конструкции по воздействием внешних нагрузок деформироваться на небольшом уровне. Их величина не должна превышать определенных значений, которые были установлены для конкретного сооружения.

Допустим, что прогиб балки будет меньше, либо равен установленному значению. Это значит, что балка будет жесткой. Однако если же прогиб окажется больше указанной величины, то условие жесткости не будет выполняться.

Устойчивость – это способность сооружения сохранять начальную форму упругого равновесия. Если нагрузки будут малыми, то система останется устойчивой. После спада нагрузки элементы приобретут прежнюю форму. Если же нагрузки будут превышать выявленное критическое значение, то элемент получит необратимую деформацию и не сможет вернуть прежнюю форму.

Чтобы конструкция была надежной в эксплуатации, необходимо ей придать рациональную форму, чтобы элементы могли отвечать всем трем факторам. Также важно, из какого материала будет сделано сооружение. Для этого нужно знать свойства материалов. Обязательно нужно разобраться в размерах, которые зависят от величины и характера действующих сил.

Иногда студенты считают, чтобы добиться надежности сопротивления конструкции внешним нагрузкам, стоит только увеличить размеры элементов сооружения. На самом деле это может сработать.

Сопромат что это такое

Однако когда собственный вес имеет огромную силу, действующую на конструкцию, увеличение размеров элементов приведет только к ухудшению и снижению факторов жесткости и прочности.

Для движущихся деталей механизма и машин увеличение размеров приводит к соответственному увеличению нагрузки. Также оно приводит к лишнему расходу материалов, что значительно повышает стоимость изготовления, транспортировки, монтажа и всей затратности на сооружение в целом.

Поэтому дополнительные факторы для все механических конструкций и статичных сооружений – это легкость и дешевизна.

Наука сопротивление материалов как инженерная дисциплина и раздел механики рассматривает методы расчета производства машин и сооружений с учетом их прочности, жесткости и устойчивости.

Сдать сопромат ничего не зная практически невозможно. Мы подскажем некоторые допустимые способы сдать экзамен, однако надеемся на вашу разумность. Если вы собираетесь работать по специальности, то прямо сейчас начните готовиться к экзамену, выполнять работы самостоятельно и учить учебник и конспекты.

Кто должен сдавать сопромат

Сопромат что это такое

Сопромат – это обязательный предмет для физиков, инженеров, строителей, математиков, некоторых электриков и других студентов технических направлений. Все они должны уметь вычислять, какими параметрами должно обладать сооружение в заданных условиях в течение определенного времени, чтобы быть надежным на практике.

Студенты электронщики и программисты обычно не сдают сопромат. Но иногда вместо него добавляют предмет под названием «прикладная механика», что на практике показывает тот же сопромат. Также дисциплина может скрываться под названием «несущие конструкции и механизмы ЭВА», что представляет собой единое целое из сопромата, теормеха и ТММ.

Однако «чистый» и самый сложный сопромат достается студентам инженерам и строителям. Они несут огромную ответственность за жизни людей, поэтому мы не советуем сдавать сопромат ничего не зная.

Как сдают сопромат в университете

Получить допуск к экзамену и сдать сопромат в университете очень непросто. Сначала студенту нужно сдавать расчетно-проектировочные работы, а также сделать все лабораторные работы по материаловеденью. Если к концу семестра у студента не будет сдана какая-либо работа, то допуск к экзамену он не получит.

Студент, конечно, может заказать работу у старшекурсников или просто у знакомых или на сайте. Однако некоторые преподаватели требуют защиты проекта и лабораторной. Поэтому необходимо хотя бы понимать, что за вас решили и начертили, чтобы объяснить преподавателю.

Сопромат сдать преподавателю очень сложно. Он будет «атаковать» вас разными вопросами не только по билету, но и просто по предмету. Поэтому важно не показывать свой страх и неподготовленность.

Нельзя сказать, что сопромат проходит, как-то необычно. Единственное – это то, что студентам придется сдать примерно 4-5 задач с построением эпюр. Это может быть действительно сложно, однако это основная практическая часть для лучшего понимания сопромата.

Экзамен же проходит по тому же сценарию, что и всегда. Студенту нужно принести зачетку, взять билет и ответить на вопросы.

На самом деле сдать сопромат можно легко. Несмотря на то что в народном творчестве сохранилась поговорка «Сдал сопромат – можно женится», нельзя сказать, что это нереальный предмет. Однако то, что к нему нужно готовиться заранее – бесспорно.

Если вы хотите сдать, сопромат ничего не зная, то читайте дальше.

Как сдать сопромат ничего не зная

Сопромат что это такое

Сдать сопромат практически ничего не зная нереально. Однако если у вас есть время подготовиться до экзамена, то нужно постараться. Давайте рассмотрим несколько способов, как выучить ответы на вопросы за несколько дней.

Если вам попадется именно тот билет, который вы не учили, то вспомнив хотя бы 2 строчки, вы сможете развить мысль и вспомнить оставшуюся информацию.

Некоторые преподаватели готовы помочь студентам, которые начали говорить правильный ответ, но запнулись. Они начинают задавать наводящие вопросы, либо подбирать примеры для развития мысли.

Попробуйте посмотреть краткий курс для вашей специальности в интернете. Встречаются такие ролики, которые простыми словами объясняют сложную и долгую дисциплину.

Сопромат что это такое

Эти техники помогут вам за пару-тройку дней подготовиться к самому сложному экзамену. Каждый раз, когда вы чувствуете, что запомнили ответ, помечайте его галочкой и больше не тратьте на него время.

Также вам нужно запомнить правила поведения на самом экзамене.

Таким образом, следуя простым советам успешных троечников, которые всегда получали «отлично», вы сможете сдать сопромат ничего не зная. Но используйте их только если не собираетесь работать по специальности. Иначе незнание может привести в будущем к ужасным последствиям.

Чего делать не нужно при сдаче сопромата

Перед сдачей сопромата ни в коем случае не нужно делать следующего:

Сопромат что это такое

Таким образом, даже если вы не смогли сдать сопромат ничего не зная с первого раза, то со второго, или третьего, или… какого-нибудь раза у вас точно получится. Не забывайте, что сопромат – это один из тяжелых предметов, поэтому сдать его трудно для большинства студентов. Однако бывают случаи, когда можно получить автомат самому. Расскажем реальную историю в конце статьи.

Как научиться строить эпюры по сопромату

Научиться строить эпюры по сопромату очень сложно. К сожалению, изложить краткий курс сопромата в данной статье мы не можем. Однако можем посоветовать посмотреть видео на хостинге Youtube, где преподаватели, профессоры и просто студенты доступным языком объясняют, как правильно строить эпюры.

Сопромат что это такое

Также можно заказать готовые работы по вашим задачам у студентов выпускников-отличников, либо у старшекурсников. Обязательно просите доходчиво вам объяснить, как была выполнена работа, чтобы в будущем самостоятельно защитить начерталку перед преподавателем.

Сколько раз можно сдавать сопромат

Сопромат в университете можно сдать и с 10, и с 15, и 20 раза. Все зависит от вашего преподавателя. Есть такие педагоги, которые специально заставляют студента, который пропустил пару занятий, «отрабатывать» хождением на экзамены.

Действительно, сопромат – это очень важный предмет для будущих строителей, инженеров и механиков. Поэтому очень важно вовремя понять его. После этого придется доказать преподавателю, что вы точно все поняли и готовы работать по выбранной специальности.

Преподавателя сопромата спрашивают, как у него проходит сдача экзамена

— А если студент ответит на вопрос?

— Я снова задам ему вопрос, он не ответит, мне станет все ясно, и я поставлю ему «неуд».

— Но если студент ответит и на второй вопрос?

— Опять задам ему вопрос, он не ответит, мне станет «все ясно» и все-таки поставлю «неуд» в зачетку.

— Но если и на третий, и на четвертый, и на пятый вопрос студент ответ?

— Я буду задавать ему вопросы, пока мне не станет все ясно.

Как сдать сопромат – реальная история

Итак, один мой знакомый был круглым отличником и закончил университет с красным дипломом инженерный факультет, а затем и строительный. Для него сопромат был достаточно сложным предметом, как и для всех других студентов. Однако он смог получить экзамен автоматом, как и еще пара человек с его факультета.

Как у него это вышло? Он просто посещал все занятия, поднимал руку и отвечал на вопросы преподавателя. По крайней мере старался отвечать. Показывал, что он внимательно слушал препода.

А еще он вовремя сдавал начерталки, т.е. не в последний момент, а сразу. Но при этом к экзаменам готовился, как все. Выучил честно только 35 вопросов из 40. И какого же было его удивление, когда преподаватель назвал его фамилию и сказал «автоматом 5».

Таким образом, чудо случается, если его действительно заработать. Поэтому если вы еще не прошли весь курс сопромата, то рекомендуем начать готовиться к экзамену уже сейчас.

Как пройти проверку уникальность по курсовой

Итак, что важнее сдать сопромат или курсовую? Конечно же, сдать сопромат. Поэтому все свободное время посвящаем подготовке к экзамену. А вот курсовую мы возьмем на себя. На нашем сервисе вы сможете повысить уникальность текста за 1 минуту до 80-90%. С помощью обработки документа текст не изменится. Просто скроются заимствования в документе от сервиса поиска плагиата.

Защищать курсовую вас, может, и не заставят, а вот оригинальность проверят. Поэтому вы тоже заранее проверьте, какой процент антиплагиата у работы через преподавательский сервис. Мы поможет узнать точный показатель через Антиплагиат ВУЗ.

Таким образом, вы сможете быстро и легко сдать свою курсовую.

Как мы выяснили, сдать сопромат ничего не зная очень нелегко, но возможно. Вы можете воспользоваться нашими способами и попробовать получить хорошую оценку. Но лучше всего, если вы сами поймете, что такое сопромат и для чего он нужен.

Источник

Сопромат для чайников

По большому счету основы теории сопротивления материалов (сопромата) даже проще, чем таблица умножения. Таблица умножения большая, ее нужно тупо заучить как «Отче наш», а основы сопромата сводятся к нескольким основным положениям, которые достаточно легко наглядно продемонстрировать и потому их легко запомнить даже абсолютному «чайнику» в сопромате.

Обстоятельства сложились так, что вступительный курс лекций по сопромату я пропустил, так как вернулся после службы на флоте в институт за 2 недели до сессии, поэтому основы сопромата пришлось постигать самому, за что самый суровый и неподкупный препод на потоке, заваливший не одну сотню студентов, поставил мне пятерку. Ну и понеслось, преподаватели, видя пятерку по сопромату, ставить меньшую отметку по своему предмету не решались и в итоге у меня получился красный диплом.

Впрочем не будем отвлекаться, а вернемся к основам в изложении такого же чайника, как и некоторые из вас.

Если совсем кратко, то основы сопромата, изложенные в данной статье, звучат так:

Вот в принципе и все, далее следуют формулы и прочие расчеты, но попробуем добавить больше наглядности этим положениям на примере балки.

Чтобы наглядно представить себе основы сопромата, достаточно иметь две простых школьных деревянных линейки, например, длиной 20 и 40 см и несколько книг, учебники по сопромату подойдут здесь как нельзя лучше, и стол. Впрочем можно иметь и одну пластмассовую или алюминиевую линейку любой длины и книги любого содержания.

1. Виды опор.

Теперь нужно положить линейку плашмя на два выступа, например на 2 книжки:

Сопромат что это такое

Рисунок 1.

Если посмотреть на линейку сбоку, то будет видно не только название учебника, но и то, что линейка лежит плашмя.

1.1. Шарнирные опоры

С одной стороны все вроде бы просто, лежит себе линейка на книгах, ну и пусть лежит, а вот если взглянуть на эту ситуацию с точки зрения теоретической механики (до сопромата мы пока еще не добрались), то мы с Вами имеем не обычную школьную линейку, лежащую на книгах, а модель балки на двух скользящих шарнирных опорах и выглядеть это будет так:

Сопромат что это такое

Рисунок 2.1

1.2. Горизонтальные линии с косой заштриховкой снизу означают некое устойчивое основание, в данном случае это стол.

1.3. Некоторое расстояние между основанием и опорами балки, обозначенными треугольниками, является неким подобием воздушной подушки и означает, что опоры могут скользить по основанию без трения.

1.4. На самом деле у нашей линейки нет никаких шарниров, связывающих ее с опорами, а опирается линейка, если очень хорошо присмотреться, на выступающие корешки книг и можно изобразить нашу линейку например так:

Сопромат что это такое

Рисунок 2.2

В технической литературе такое отображение опор (без шарниров) также встречается и означает, что опоры не препятствуют повороту, но препятствуют перемещению по вертикали и по горизонтали.

1.5. на рисунке 2.1 шарниры находятся на концах балки, на рисунке 2.2 треугольники опор находятся на некотором расстоянии от концов балки. С точки зрения теоретической механики никакой разницы тут нет, если принимать расстояние между опорами и на рисунке 2.1 и на рисунке 2.2 одинаковым, а на концы линейки, находящиеся за пределами опор, ни какая нагрузка не действует.

Расчетная длина балки

1.2. Опорные связи шарнирно закрепленной балки

Любое физическое тело, в данном случае линейка, имеет три степени свободы движения в рассматриваемой плоскости ху: 1) тело может перемещаться вдоль оси х, 2) тело может перемещаться вдоль оси у, 3) тело может вращаться вокруг некоторой точки, даже если свобода перемещения относительно осей х и у ограничена.

Соответственно любая устойчивая и статически определимая конструкция должна иметь как минимум три опорных связи, ограничивающих указанные степени свободы. Балка, показанная на рисунке 2.1, является статически определимой, но не устойчивой, так как у нее только 2 параллельные вертикальные связи. Балка, показанная на рисунке 2.2, является устойчивой, но статически неопределимой, так как у нее 2 вертикальные и две горизонтальные опорные связи. А уравнения статического равновесия позволяют определить только три неизвестных величины (об этом чуть позже).

Поэтому в технической литературе часто встречается следующее отображение шарнирных опор балки:

Сопромат что это такое

Рисунок 2.3

Физический смысл такого отображения опорных связей следующий:

2. Эти связи шарнирно соединены не только с балкой но и с неким жестким основанием. А это в свою очередь означает, что не только балка может свободно поворачиваться относительно опорных связей, но и опорные связи могут свободно поворачиваться относительно жесткого основания.

3. Для обеспечения геометрической неизменяемости (устойчивости) системы горизонтальная опорная связь необходима, хотя при расчетах на вертикальную нагрузку она вроде бы и не нужна, но это уже отдельная история.

5. Таким образом вертикальная опорная связь на опоре В, показанная ни рисунке 2.3, препятствует только вертикальному перемещению балки в точке В и соответствует скользящей шарнирной опоре, показанной на рисунке 2.1. Такая опора в точке В называется шарнирно подвижной опорой.

Казалось бы, для нашей линейки такое отображение опорных связей не подходит, никакой ярко выраженной горизонтальной связи у линейки по умолчанию нет (за исключением сил трения), но тут все зависит от того, какие именно задачи предстоит решать.

Достаточно часто балки рассчитываются на вертикальную нагрузку, действующую вдоль оси координат у, при этом никаких сил, действующих вдоль оси координат х, нет или их сумма равна 0. Кроме того, если приложенные горизонтальные нагрузки будут меньше, чем силы трения, возникающие на опорных участках балки под действием вертикальной нагрузки, то в таких случаях схема балки, приведенная на рисунке 2.3, для нашей линейки вполне допустима.

1.3 Жесткое защемление на опорах

Если пригрузить концы линейки еще книгами:

Сопромат что это такое

Рисунок 3.

то такую линейку можно условно рассматривать, как балку, защемленную на опорах, и тогда модель балки будет выглядеть так:

Сопромат что это такое

Рисунок 3.1

Физический смысл такого отображения опор следующий: жесткая заделка препятствует не только вертикальному и горизонтальному перемещению балки на опоре, но также и повороту. т.е. ограничивает все 3 степени свободы физического тела. Такая опора называется жестким защемлением или глухой заделкой.

Мы можем легко в этом убедиться, если уберем одну из стопок книг. Линейка, защемленная в другой стопке, останется на месте.

Опять же в данном случае рассматривать балку как жестко защемленную не совсем правильно, если опорные участки достаточно короткие, а вот если книги с линейкой хорошо проклеить, и опорные участки у линейки сравнительно длинные, то после высыхания клея линейку уже можно рассматривать как балку, жестко защемленную на опорах.

Но все равно чаще всего при расчетах принимается вариант опор, показанный на рисунке №2.3. А вот железобетонные балки, которые бетонируются одновременно со стенами или металлические балки, жестко приваренные или прикрученные к очень жесткому основанию так, что составляют как бы единое целое, можно рассматривать как балки, защемленные на концах.

1.4. Скользящие заделки

Сопромат что это такое

Рисунок 3.2. а) заделка, скользящая относительно оси х; б) заделка, скользящая относительно оси у.

Т.е. одна из склеенных стопок книг нами по-прежнему рассматривается как глухая заделка на опоре А, а вот заделки на опоре В уже рассматриваются как скользящие. Такие заделки называются скользящими заделками или жесткими заделками с одной степенью свободы перемещения.

1.5. Если продолжить мысль и представить, что наша линейка очень прочно склеена из отдельных кусочков, то получается, что мы можем рассматривать любой участок нашей линейки, например, между отметками 5 и 15 см, как отдельную балку со скользящей заделкой на концах и могли бы изобразить нашу балку не как одну балку на двух шарнирных опорах, а как 2, 3 и сколь угодно много балок, из которых крайние балки имели бы по одной шарнирной опоре и на втором конце скользящую заделку, а все остальные балки имели бы скользящую заделку. В данном случае в таком усложнении задачи нет никакой необходимости, но часто такое допущение позволяет решать достаточно сложные задачи.

А чтобы такое предположение было корректным, мы для упрощения решения задачи должны рассекать нашу балку очень аккуратно в плоскости, перпендикулярной оси х и таким образом мы получим сколь угодно большое количество поперечных сечений балки. Зачем нужно рассматривать поперечные сечения, мы узнаем чуть позже.

Все. Больше никаких вариантов опор при решении задач по расчету строительных конструкций не рассматривается: или шарнирные опоры или заделка (защемление) на концах. Другое дело, что шарнирных опор у балки может быть сколь угодно много, один конец может быть защемлен, опоры, как шарнирные таки и жесткие, могут быть скользящими, шарнирные опоры могут давать осадку и даже представлять собой сплошное упругое основание, у балки могут быть консоли, но это уже варианты не опор, а варианты расположения и комбинации опор. Таких комбинаций может быть бесконечно много, но это уже не основы теоретической механики и здесь мы эти варианты рассматривать не будем.

Ну а теперь выясним, зачем нужно было городить эту конструкцию и что она нам дает.

2. Нагрузки (наружные силы).

Если повнимательнее присмотреться к рисунку 1, то можно увидеть, что линейка немного прогнулась посредине. Если взять более длинную 40-сантиметровую линейку и опереть ее на книги, то прогиб посредине линейки будет еще более заметным, но все равно пока не очень явным.

Почему же это случилось?

Сопромат что это такое

Рисунок 5.

2.1. Распределенная нагрузка может быть равномерной, как показано на рисунке 5, так и неравномерно распределенной, при этом значение распределенной нагрузки может изменяться линейно и не линейно, кроме того распределенная нагрузка может действовать не на всю длину балки, а на один или несколько участков. Если на балку действует несколько равномерно распределенных нагрузок, например: собственный вес, вес от кирпичной кладки, опирающейся на балку, и нагрузка от плит перекрытия то такие распределенные нагрузки можно суммировать, что в дальнейшем значительно облегчает расчеты. Подобный подход называется принципом суперпозиции.

2.2. Если у Вас есть палец, а я думаю, таковых у Вас имеется немало, то при надавливании пальцем на середину линейки линейка прогнется уже значительно заметнее. В этом случае на линейку действует кроме равномерно распределенной нагрузки еще и сосредоточенная (точечная) нагрузка (на рисунке 6 распределенная нагрузка не показана):

Сопромат что это такое

Рисунок 6.

Само собой точечных нагрузок может быть сколь угодно много и прикладываться они могут в любом месте балки и не только перпендикулярно оси балки, но и параллельно. Если сосредоточенная нагрузка приложена перпендикулярно на опоре, то на балку это никак не повлияет, просто возникнет реакция опоры численно равная нагрузке и направленная противоположно. Вы можете это легко проверить сами, надавив пальцем на линейку в месте опоры на одну из книг, если уж очень сильно давить, то Вы скорее промнете книгу, но линейка все равно не прогнется.

Почему так происходит?

Оказывается нагрузка, действуя на балку, создает изгибающий момент, т.е. хочет повернуть балку вокруг опор. При этом значение изгибающего момента напрямую зависит не только от величины нагрузки, но и от плеча действия силы. Нетрудно догадаться, что максимальный изгибающий возникает тогда, когда сосредоточенная нагрузка действует на балку посредине.

Конечно же действует этот момент на балку не просто так, а в рассматриваемом поперечном сечении балки и возникает он в данном случае от действия опорной реакции, которую еще следует определить, но об этом разговор пойдет дальше.

Иногда при расчетах вводится понятие вращающего момента, действующего на балку:

Сопромат что это такое

Рисунок 7.

Ну и теперь непосредственно сам сопромат, потому как до этого описывались термины и понятия теоретической механики.

3. Напряжения (внутренние силы).

Если на линейку, опертую на книги, как показано на рисунке 1, продолжать давить пальцем, то линейка будет прогибаться все сильнее и сильнее, пока в один прекрасный момент не поломается (конечно, вместо грубой физической силы Вы можете использовать мощь своего интеллекта, я возражать не буду)

Почему это происходит?

Оказывается всему есть предел и в данном случае был преодолен предел сопротивления материала (древесины), из которого изготовлена линейка.

Если к примеру взять стальную полосу с такими же параметрами сечения и такой же длины, как у деревянной линейки и тоже положим ее на книги и приложим к ней такую же нагрузку посередине, то поломать стальную полосу пальцем уже вряд ли получится, как минимум потому, что сопротивление стали в десятки раз больше сопротивления древесины. Но вернемся к рассмотрению деревянной линейки.

Когда Вы давите пальцем на линейку, то линейка деформируется, верхняя часть линейки сжимается и, соответственно в этой области возникают сжимающие нормальные напряжения. Нижняя часть линейки растягивается и, соответственно в этой области возникают растягивающие нормальные напряжения. Эти напряжения являются реакцией материала на действующую нагрузку.

Нормальными называются напряжения, направленные по нормали (перпендикулярно) рассматриваемому поперечному сечению балки.

Кроме нормальных в рассматриваемых сечениях могут возникать и касательные напряжения, а еще напряженные состояния могут быть не только линейными, но еще плоскими или объемными, но об этом опять же не сейчас.

Теория сопротивления материалов предполагает, что при таком действии нагрузки в середине поперечного сечения балки деформация равна 0 и, соответственно, никаких нормальных напряжений, ни растягивающих, ни сжимающих в середине поперечного сечения балки нет, а максимальные напряжения возникают посредине пролета балки сверху и снизу поперечного сечения. При этом эпюры внутренних нормальных напряжений в поперечных сечениях балки будут выглядеть так:

Сопромат что это такое

Рисунок 8.

Разрушение конструкции может начинаться как в верхней так и в нижней части. Расчет конструкции на прочность сводится к тому, чтобы этого самого разрушения не допустить. Другими словами, максимально возможные напряжения должны быть меньше сопротивления материала. В данном случае:

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Соизвольте принять Низкий поклон, флотский
Доктор Лом. Долгих лет Вашей мыслящей голове. Я очень небольшой изобретатель, очень нужен расчет конструкций и из дерева и из метала.

Мой сайт всегда к Вашим услугам, в разделе: «Расчет конструкций» есть примеры расчета некоторых наиболее распространенных деревянных и металлических конструкций. Там же можно задать более конкретный вопрос.

Док, спасибо огромное за то, что умеете доходчиво объяснить такие специфические науки как теор мех и сопромат. Я инженер-строитель и мне очень важно это знать. Начал разбираться 2 месяца назад, по вашим лекциям, с самого нуля (в институте дурака валял, а щас работа обязывает). Вопросов конечно много, но очень многое я смог понять, о чем раньше и представления не имел. Спасибо, док!

Большое спасибо автору.

Автору спасибо. Помнится в колледже мы расчитывали оч сложные вещи и называлось у нас это не сопромат, а прикладная механика. БУдем вспоминать

О,как я ненавидела сопромат. Но, в первый раз читая эту статью он мне стал интересен. Спасибо.

благодарен за информацию.горная академия заочно.

Насколько важен способ подачи материала. Просто, доходчиво, на пальцах. Лично я 30 лет назад это проходил, но хлопцы на форуме постоянно задают вопросы по основам. Так что линк забил. Спасибо.

Когда-то, в молодости, из-за сопромата бросила Бауманку.Сейчас приходиться наверстывать упущенное. Учусь заочно, дистанционно по строительной специальности. Думала никогда мне не понять этот предмет. Теперь, по-немногу, что-то проясняется. Огромное спасибо.

очень доступно и просто, спасибо!

Умно и просто изложено. «Отче наш» учите так же. )

Доктор Лом, спасибо за Ваши труды! Очень мне сейчас пригождаются в освежении знаний и ликвидации пробелов первых курсов ВУЗа.

Огромное спасибо!! Удачи автору!

Спасибо. Просто и понятно)))

Очень интересный ресурс с доходчивым изложением. Огромное спасибо автору за такой титанический труд.
Мне кажется что в тексте есть опечатки: во-первых, два пункта с номером 1.3, а во-вторых, в первом пункте 1.3 фразу «а опирается линейка, если очень хорошо присмотреться на выступающие корешки линейки» следует заменить на «а опирается линейка, если очень хорошо присмотреться на выступающие корешки книг»

Все верно (к сожалению времени на написание статей у меня критически мало, от того и случаются оплошности). Сейчас исправлю. Спасибо за внимательность.

Посмотрите статью «Виды опор, какую расчетную схему выбрать». Здесь же скажу, что если длина опорных участков плиты около половины толщины плиты, то это просто шарнирно опертая плита.

Соизвольте принять Низкий поклон, флотский
Доктор Лом. Долгих лет Вашей мыслящей голове. Я очень небольшой изобретатель, но очень нужен расчет каркаса вакуумного аэростата из углепластика. Аэростат нужен для получения экологически чистой электроэнергии в промышленных масштабах. Энергия ветра(скорость) на высоте от 500м намного больше, чем на высотах существующих ветряков. Аэростат(его величество Архимед) должен поднять конструкций длиной 1500-2000м. Выше плотность воздуха уменьшается и уменьшается сила Архимеда и уменьшается сила ветра. На вертикальном ветропарке, может работать моей конструкции 50-60ветродвигателей. Энергию ветра необходимо аккумулировать, так как скорость ветра не стабильна. Наилучший аккумулятор это энергия сжатого воздуха в замкнутом объеме. Поэтому ветродвигатели должны вращать винтовые компрессоры. Полученный сжатый воздух идет в низ, в ресиверы. На энергии сжатого воздуха в одну атмосферу работают на полную мощность мои двигатели и вращают типовой электрогенераторы. Уважаемый Доктор Лом, мы наверно одного возраста, значит осталось жить не долго. Давайте попробуем сделать что-то необычное. Что бы доказать, что не напрасно жили на божьем свете, не напрасно нас родили. Один я не вытяну, т.к. я весьма малограмотен.

спасибо автору, очень все понятно. Я, правда, еще в 10 классе, но иду на инженера и судя по всему это очень важный предмет, поэтому начну-ка изучать его сейчас

Что ж, успехов вам.

Доктор Лом, все статьи Вашего сайта написаны на высоком уровне! Спасибо и долгих счастливых Вам лет!

Здравствуйте. Меня интересуют некоторые вопросы по фундаменту для печи и фундаменту дома. Я хотел бы сделать перевод с карты Сбербанка на Вашу карту Сбербанка, т.к. яндекс кошелька у меня нет и других способов оплаты, кроме оплаты наличными я не знаю. Сообщите, пожалуйста, на какую карту сбербанка перевести деньги, или как ещё можно решить вопрос оплаты, не заводя яндекс-кошелька. Я опасаюсь заводить яндекс кошелёк, считая весьма вероятной возможность потерять деньги, в нём хранящиеся. Спасибо.

Юрий Николаевич, перевести деньги на яндекс-кошелек можно с любой карточки и даже с мобильного телефона, наличие собственного яндекс-кошелька совершенно не обязательно.

Добрый день, разъясните, пожалуйста, как оплачивать, на странице у меня не всё отображается(((

Николай, никак не оплачивать. Если у вас есть вопрос, можете задать его по адресу poccaton@gmail.com

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Источник

Многочисленные учебники «Cопромат для чайников» создают для развенчания мифа о непостижимой сложности дисциплины. Этой наукой пугают на первых курсах вузов. Для начала расшифруем грозный термин «сопротивление материалов».

На деле – проста и решение почти не выходит за рамки школьной задачи о растяжении и сжатии пружины. Другое дело – найти слабое звено конструкции и свести расчет к несложной постановке. Так что не стоит зевать на лекциях по основам механики. При подготовке к урокам можно пользоваться решениями онлайн, но на экзаменах помогут только свои знания.

Что такое сопромат

Это методика расчета деталей, конструкций на способность выдерживать нагрузки в требуемой степени. Или хотя бы для предсказания последствий. Не более, хотя почему-то относят руководство к наукам.

Сопромат что это такое

Этой «наукой» прекрасно владели древнегреческие и древнеримские инженеры, сооружавшие сложнейшие механизмы. Понятия не имея о структуре, уравнении состояния вещества и прочих теориях, египтяне строили исполинские плотины и пирамиды.

Основные задачи по сопротивлению материалов

Сопромат что это такое

Задача следует напрямую из определения. А вот каковы критерии упомянутого слова «выдерживать»? Неясно, что скрывается под «материалом» и как реальные вещи схематизировать.

Требования

Сопромат что это такое

Перечислены далеко не все, но для статики и базовой программы хватит:

Прочность – способность образца воспринимать внешние силы без разрушения. Слегка мнущаяся под весом оборудования подставка никого не интересует. Основную-то функцию она выполняет.

Жесткость – свойство воспринимать нагрузку без существенного нарушения геометрии. Гнущийся под силой резания инструмент даст дополнительную погрешность обработки. К ошибке приведет деформация станины агрегата.

Устойчивость – способность конструкции сохранять стабильность равновесия. Поясним на примере: стержень находится под грузом, будучи прямым – выдерживает, а чуть изогнется – характер напряжения изменится, груз рухнет.

Материал и силы

Сопромат что это такое

Как всякая методика, сопромат принимает массу упрощений и прямо неверных допущений:

материал однороден, среда сплошная. Внутренние особенности в расчет не берутся;

свойства не зависят от направления;

образец восстанавливает начальные параметры при снятии нагрузки;

поперечные сечения не меняются при деформации;

в удаленных от места нагрузки местах усилие распределяется равно по сечению;

результат воздействия нагрузок равен сумме последствий от каждой;

деформации не влияют на точки приложения сил;

отсутствуют изначальные внутренние напряжения.

Схемы

Служат для создания возможности расчета реальных конструкций:

тело – объект с практически одинаковыми «длина х ширина х высота»;

брус (балка, стержень, вал) – характеризуется значительной длиной.

На рисунке показаны опоры с воспринимаемыми реакциями (обозначены красным цветом):

Сопромат что это такое

Рис. 1. Опоры с воспринимаемыми реакциями:

в) жесткая заделка (защемление).

Силы в сопромате

Приложенные извне, уравновешиваются возникающими изнутри. Напомним, рассматривается статическая ситуация. Материал «сопротивляется».

Разделим нагруженное тело виртуальным сечением P (см. рис. 2).

Сопромат что это такое

Заменим хаос равнодействующей R и моментом M (см. рис. 3):

Сопромат что это такое

Распределив по осям, получим картину нагрузки сечения (см. рис. 4):

Сопромат что это такое

Нагрузки и деформации, изучаемые в сопромате

Изучим несколько принятых терминов.

Напряжения

В теле приложенные силы распределяются по сечению. Нагружен каждый элементарный «кусочек». Разложим силы:

Сопромат что это такое

Элементарные усилия таковы:

Сопромат что это такое

σ – «сигма», нормальное напряжение. Перпендикулярно сечению. Характерно для сжатия / растяжения;

τ – «тау», касательное напряжение. Параллельно сечению. Появляется при кручении;

p – полное напряжение.

Сопромат что это такое

Сопромат что это такое

Просуммировав элементы, получим:

Сопромат что это такое

N – нормальная сила;

A – площадь сечения.

В принятой в России системе СИ сила измеряется в ньютонах (Н). Напряжения – в паскалях (Па). Длины в метрах (м).

Деформации

Различают деформацию упругую (с индексом «e») и пластическую (с индексом «p»). Первая исчезает по снятии растягивающей / сжимающей силы, вторая – нет.

Полная деформация будет равна:

Сопромат что это такое

Сопромат что это такое

Деформация относительная обозначается «ε» и рассчитывается так:

Сопромат что это такое

Под «сдвигом» понимается смещение параллельных слоев. Рассмотрим рисунок:

Сопромат что это такое

Здесь γ – относительный сдвиг.

Сопромат что это такое

Виды нагрузки

Растяжение и сжатие – нагрузка нормальной силой (по оси стержня).

Кручение – действует момент. Обычно рассчитываются передающие усилия валы.

Изгиб – воздействие направлено на искривление.

Основные формулы

Базовый принцип сопромата единственный. В упомянутой задаче о пружине применим закон Гука:

Сопромат что это такое

E – модуль упругости (Юнга). Величина зависит от используемого материала. Для стали полагают равным 200 х 10 6 Па.

Сопротивление материала прямо пропорционально деформации:

Сопромат что это такое

Сопромат что это такое

Закон верен не всегда и не для всех материалов. Как уже упоминалось, принимается как одно из допущений.

Реальная диаграмма

Растяжение стержня из низкоуглеродистой стали выглядит следующим образом:

Сопромат что это такое

Сопромат что это такое

Сопромат что это такое

График (б) относится к большей части конструкционных материалов: подкаленные стали, сплавы цветных металлов, пластики.

Расчеты обычно ведут по σт (а) и σ0.2 (б). С незначительными пластическими деформациями конструкции или без таковых.

Пример решения задачи

Какой груз допустимо подвесить на пруток из стали 45 Ø10 мм?

σ0,2 для стали 45 равна 245 МПа (из ГОСТ).

Площадь сечения прутка:

Сопромат что это такое

Допустимая сила тяжести:

Сопромат что это такое

Для получения веса следует разделить на ускорение свободного падения g:

Сопромат что это такое

Ответ: необходимо подвесить груз массой 1950 кг.

Как найти опасное сечение

Наиболее простой способ – построение эпюры. На закрепленную балку действуют точечные и распределенные силы. Считаем на характерных участках, начиная с незакрепленного конца.

Усилие положительно, если направлено на растяжение.

Сопромат что это такое

Сопромат что это такое

На схеме показано, что:

Зачем и кому нужен сопромат

Даже не имеющий отношения к прочностным расчетам инженер-универсал должен иметь понятие о приблизительных (на 10-20%) значениях. Знать конструкционные материалы, представлять свойства. Чувствовать заранее слабые места агрегатов.

Совершенно необходим разработчикам различных конструкций, машиностроительных изделий. Будущим архитекторам в вузах преподается в виде предмета «Строительная механика».

Методика помогает на стадии проектирования обеспечивать необходимый запас прочности изделий. Стойкость к постоянным и динамичным нагрузкам. Это сберегает массу времени и затрат в дальнейших изготовлении, испытании и эксплуатации изделия. Обеспечивает надежность и долговечность.

Источник

Основные понятия и определения сопромата.

Сопротивление материалов – раздел механики деформируемого твердого тела, в котором рассматриваются методы расчета элементов машин и сооружений на прочность, жесткость и устойчивость.

Прочностью называется способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций. Расчеты на прочность дают возможность определить размеры и форму деталей, выдерживающих заданную нагрузку, при наименьшей затрате материала.

Жесткостью называется способность тела сопротивляться образованию деформаций. Расчеты на жесткость гарантируют, что изменения формы и размеров тела не превзойдут допустимых норм.

Устойчивостью называется способность конструкций сопротивляться усилиям, стремящимся вывести их из состояния равновесия. Расчеты на устойчивость предотвращают внезапную потерю равновесия и искривление элементов конструкции.

Долговечность состоит в способности конструкции сохранять необходимые для эксплуатации служебные свойства в течение заранее предусмотренного срока времени.

Оболочка (рис.1, г) это тело, один из размеров которого (толщина) намного меньше остальных. Если поверхность оболочки представляет собой плоскость, то объект называют пластиной (рис.1, д). Массивами называются тела, у которых все размеры одного порядка (рис.1, е). К ним относятся фундаменты сооружений, подпорные стены и др.

Сопромат что это такое

Эти элементы в сопротивлении материалов используются для составления расчетной схемы реального объекта и проведения ее инженерного анализа. Под расчетной схемой понимается некоторая идеализированная модель реальной конструкции, в которой отброшены все малосущественные факторы, влияющие на ее поведение под нагрузкой

Допущения о свойствах материала

Материал считается сплошным, однородным, изотропным и идеально упругим.
Сплошность – материал считается непрерывным. Однородность –физические свойства материала одинаковы во всех его точках.
Изотропность – свойства материала одинаковы по всем направлениям.
Идеальная упругость – свойство материала ( тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Допущения о деформациях

1. Гипотеза об отсутствии первоначальных внутренних усилий.

2. Принцип неизменности начальных размеров – деформации малы по сравнению с первоначальными размерами тела.

3. Гипотеза о линейной деформируемости тел – деформации прямо пропорциональны приложенным силам (закон Гука).

4. Принцип независимости действия сил.

5. Гипотеза плоских сечений Бернулли – плоские поперечные сечения бруса до деформации остаются плоскими и нормальными к оси бруса после деформации.

6. Принцип Сен-Венана – напряженное состояние тела на достаточном удалении от области действия локальных нагрузок очень мало зависит от детального способа их приложения

Внешние силы

Внутренние силы. Метод сечений.

Действие на тело внешних сил приводит к его деформации (меняется взаимное расположение частиц тела). Вследствие этого между частицами возникают дополнительные силы взаимодействия. Это силы сопротивления изменению формы и размеров тела под действием нагрузки, называют внутренними силами (усилиями). С увеличением нагрузки внутренние усилия возрастают. Выход из строя элемента конструкции наступает при превышении внешних сил некоторого предельного для данной конструкции уровня внутренних усилий. Поэтому оценка прочности нагруженной конструкции требует знания величины и направления возникающих внутренних усилий. Значения и направления внутренних сил в нагруженном теле определяют при заданных внешних нагрузках методом сечений.

Метод сечений (см. рис. 2) состоит в том, что брус, находящийся в равновесии под действием системы внешних сил, мысленно рассекают на две части (рис. 2, а), и рассматривают равновесие одной из них, заменяя действие отброшенной части бруса системой внутренних сил, распределенных по сечению (рис. 2, б). Заметим, что внутренние силы для бруса в целом, становятся внешними для одной из его частей. Причем во всех случаях внутренние усилия уравновешивают внешние силы, действующие на отсеченную часть бруса.

Сопромат что это такое

Источник

Сопромат что это такое

Итак, давайте разбираться, зачем понадобилось ломать школьную линейку, оставляя детей без школьных принадлежностей, и чем это может нам помочь. Пришло время добавить к наглядности несколько формул, тут все будет почти так же просто и понятно, как и в первой части сопромата для чайников, но понадобятся знания математики на уровне 4-5 классов и начальные знания по геометрии.

Основы сопромата, расчет прогиба балки

Часто при расчете строительных конструкций важно определить не только геометрические параметры сечения конструкции, но и величину прогиба конструкции с точностью до миллиметра. Дело в том, что величина прогиба для любой конструкции нормируется различными СНиПами и не должна превышать 1/250 для балок междуэтажных перекрытий, 1/200 для чердачных перекрытий и перемычек и так далее, список длинный. Когда расчет производится для себя (например строится частный дом и нужно сделать балки перекрытия или перемычки), то определять величину прогиба не обязательно, никто Вас ругать не будет, главное чтобы по несущей способности расчет был верный, но все же определить прогиб конструкции желательно. Ведь знание величины прогиба позволить более точно выбрать, например, вариант отделки потолка.

Сопромат для чайников

По большому счету основы теории сопротивления материалов (сопромата) даже проще, чем таблица умножения. Таблица умножения большая, ее нужно тупо заучить как «Отче наш», а основы сопромата сводятся к нескольким основным положениям, которые достаточно легко наглядно продемонстрировать и потому их легко запомнить даже абсолютному «чайнику» в сопромате.

Обстоятельства сложились так, что вступительный курс лекций по сопромату я пропустил, так как вернулся после службы на флоте в институт за 2 недели до сессии, поэтому основы сопромата пришлось постигать самому, за что самый суровый и неподкупный препод на потоке, заваливший не одну сотню студентов, поставил мне пятерку. Ну и понеслось, преподаватели, видя пятерку по сопромату, ставить меньшую отметку по своему предмету не решались и в итоге у меня получился красный диплом.

Впрочем не будем отвлекаться, а вернемся к основам в изложении такого же чайника, как и некоторые из вас.

Приведение сосредоточенной нагрузки к эквивалентной равномерно распределенной

Это в свою очередь означает, что расчет нужно вести по разным формулам, например, определять максимальное значение изгибающего момента отдельно для равномерно распределенной нагрузки и отдельно для сосредоточенных нагрузок. То же касается и определения максимального прогиба конструкции. Хорошо, если такая сосредоточенная нагрузка только одна, расчеты при этом не сильно усложнятся, а вот если таких сосредоточенных нагрузок несколько, да еще и приложены они на разных расстояниях друг от друга и несимметрично, то расчет становится достаточно сложным. Между тем, чем больше на строительную конструкцию действует сосредоточенных нагрузок, тем ближе суммарная эпюра моментов от этих сосредоточенных нагрузок к эпюре от равномерно распределенной нагрузки. Поэтому для упрощения расчетов конструкций постоянного по длине сечения вполне допустимо заменять сосредоточенные нагрузки на эквивалентную равномерно распределенную. Однако делать это нужно осторожно, так как варианты приложения сосредоточенных нагрузок бывают разные:

Виды опор, какую расчетную схему выбрать

Основы сопромата. Определение касательных напряжений.

Основы сопромата, момент сопротивления

Расчет на растяжение стержня

Расчет на прочность прямолинейного стержня при действии центрально приложенной растягивающей силы является одной из самых простых задач в теории сопротивления материалов.

Смысл данного расчета сводится к тому, чтобы обеспечить необходимую прочность материала, исходя из условия:

Приведение неравномерно распределенной нагрузки к эквивалентной равномерно распределенной

Иногда при расчете конструкций, на которые действует симметричная распределенная нагрузка, описываемая достаточно сложными уравнениями, возникает необходимость привести данную нагрузку к эквивалентной равномерно распределенной для упрощения этих самых расчетов.

Так например, все мы знаем, что максимальный изгибающий момент при действии равномерно распределенной нагрузки на шарнирно опертую балку будет в середине пролета (l/2) и составит:

Что такое жесткость и гибкость элементов

Разницу в работе гибких и жестких стержней под воздействием нагрузки люди заметили достаточно давно. Так один из мастеров восточных единоборств, гуляя по зимнему саду, сделал примерно следующий вывод: жесткая сухая ветка под тяжестью налипшего снега ломается, а гибкая ветка прогибается и, сбросив налипший снег, возвращается в прежнее положение с минимумом повреждений.

Если перевести это гибкую поэтическую аллегорию, помогавшую мастеру восточных единоборств привлекать новых учеников, на современный жесткий язык теории сопротивления материалов, то звучать это будет примерно так: если напряжения в рассматриваемом поперечном сечении жесткого элемента конструкции превышают значение нормативного сопротивления, то это приведет сначала к значительным пластическим деформациям, а затем, при увеличении напряжений, и к разрушению жесткого элемента (будет это разрушение хрупким или вязким, принципиального значения не имеет). В то же время гибкий элемент конструкции под действием такой же нагрузки, не разрушится, но потеряет устойчивость.

Какой момент инерции выбрать?

В последнее время мне все чаще задают вопрос: какой момент инерции выбрать для расчетов балки и почему? А после этого добавляют примерно следующее: «во всех учебниках сопромата пишут только, что сечение должно стремиться к квадрату, но в жизни часто встречается двутавр, например» или «всюду пишут, что сечение должно стремиться к квадрату и брать надо наименьший момент инерции. Никак не могу ухватить за хвост физический смысл, можно это как-то на пальцах истрактовать?».

Момент силы

Формула для определения момента силы на удивление проста:

Момент инерции, куда пропала скорость?

Статья получилась достаточно большой. Я, хоть и не Толстой Л.Н., но тоже люблю разливаться мыслью по древу, но некоторые моменты все равно оказались упущены или недостаточно акцентированы, что у некоторых, хотя далеко не у всех читалей вызывает вопросы.

Формула прогиба

В статье «Расчетные схемы для балок» задается достаточно много вопросов и делается достаточно много комментариев на тему правильности той или иной формулы. Как правило я отвечаю на вопросы там же в комментариях, но на этот раз тема неординарная и я решил вынести ее в отдельную статью. К тому же в комментариях степень числа можно отобразить только как ^, а это затрудняет восприятие.

Сначала приведу переписку из комментариев касательно правильности формулы прогиба:

Музыкальная теория расчета гибких нитей (Часть 1)

Но если один из родителей еще и разбирается в сопромате, то, увидев столь вольное обращение с гитарой, может ребенка и наказать. Причем очень строго: за грубое нарушение теории расчета гибких нитей. Вот так! Не меньше!

Итак, маленькая теоркомедия в 4 актах.

Акт первый

Мы начинаем прикладывать условно сосредоточенную нагрузку Q к струне в центре тяжести гитары, на расстоянии l/2 от опор.

Источник

Сопромат для Чайников

На этой странице я расскажу о такой дисциплине, как сопромат (сопротивление материалов), которой, собственно, и посвящён ss opromat.ru. Расскажу, что это такое, зачем нужно, а также дам ссылки на простые уроки, так сказать, для чайников.

Что такое сопромат?

Сопромат – это дисциплина о методах и способах расчета элементов конструкций на прочность, жесткость и устойчивость.

Сопромат – это сокращенное название предмета — «сопротивление материалов». Эту дисциплину изучают студенты любой инженерной специальности, которая может быть связана с машиностроительной, строительной, судостроительной или авиационной отраслью. Так как при проектировании любой конструкции обязательным этапом является проведение расчётов, основы которых рассматриваются в сопромате. Не зная принципов, которые изучаются в рамках этого предмета, нельзя создать новой техники, механизмов и оборудования. Нельзя построить такие инженерные сооружения как: мосты, многоэтажные здания и т. д. Поэтому так важно знать этот предмет настоящим инженерам и поэтому ему уделяется особое внимание в вузах.

Студенты, как правило, изучают сопромат на втором курсе и обычно два семестра. После освоения таких дисциплин, как математика, материаловедение, теоретическая механика. Особенно важно освоить перед изучением сопромата теоретическую механику. Хоть и в теоретической механике все тела рассматриваются абсолютно твердыми телами, то есть никак не реагирующие на внешнее воздействие, в плане деформаций. Но все же важность представляет раздел статики. Без знаний статики не решить практически ни одной задачи по сопромату.

Зачем вообще нужен сопромат?

Ни одна строительная конструкция, будь это многоэтажный дом или мост, ни одна машина, механизм не обходится при проектировании без расчетов на прочность и жесткость.

Конечно, сегодня инженеры, вряд ли будут делать расчеты вручную. Все расчеты производятся с помощью специализированного программного обеспечения, такого как Nastran, ANSYS и им подобным. В основе этих программ лежит метод конечных элементов. Суть этого метода в том, что компьютер разбивает расчетную модель на много небольших участков и считает. Расчет получается быстрым, а главное, точным.

Зачем тогда изучать сопромат так долго? Сопромат способствует пониманию тех процессов, которые происходят внутри нагруженных элементов строительных конструкций или деталей машин. Формирует представление о том, как более рационально спроектировать тот или иной элемент конструкции, чтобы он был максимально прочным при минимальном расходе материала, одновременно удовлетворял таким критериям, как долговечность и надежность. Даже чтобы кнопки нажимать на компьютере, подобрать правильно расчетную схему, входные данные, а потом считать результат, выданный ЭВМ, проанализировать его, нужно понимание тех принципов, которые рассматриваются в сопромате.

Основные разделы в сопромате

Фундаментальные разделы, которые изучают студенты любых специальностей, у которых преподаётся данный предмет, являются: растяжение (сжатие), кручение и изгиб. Это базис, на котором строятся следующие, более продвинутые темы.

Растяжение (сжатие)

Сопромат что это такое

Это самый простой раздел, с него, как правило, студенты начинают знакомиться с сопроматом. Учатся строить первые эпюры внутренних усилий, подбирают рациональные размеры поперечных сечений для стержней. Проводят первые расчеты на прочность, жесткость, сравнивая допустимое перемещение с перемещением расчетным. Свои навыки, полученные на лекциях, студенты оттачивают на двух основных типах задач этого раздела. На центрально растянутых (сжатых) брусьях или стержневых системах.

Кручение

Сопромат что это такое

Этот вид деформации чаще всего подробно рассматривается студентами машиностроительных специальностей. А в качестве домашних задач выдается схема вала, для которого требуется выполнить проектировочный или проверочный расчет.

Изгиб

Сопромат что это такое

Этот раздел является самым популярным. У многих людей, когда-то изучавших сопромат, эта дисциплина ассоциируется с балками и эпюрами для них. Так как в вузах в основном делается упор именно на этот раздел. 1/6 часть любого учебника по сопротивлению материалов приходится на изгиб, и это не случайно. Практически все элементы конструкций, в той или иной степени, работают на изгиб. Тем более понимание процессов, происходящих при поперечном, его еще называют прямым, изгибе облегчает понимание процессов, происходящих при более сложных видах сопротивления: косом изгибе, внецентренном растяжении (сжатии) и т.д.

Уроки по сопромату для Чайников

Здесь я дам ссылки на уроки по сопромату начального уровня — для чайников.

В первую очередь уроки рассчитаны на заочников, которым приходится самостоятельно осваивать такую нелёгкую дисциплину, как «сопротивление материалов». Также, если ты студент-очник, но тебе нужно быстро понять основные темы, данные уроки тебе помогут!

Советы по изучению уроков

Изучай уроки на компьютере!

Если будешь изучать все, как и было задумано, то тебе придется много перемещаться внутри статей и по сайту в целом — переходить по ссылкам. На компьютере это будет делать просто удобнее, чем на телефоне.

Не спеши!

Я хоть и стараюсь писать максимально просто, как говорится, для чайников, однако, сопромат — нелёгкий предмет, и информации всё равно много и быстро всё выучить не получится!

Конспектируй!

Можешь не конспектировать теорию — конспектируй решение задач! Даже если тебе кажется, что всё просто и вести конспект не обязательно, скорее всего, на следующий день ты забудешь большую часть материала.

комментария 3

Очень интересный курс, особенно для начинающих. После его изучения можно легко освоить дистанционное обучение и сдачу экзамена с получением диплома

После ВУЗа решил обновить знания, спасибо за иллюстрации и за вполне доступный материал. (Привет из Харькова)

Супер, супер, супер.
Огромное спасибо. Просто огромное, я сдал!

Источник

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ, раздел механики твердого тела, изучающий напряжения и деформации, которые обусловлены силами, действующими на твердые тела – элементы конструкции. Эту дисциплину можно характеризовать и как науку о методах расчета элементов конструкции на прочность, жесткость и устойчивость.

Сопромат что это такое

Напряжение, создаваемое в твердом теле внешними нагрузками, есть мера (с размерностью силы на единицу площади) интенсивности внутренних сил, действующих со стороны одной, мысленно отсекаемой, части тела на другую, оставшуюся (метод сечений). Внешние нагрузки вызывают деформацию тела, т.е. изменение его размеров и формы. В сопротивлении материалов исследуются соотношения между нагрузками, напряжениями и деформациями, причем исследования ведутся, с одной стороны, путем математического вывода формул, связывающих нагрузки с вызываемыми ими напряжениями и деформациями, а с другой – путем экспериментального определения характеристик материалов, применяемых в строениях и машинах. См. также МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА; МЕТАЛЛОВ ИСПЫТАНИЯ. По найденным формулам с учетом результатов испытания материалов рассчитываются размеры элементов строений и машин, обеспечивающие сопротивление заданным нагрузкам. Сопротивление материалов не относится к точным наукам, так как многие его формулы выводятся на основе предположений о поведении материалов, которые не всегда точно выполняются. Тем не менее, пользуясь ими, грамотный инженер может создавать надежные и экономичные конструкции.

С сопротивлением материалов тесно связана математическая теория упругости, в которой тоже рассматриваются напряжения и деформации. Она позволяет решать те задачи, которые с трудом поддаются решению обычными методами сопротивления материалов. Однако между сопротивлением материалов и теорией упругости нет четкой границы. Хотя почти все задачи о распределении напряжений решены методами математического анализа, при сложных условиях эти решения требуют трудоемких выкладок. И тогда на помощь приходят экспериментальные методы анализа напряжений.

НАПРЯЖЕНИЕ И ДЕФОРМАЦИЯ

Виды напряжений.

Сопромат что это такое

Самое важное понятие в сопротивлении материалов – это понятие напряжения как силы, действующей на малую площадку и отнесенной к площади этой площадки. Напряжения бывают трех видов: растяжения, сжатия и сдвига.

Сопромат что это такое

Сопромат что это такое

Рассмотрим короткий цилиндр (рис. 1,б), на верхний торец которого положен груз. При этом во всех поперечных сечениях цилиндра действуют напряжения сжатия. Если напряжение равномерно распределено по всему сечению, то справедлива формула S = P/A. Сжатый цилиндр короче, чем в отсутствие деформаций.

Сопромат что это такое

Напряжения растяжения и сжатия направлены по нормали (т.е. вдоль перпендикуляра) к площадке, в которой они действуют, а напряжение сдвига – параллельно площадке. Поэтому напряжения растяжения и сжатия называются нормальными, а напряжения сдвига – касательными.

Деформация.

Деформацией называется изменение размера тела под действием приложенных к нему нагрузок. Деформация, отнесенная к полному размеру, называется относительной. Если изменение каждого малого элемента длины тела одинаково, то относительная деформация называется равномерной. Относительную деформацию часто обозначают символом d, а полную – символом D. Если относительная деформация постоянна по всей длине L, то d = D/L. Например, если длина стального стержня до приложения растягивающей нагрузки равна 2,00 м, а после нагружения – 2,0015 м, то полная деформация D равна 0,0015 м, а относительная – d = 0,0015/2,00 = 0,00075 (м/м).

Почти для всех материалов, применяемых в строениях и машинах, относительная деформация пропорциональна напряжению, пока оно не превысит т.н. предела пропорциональности. Это очень важное соотношение называется законом Гука. Оно было экспериментально установлено и сформулировано в 1678 английским изобретателем и часовых дел мастером Р.Гуком. Данное соотношение между напряжением и деформацией для любого материала выражается формулой S = Ed, где E – постоянный множитель, характеризующий материал. Этот множитель называют модулем Юнга по имени Т.Юнга, который ввел его в 1802, или же модулем упругости. Из обычных конструкционных материалов наибольший модуль упругости у стали; он равен примерно 200 000 МПа. В стальном стержне относительная деформация, равная 0,00075, из приводившегося ранее примера вызывается напряжением S = Ed = 200 000 ґ 0,00075 = 150 МПа, что меньше предела пропорциональности конструкционной стали. Если бы стержень был из алюминия с модулем упругости около 70 000 МПа, то, чтобы вызвать ту же самую деформацию 0,00075, достаточно было бы напряжения немногим более 50 МПа. Из сказанного ясно, что упругие деформации в строениях и машинах очень малы. Даже при сравнительно большом напряжении 150 МПа из приведенного выше примера относительная деформация стального стержня не превышает одной тысячной. Столь большая жесткость стали – ее ценное качество.

Чтобы наглядно представить деформацию сдвига, рассмотрим, например, прямоугольную призму ABCD (рис. 3). Ее нижний конец жестко заделан в твердое основание. Если на верхнюю часть призмы действует горизонтальная внешняя сила F, она вызывает деформацию сдвига, показанную штриховыми линиями. Смещение D есть полная деформация на длине (высоте) L. Относительная деформация сдвига d равна D/L. Для деформации сдвига тоже выполняется закон Гука при условии, что напряжение не превышает предела пропорциональности для сдвига. Следовательно, Ss = Esd, где Es – модуль сдвига. Для любого материала величина Es меньше E. Для стали она составляет около 2/5 E, т.е. приблизительно 80 000 МПа. Важный случай деформации сдвига – деформация в валах, на которые действуют внешние скручивающие моменты.

Сопромат что это такое

Выше речь шла об упругих деформациях, которые вызываются напряжениями, не превышающими предела пропорциональности. Если же напряжение выходит за предел пропорциональности, то деформация начинает расти быстрее, чем напряжение. Закон Гука перестает быть справедливым. В случае конструкционной стали в области, лежащей чуть выше предела пропорциональности, небольшое увеличение напряжения приводит к увеличению деформации во много раз по сравнению с деформацией, соответствующей пределу пропорциональности. Напряжение, при котором начинается столь быстрый рост деформации, называется пределом текучести. Материал, в котором разрушению предшествует большая неупругая деформация, называется пластичным.

ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯ

Допускаемое (допустимое) напряжение – это значение напряжения, которое считается предельно приемлемым при вычислении размеров поперечного сечения элемента, рассчитываемого на заданную нагрузку. Можно говорить о допускаемых напряжениях растяжения, сжатия и сдвига. Допускаемые напряжения либо предписываются компетентной инстанцией (скажем, отделом мостов управления железной дороги), либо выбираются конструктором, хорошо знающим свойства материала и условия его применения. Допускаемым напряжением ограничивается максимальное рабочее напряжение конструкции.

При проектировании конструкций ставится цель создать конструкцию, которая, будучи надежной, в то же время была бы предельно легкой и экономной. Надежность обеспечивается тем, что каждому элементу придают такие размеры, при которых максимальное рабочее напряжение в нем будет в определенной степени меньше напряжения, вызывающего потерю прочности этим элементом. Потеря прочности не обязательно означает разрушение. Машина или строительная конструкция считается отказавшей, когда она не может удовлетворительно выполнять свою функцию. Деталь из пластичного материала, как правило, теряет прочность, когда напряжение в ней достигает предела текучести, так как при этом из-за слишком большой деформации детали машина или конструкция перестает соответствовать своему назначению. Если же деталь выполнена из хрупкого материала, то она почти не деформируется, и потеря ею прочности совпадает с ее разрушением.

Запас прочности.

Разность напряжения, при котором материал теряет прочность, и допускаемого напряжения есть тот «запас прочности», который необходимо предусматривать, учитывая возможность случайной перегрузки, неточностей расчета, связанных с упрощающими предположениями и неопределенными условиями, наличия не обнаруженных (или не обнаружимых) дефектов материала и последующего снижения прочности из-за коррозии металла, гниения дерева и пр.

Коэффициент запаса.

Коэффициент запаса прочности какого-либо элемента конструкции равен отношению предельной нагрузки, вызывающей потерю прочности элемента, к нагрузке, создающей допускаемое напряжение. При этом под потерей прочности понимается не только разрушение элемента, но и появление в нем остаточных деформаций. Поэтому для элемента конструкции, выполненного из пластичного материала, предельным напряжением является предел текучести. В большинстве случаев рабочие напряжения в элементах конструкции пропорциональны нагрузкам, а поэтому коэффициент запаса определяется как отношение предела прочности к допускаемому напряжению (коэффициент запаса по пределу прочности). Так, если предел прочности конструкционной стали равен 540 МПа, а допускаемое напряжение – 180 МПа, то коэффициент запаса равен 3.

РАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ

В сопротивлении материалов большое внимание уделяется выводу соотношений между заданными нагрузками, размерами и формой элемента конструкции, несущего эти нагрузки или сопротивляющегося им, и напряжениями, возникающими в определенных сечениях элемента конструкции. Как правило, цель расчетов состоит в том, чтобы найти необходимые размеры элемента, при которых максимальное рабочее напряжение в нем не будет превышать допускаемого.

В элементарном курсе сопротивления материалов рассматривается ряд типичных случаев равномерного распределения напряжений: растянутые стержни, короткие сжатые стержни, тонкостенные цилиндры, работающие под давлением внутренней среды (котлы и резервуары), заклепочные и сварные соединения, температурные напряжения и такие статически неопределимые системы, как растянутые стержни из нескольких разных материалов.

Если напряжение одинаково во всех точках поперечного сечения, то S = P/A. Конструктор находит необходимую площадь поперечного сечения, поделив заданную нагрузку на допускаемое напряжение. Но нужно уметь отличать случаи, в которых напряжение действительно распределено равномерно, от других, сходных случаев, в которых этого нет. Необходимо также (как в задаче о заклепочных соединениях, в которых существуют напряжения и растяжения, и сжатия, и сдвига) находить плоскости, в которых действуют напряжения разного вида, и определять максимальные местные напряжения.

Тонкостенный цилиндр.

Такой резервуар выходит из строя (разрывается), когда напряжение растяжения в его оболочке становится равным пределу прочности материала. Формулу, связывающую толщину стенки t, внутренний диаметр резервуара D, напряжение S и внутреннее давление R, можно вывести, рассмотрев условия равновесия кольца, вырезанного из его оболочки двумя поперечными плоскостями, разделенными расстоянием L (рис. 4,а). Внутреннее давление действует на внутреннюю поверхность полукольца с направленной вверх силой, равной произведению RDL, а напряжения в двух горизонтальных концевых сечениях полукольца создают две направленные вниз силы, каждая из которых равна tLS. Приравнивая, получаем

Сопромат что это такое

Заклепочное соединение.

На рис. 4,б представлено двухзаклепочное соединение двух полос внахлестку. Такое соединение может выйти из строя из-за перерезывания обеих заклепок, разрыва одной из полос в том месте, где она ослаблена отверстием под заклепку, или из-за слишком больших напряжений смятия по площади соприкосновения заклепки с полосой. Напряжение смятия в заклепочном соединении вычисляется как нагрузка на одну заклепку, деленная на диаметр заклепки и на толщину полосы. Допускаемой для такого соединения принимается наименьшая из нагрузок, соответствующих допускаемым напряжениям трех указанных видов.

Вообще говоря, напряжение, действующее в поперечном сечении растянутого или короткого сжатого стержня, можно с полным основанием считать равномерно распределенным, если равные и противоположно направленные нагрузки приложены так, что равнодействующая каждой из них проходит через центр тяжести рассматриваемого поперечного сечения. Но нужно иметь в виду, что ряд задач (и к ним относится задача о напряжениях смятия в заклепочном соединении) решается в предположении о равномерном распределении напряжения, хотя это заведомо не соответствует действительности. Допустимость такого подхода проверяется опытным путем.

НЕРАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ

Многие элементы строений и детали машин нагружаются так, что напряжения во всех их поперечных сечениях распределены неравномерно. Чтобы вывести формулы для расчета напряжений в таких условиях, мысленно разрезают элемент плоскостью, которая дает нужное поперечное сечение, на две части и рассматривают условия равновесия одной из них. На эту часть действуют одна или несколько заданных внешних сил, а также силы, эквивалентные напряжениям в данном поперечном сечении. Действующие напряжения должны удовлетворять условиям равновесия и соответствовать деформациям. Эти два требования составляют основу для решения задачи. Второе из них подразумевает справедливость закона Гука. Типичными элементами с неравномерным распределением напряжений являются нагруженные балки, валы под действием скручивающих сил, растянутые или сжатые стержни с дополнительным изгибом и колонны.

БАЛКИ.

Балка – это длинный стержень с опорами и нагрузками, работающий в основном на изгиб. Поперечное сечение балки обычно одинаково по всей ее длине. Силы, с которыми опоры действуют на балку, называются реакциями опор. Наиболее распространены два вида балок: консольная (рис. 5,а) и балка с двумя опорами, называемая простой (рис. 5,б). Под действием нагрузок балка прогибается. При этом «волокна» на ее верхней стороне сокращаются, а на нижней – удлиняются. Очевидно, что где-то между верхней и нижней сторонами балки имеется тонкий слой, длина которого не изменяется. Он называется нейтральным слоем. Изменение длины волокна, расположенного между верхней (или нижней) стороной балки и ее нейтральным слоем, пропорционально расстоянию до нейтрального слоя. Если справедлив закон Гука, то напряжения тоже пропорциональны этому расстоянию.

Сопромат что это такое

Формула изгиба.

На основе указанного распределения напряжений, дополненного условиями статики, выведена т.н. формула изгиба, в которой напряжение выражается через нагрузки и размеры балки. Она обычно представляется в виде S = Mc/I, где S – максимальное напряжение в рассматриваемом поперечном сечении, c – расстояние от нейтрального слоя до наиболее напряженного волокна, M – изгибающий момент, равный сумме моментов всех сил, действующих по одну сторону от этого сечения, а I – момент инерции поперечного сечения (определенная функция формы и размеров последнего). Характер изменения нормальных напряжений в поперечном сечении балки показан на рис. 6.

Сопромат что это такое

В поперечных сечениях балок действуют также касательные напряжения. Их вызывает равнодействующая всех вертикальных сил, приложенных по одну сторону поперечного сечения горизонтальной балки. Сумма всех внешних сил и реакций, действующих на одну из двух частей балки, называется сдвигом в сечении балки и обычно обозначается через V. Касательные напряжения неравномерно распределены по сечению: они равны нулю на верхнем и нижнем краях сечения и почти всегда максимальны в нейтральном слое.

Прогиб балки.

Часто требуется рассчитать прогиб балки, вызванный действием нагрузки, т.е. вертикальное смещение точки, лежащей в нейтральном слое. Это очень важная задача, поскольку прогиб и кривизну балки нужно знать при решении задач, относящихся к широкому кругу т.н. статически неопределимых систем.

Еще в 1757 Л.Эйлер вывел формулу для кривизны изогнутой балки. В этой формуле кривизна балки выражается через переменный изгибающий момент. Чтобы найти ординату упругой кривой (прогиб), необходимо брать двойной интеграл. В 1868 О.Мор (Германия) предложил метод, основанный на эпюрах изгибающих моментов. Этот графоаналитический метод имеет огромное преимущество перед прежними методами, так как позволяет свести все математические вычисления к сравнительно простым арифметическим выкладкам. Он дает возможность вычислять прогиб и наклон в любой точке балки при любой нагрузке.

Статически неопределимые балки.

Многие балки, используемые в строениях и машинах, имеют более двух опор или только две опоры, но с заделкой одного из концов, исключающей возможность поворота. Такие балки называются статически неопределимыми, поскольку уравнений статики недостаточно для определения реакций в опорах и моментов в заделке. Чаще всего рассматриваются подобные балки трех типов: с одним заделанным (защемленным) концом и одной опорой, с заделанными обоими концами и неразрезные балки, имеющие более двух опор (рис. 7).

Сопромат что это такое

Первое решение задачи о неразрезных балках было опубликовано французским инженером Б.Клапейроном в 1857. Он доказал т.н. теорему о трех моментах. Уравнение трех моментов представляет собой соотношение между изгибающими моментами в трех последовательных опорах одной неразрезной балки. Например, в случае неразрезной балки с равномерной нагрузкой на каждом пролете это уравнение имеет вид

Здесь MA, MB и MC – изгибающие моменты в трех опорах, L1 и L2 – длины левого и правого пролетов, W1 – нагрузка на левый пролет, а W2 – нагрузка на правый пролет. Нужно написать такое уравнение для каждой пары смежных пролетов, а затем решить полученную систему уравнений. Если число пролетов равно n, то число уравнений будет равно n – 1.

В 1930 Х.Кросс опубликовал свой метод расчета широкого круга статически неопределимых рам и неразрезных балок. Его «метод распределения моментов» позволяет обходиться без решения систем уравнений, сводя все вычисления к сложению и вычитанию чисел.

НАПРЯЖЕНИЕ ПРИ КРУЧЕНИИ.

Если к концам вала приложены равные, но противоположно направленные внешние скручивающие моменты, то во всех его поперечных сечениях существуют только касательные напряжения, т.е. напряженное состояние в точках скручиваемого стержня представляет собой чистый сдвиг. В круговом поперечном сечении вала деформации сдвига и касательные напряжения равны нулю в центре и максимальны на краю; в промежуточных точках они пропорциональны расстоянию от центра тяжести сечения. Обычная формула для максимального касательного напряжения при кручении такова: S = Tc/J, где T – скручивающий момент на одном конце, c – радиус вала и J – полярный момент сечения. Для круга J = pr 4 /2. Эта формула применима только в случае кругового поперечного сечения. Формулы для валов с поперечным сечением другой формы выводятся путем решения соответствующих задач методами математической теории упругости с привлечением в некоторых случаях методов экспериментального анализа.

СЛОЖНОЕ СОПРОТИВЛЕНИЕ.

Нередко приходится рассчитывать балки, на которые в дополнение к поперечным нагрузкам действуют продольные силы растяжения или сжатия, приложенные к концам. В таких случаях напряжение в любой точке поперечного сечения равно алгебраической сумме нормального напряжения, создаваемого продольной нагрузкой, и изгибного напряжения, создаваемого поперечными нагрузками. Общая формула для напряжения в случае совместного действия изгиба и растяжения-сжатия такова: S = ± (P/A) ± (Mc/I), где знак «плюс» относится к растягивающему напряжению.

КОЛОННЫ.

Каркасы зданий и фермы мостов состоят в основном из растянутых стержней, балок и колонн. Колонны – это длинные сжатые стержни, примером которых в каркасах зданий могут служить вертикальные стержни, несущие межэтажные перекрытия.

Если длина сжатого стержня более чем в 10–15 раз превышает его толщину, то под действием критических нагрузок, приложенных к его концам, он, потеряв устойчивость, изогнется, даже если нагрузки номинально приложены по его оси (продольный изгиб). Вследствие такого изгиба нагрузка оказывается внецентренной. Если эксцентриситет в среднем поперечном сечении колонны равен D, то максимальное сжимающее напряжение в колонне будет равно (P/A) + (PDc/I). Отсюда видно, что допускаемая нагрузка для колонны должна быть меньше, чем для короткого сжатого стержня.

В строениях часто встречаются внецентренно нагруженные колонны. В результате точного теоретического анализа таких колонн были получены «формулы секанса». Но расчеты по этим формулам весьма трудоемки, а потому часто приходится прибегать к эмпирическим методам, дающим хорошие результаты.

СЛОЖНЫЕ НАПРЯЖЕННЫЕ СОСТОЯНИЯ

Напряжение в какой-либо точке той или иной плоскости нагруженного тела, вычисленное по обычным формулам, не обязательно будет наибольшим в этой точке. Поэтому важное значение имеет вопрос о соотношениях между напряжениями в разных плоскостях, проходящих через одну точку. Такие соотношения являются предметом раздела механики, посвященного сложным напряженным состояниям.

Соотношения между напряжениями.

Напряженное состояние в некоторой точке любого нагруженного тела можно полностью охарактеризовать, представив напряжения, действующие на грани элементарного куба в этой точке. Часто встречаются случаи, к которым относятся и рассмотренные выше, двухосного (плоского) напряженного состояния с напряжениями, равными нулю, на двух противоположных гранях куба. Напряжения, существующие в точке тела, неодинаковы в плоскостях с разным наклоном. Исходя из основных положений статики, можно сделать ряд важных выводов о соотношении между напряжениями в разных плоскостях. Приведем три из них:

1. Если в некоторой точке заданной плоскости имеется касательное напряжение, то точно такое же напряжение имеется в проходящей через эту точку плоскости, перпендикулярной заданной.

2. Существует плоскость, в которой нормальное напряжение больше, чем в любой другой.

3. В плоскости, перпендикулярной этой плоскости, нормальное напряжение меньше, чем в какой-либо другой.

Максимальное и минимальное нормальные напряжения, о которых говорится в п. 2 и 3, называются главными напряжениями, а соответствующие плоскости – главными плоскостями.

Необходимость в анализе главных напряжений на основе указанных соотношений не всегда возникает, так как простые формулы, которыми обычно пользуются инженеры, в большинстве случаев дают именно максимальные напряжения. Но в некоторых случаях, например при расчете вала, сопротивляющегося одновременно скручивающему и изгибающему моментам, нельзя обойтись без соотношений для сложного напряженного состояния.

БОЛЕЕ СЛОЖНЫЕ ЗАДАЧИ

В задачах, о которых говорилось выше, рассматривались напряжения либо равномерно распределенные, либо линейно меняющиеся с удалением от нейтральной оси, где напряжение равно нулю. Однако во многих случаях закон изменения напряжения более сложен.

В качестве примера задач с нелинейным распределением напряжений можно привести искривленные балки, толстостенные сосуды, работающие под высоким внутренним или наружным давлением, валы некругового поперечного сечения и нагруженные тела с резкими изменениями поперечного сечения (канавками, буртиками и т.д.). Для таких задач рассчитываются коэффициенты концентрации напряжений.

Кроме того, выше речь шла только о статических нагрузках, постепенно прилагаемых и снимаемых. Переменные же и периодически меняющиеся нагрузки, многократно повторенные, могут приводить к потере прочности, даже если они не превышают статического предела прочности рассматриваемого материала. Такие отказы называются усталостными, а проблема их предотвращения приобрела важное значение в наш век машин и механизмов, работающих на необычайно высоких скоростях. См. также СТАТИКА; ПРОЧНОСТНОЙ РАСЧЕТ КОНСТРУКЦИЙ; КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ.

Беляев Н.М. Сопротивление материалов. М., 1978
Павлов П.А. Механические состояния и прочность материалов. Л., 1980
Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. М., 1986
Писаренко Г.С. и др. Сопротивление материалов. Киев, 1986
Степин П.А. Сопротивление материалов. М., 1988
Бородин Н.А. Сопротивление материалов. М., 1992

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *