Свободные радикалы что это
Свободные радикалы что это
Свободные радикалы и антиоксиданты
Свободные радикалы – это активные молекулы, имеющие возможность для присоединения ещё одного электрона. Молекула имеет один непарный электрон, и с лёгкостью вступает в химические реакции, обеспечивающие ей заполнение этой пустоты. Обеспечив это присоединение, она становится неопасной. Однако, химические реакции, вызванные свободными радикалами, не проходят бесследно для организма.
Действие свободных радикалов
В норме небольшое количество свободных радикалов присутствует в человеческом организме. Здоровый иммунитет отлично контролирует их деятельность и сам способствует их появлению.
Функции контролируемых свободных радикалов:
Разрушение вирусов и бактерий;
Активизация необходимых ферментов;
Производство важнейших гормонов;
Производство энергии и нужных человеку субстанций.
Примером контролируемых свободных радикалов является коллоидное серебро
Клетки лишаются своей защиты, так как свободные радикалы разрушают целостность клеточной мембраны. В организме накапливается излишняя жидкость, повышается уровень кальция. Эти изменения приводят к появлению заболеваний, бесплодию, нарушению биохимических реакций в толще кожи и преждевременному старению.
Образование свободных радикалов
Причины появления свободных радикалов:
Ультрафиолетовое излучение – УФ-лучи лишают молекулы электронов, разрушают мембраны клеток и их составляющие.
Побочные эффекты, передозировка лекарственных средств – молекулы химических соединений препаратов вступают в реакции и ферментативные превращения, превращаются в свободные радикалы.
Курение – никотин и образующиеся при этом смолы запускают реакции окисления.
Нарушенное экологическое равновесие – химически соединения из продуктов, выхлопных газов, бытовой химии попадают в организм человека и запускают реакции окисления.
Негативное действие стресса – гормоны стресса (адреналин, кортизол) нарушают дыхание и питание клетки, делая её мишенью для свободных радикалов.
За 15 минут, пока мы заправляем машину топливом, от испарений бензина в нашем организме появляется столько свободных радикалов, сколько наши дедушки и бабушки не получали за всю жизнь.
Старение организма и свободные радикалы
Нестабильные молекулы, которым не хватает одного или даже нескольких электронов, рано или поздно отнимают его у полноценных клеток. Атака радикалов запускает реакцию окисления, когда обычные молекулы отдают электрон нестабильным молекулам. Поскольку из обычных молекул состоят все органы и ткани человеческого организма, после окислительных реакций они уже не могут оставаться прежними и начинают разрушаться.
После забора электрона, свободный радикал становится устойчивым соединением. В это самое время атакованная им молекула сама становится свободным радикалом. Окислительные реакции возобновляются с новой силой уже с другими участниками. Количество поражённых клеток растёт, в химические реакции вступают даже инертные молекулы.
Для примера стоит обратить внимание на молекулы коллагена. Инертные в обычной ситуации, после окисления их активность растёт, они связываются друг с другом. Результат этого процесса – потеря эластичности кожи, образование морщин, старение дермы. Аналогичный процесс происходит во всех тканях человеческого тела. Этот процесс сравним с коррозией металла. Свободные радикалы заставляют организм «ржаветь».
Цепной механизм старения запускается при поражении радикалами митохондрии клетки (клеточной органеллы). Роль этих неполноценных молекул в процессе старения стала явной после многочисленных исследований последних десятилетий.
Возможные последствия свободных радикалов:
Появления морщин и пигментных пятен;
Воспалительные изменения в суставах;
Заболевания сердца и сосудов;
Ослабление мышц, поддерживающих скелет;
Потеря эластичности кожи;
Снижение зрения и слуха;
Возрастные психические процессы;
Чем успешнее человек борется со свободными радикалами, тем позже начинается у него возраст начала возрастных изменений. Старение на молекулярном уровне приводит к изменениям метаболизма организма. После повреждений клеток свободными радикалами в них накапливаются повреждения ДНК, мутации. Модифицированные белки приводят к склеиванию молекул друг с другом, и не могут в полной мере выполнять свои функции. С возрастом количество перекрестных связей увеличивается.
Разрушение структуры клеток, деструкция их мембран приводит к тому, что все процессы в них замедляются или идут неправильно. Продукты обмена не выводятся из клетки, и она засоряется. Повреждающие воздействия из-за свободных радикалов увеличиваются, организм не может противостоять старению.
Защита организма от свободных радикалов
Для противодействия свободным радикалам есть надёжный способ – это поступление в организм антиоксидантов. Эти соединения отдают неполноценным молекулам свои электроны, не теряя при этом своей стабильности и активности. Прекращается негативный процесс разрушения молекул, не происходит разрушения клеток, не возникают реакции окисления. Антиоксиданты тоже становятся свободными радикалами, но они не имеют почти никакой силы, и не разрушают клетки.
В организм человека антиоксиданты поступают с растительной пищей, витаминами, минералами, аминокислотами, микроэлементами. Часть антиоксидантов образуются в организме человека (ферменты, гормон мелатонин).
Наиболее доступные антиоксиданты:
Витамин A, E, C и бетта-каротин (любые овощи и фрукты)
Цинк (рекордсменом по содержанию цинка являются тыквенные семечки)
Флавоноиды (рекордсменами по содержанию флавоноидов являются ягоды, особенно тёмного цвета)
Глутатион (данный антиоксидант вырабатывается самим организмом)
Чтобы противостоять свободным радикалам, нужно применять несложные меры: включать в свой рацион большое количество овощей и фруктов, отказаться от курения, избегать ультрафиолетового излучения, принимать витаминные и минеральные комплексы.
Один из лучших способов защититься от свободных радикалов – это пить ежедневно свежевыжатые соки из овощей.
Образование: С 2010 по 2016 гг. практикующий врач терапевтического стационара центральной медико-санитарной части №21, город электросталь. С 2016 года работает в диагностическом центре №3.
Наши авторы
Свободные радикалы: как с ними бороться
Чем больше открытий происходит в бьюти-индустрии, тем лучше мы, пользователи косметики, должны разбираться в научных терминах. Хотя бы затем, чтобы по достоинству оценить инновационные формулы кремов и понять, какую важную работу они выполняют для нашей кожи. Начнем со свободных радикалов.
Алина Хараз Автор
Мария Невская Дерматолог
Что такое свободные радикалы
Когда мы говорим о свободных радикалах, чаще всего имеются в виду молекулы кислорода с неспаренным электроном. Они очень активны (их называют еще активным кислородом) и стремятся забрать недостающий электрон у любой другой молекулы, которая в результате сама становится свободным радикалом.
Появление свободных радикалов провоцируют:
Ясно, что спрятаться от свободных радикалов практически невозможно, можно лишь минимизировать взаимодействие с ними.
Если коротко: источником свободных радикалов для живого организма становится практически любое чужеродное действие или явление, нарушающее баланс внутренней системы.
Узнайте, чего вам не хватет в ежедневном уходе за кожей, ответив на вопросы нашего теста.
Действие свободных радикалов
Основное повреждающее действие свободных радикалов — это окислительный стресс (оксидативный стресс, оксидация, окисление). Свободно-радикальная теория считается одной из главных теорий старения. И с ней трудно поспорить.
За всю жизнь человек прокачивает через себя примерно 17 тонн кислорода — образуется около полутора тонн свободных радикалов. От такого воздействия ржавеют металлы, что уж говорить о хрупком человеческом организме.
Свободные радикалы в организме человека
Понятно, что в нашем теле постоянно происходят естественные химические процессы, включая и окисление, в котором участвуют свободные радикалы. Это норма и часть жизни.
Мало того, в умеренных дозах, которые мы получаем из чистого воздуха, свободные радикалы нам необходимы — в частности, они участвуют в обеспечении когнитивных функций мозга (памяти, внимания, психомоторной координации, речи, мышления, ориентации и др.).
Проблемой становится их избыток. С одной стороны, мы получаем их извне:
На коже свободные радикалы:
С другой стороны, наш организм, особенно в состоянии стресса, сам становится фабрикой по производству свободных радикалов. Продукты полураспада многих гормонов (и гормонов стресса, и женских стероидов) — те же токсины (наряду с химией из лекарственных препаратов или пищи), которые вызывают образование свободных радикалов, призванных, строго говоря, уничтожать эти токсины.
Кстати, легче всего окисляются именно липиды — жиры, из которых состоят мембраны едва ли не всех клеток человека, начиная с клеток кожи, первыми встающих на пути свободных радикалов.
В умеренных дозах, которые мы легко получаем из чистого воздуха, свободные радикалы нам необходимы – в частности, они обеспечивают познавательную функцию мозга. © iStock
Как бороться со свободными радикалами в организме
В идеале надо переехать в утопический мир, где возможна жизнь:
Имейте в виду: гаджеты — источник электромагнитного излучения, а загрязненный воздух — свободных радикалов.
Избавиться от свободных радикалов в организме невозможно, да и незачем. Они должны выполнять свою разрушительную работу, направленную на уничтожение (окисление) вредных веществ и микроорганизмов, тем самым защищая нас от них.
Поскольку у свободных радикалов в организме есть строго определенные функции, природа предусмотрела защиту от их избыточной активности — антиоксидацию.
Естественный ее уровень рассчитан на то, чтобы справляться с природным оксидативным стрессом. Но человеческая антиоксидантная защита не рассчитана на оксидативный стресс, многократно усиленный цивилизацией. Поэтому современный человек нуждается в дополнительных антиоксидантах.
Имейте в виду: излучение гаджетов – это тоже источники заряженных частиц. © iStock
Свободные радикалы и антиоксиданты
Итак, свободные радикалы — это окислители, оксиданты. Противоядие для них — антиоксиданты. Вы удивитесь, но это слово впервые появилось в русском языке: термин «антиоксиданты» применили в одном из научных институтов Москвы на рубеже 1960–70-х.
Антиоксиданты нейтрализуют активность свободных радикалов, связывая их. Такая система помогает клеткам защищаться от окисления, делает их менее уязвимыми. Основные антиоксиданты, которые положили начало этой категории веществ — некоторые ферменты (коэнзим Q10), витамины А, С и Е. Антиоксидантным действием отличаются и гормоны — например, мелатонин.
Помимо перечисленных веществ, множество витаминов, микроэлементов, ферментов и гормонов, присутствуя в организме в достаточном количестве, формируют ту самую антиоксидантную защиту.
Как защититься от воздействия свободных радикалов
Очевидно, что с годами антиоксидантная защита ослабевает, поэтому стоит задуматься о ее усилении. При этом наивно полагать, что можно питаться фастфудом и вдыхать городской смог, а затем выпить таблетку с антиоксидантом и тем самым нейтрализовать все негативные последствия. Важны комплексный подход и трезвый взгляд на свой образ жизни.
Кроме отказа от вредных привычек, имеет смысл обратить внимание на продукты, богатые антиоксидантами.
Темные ягоды, особенно виноград, в кожуре и косточках которого содержится один из чемпионов по антиоксидантной активности — ресвератрол. Считается, что чем насыщеннее цвет ягоды, фрукта или овоща, тем богаче он полифенолами — веществами-антиоксидантами.
Соблюдение правила «5 разных овощей и фруктов в день» — серьезный вклад в собственную антиоксидантную защиту.
Зеленый чай, по мнению многих экспертов, — еще более мощный источник антиоксидантов, чем виноград и полученное из него красное вино.
Жирная морская рыба и разнообразные (именно так) растительные масла.
Косметические средства, обогащенные антиоксидантами, тоже нужны. Конечно, они не повернут время вспять, но им вполне по силам улучшить тургор кожи, сделать ее более гладкой. Кроме того, такие средства незаменимы при повреждениях, воспалениях и некоторых заболеваниях кожи. Например, большинство средств после загара действуют именно благодаря антиоксидантам в составе.
Не стоит бояться свободных радикалов. Лучше ограничить их присутствие в своей жизни, перейти на антиоксидантную диету и заботиться о здоровье.
Обзор продуктов с антиоксидантами
Антиоксидантный гель для кожи вокруг глаз AOX+ Eye Gel, SkinCeuticals
Формула «сыворотка в геле» борется с морщинами и признаками фотостарения тонкой кожи век. В составе — звездное трио антиоксидантов: L-аскорбиновая и феруловая кислоты, флоретин.
Концентрированный антиоксидантный гель Resveratrol B E, SkinCeuticals
Ресвератрол — антиоксидант, полученный из кожуры винограда, называют молекулой молодости. Лучше всего он работает по ночам, уничтожая последствия стресса, накопленного в течение дня. Как всегда у SkinCeuticals, основной антиоксидант не работает в одиночку. Здесь его поддерживают байкалин и альфа-токоферол (витамин Е).
Сыворотка широкого спектра действия Phloretin CF, SkinCeuticals
Средство содержит ударную дозу антиоксидантов, в том числе L-аскорбиновую и феруловую кислоты с осветляющими свойствами, и отлично подходит для тех, кто ведет борьбу с пигментными пятнами. Спустя месяц регулярного применения вы заметите, что пигментация стала светлее, а кожа — более упругой и подтянутой. Обязательное условие — поверх сыворотки наносить крем с SPF 30 или 50.
Укрепляющий уход против признаков старения на разных стадиях Slow Age, Vichy
Антиоксидант байкалин в сочетании с витаминами С и Е способствует нейтрализации свободных радикалов. Пробиотик bifidus укрепляет защитный барьер, усиливает сопротивляемость кожи внешним факторам. Фильтр SPF 25 защищает от фотостарения.
Антивозрастной уход для нормальной и комбинированной кожи Redermic C, La Roche-Posay
Действенное средство для кожи с признаками старения. Высокая концентрация витамина С нейтрализует вред, наносимый клеткам кожи свободными радикалами. Кроме этого антиоксиданта, в формуле работают:
Свободные радикалы: как с ними бороться
1 Что такое свободные радикалы
Когда мы говорим о свободных радикалах, чаще всего имеются в виду молекулы кислорода с неспаренным электроном. Они очень активны (их называют еще активным кислородом) и стремятся забрать недостающий электрон у любой другой молекулы, которая в результате сама становится свободным радикалом.
2 Появление свободных радикалов провоцируют:
Ясно, что спрятаться от свободных радикалов практически невозможно, можно лишь минимизировать взаимодействие с ними.
Если коротко: источником свободных радикалов для живого организма становится практически любое чужеродное действие или явление, нарушающее баланс внутренней системы.
3 Действие свободных радикалов
Основное повреждающее действие свободных радикалов — это окислительный стресс (оксидативный стресс, оксидация, окисление). Свободно-радикальная теория считается одной из главных теорий старения. И с ней трудно поспорить.
За всю жизнь человек прокачивает через себя примерно 17 тонн кислорода — образуется около полутора тонн свободных радикалов. От такого воздействия ржавеют металлы, что уж говорить о хрупком человеческом организме.
4 Свободные радикалы в организме человека
Понятно, что в нашем теле постоянно происходят естественные химические процессы, включая и окисление, в котором участвуют свободные радикалы. Это норма и часть жизни.
Мало того, в умеренных дозах, которые мы получаем из чистого воздуха, свободные радикалы нам необходимы — в частности, они участвуют в обеспечении когнитивных функций мозга (памяти, внимания, психомоторной координации, речи, мышления, ориентации и др.).
Проблемой становится их избыток. С одной стороны, мы получаем их извне:
На коже свободные радикалы:
С другой стороны, наш организм, особенно в состоянии стресса, сам становится фабрикой по производству свободных радикалов. Продукты полураспада многих гормонов (и гормонов стресса, и женских стероидов) — те же токсины (наряду с химией из лекарственных препаратов или пищи), которые вызывают образование свободных радикалов, призванных, строго говоря, уничтожать эти токсины.
Кстати, легче всего окисляются именно липиды — жиры, из которых состоят мембраны едва ли не всех клеток человека, начиная с клеток кожи, первыми встающих на пути свободных радикалов.
5 Как бороться со свободными радикалами в организме
В идеале надо переехать в утопический мир, где возможна жизнь:
Свободные радикалы: почему они образуются в коже и зачем с ними бороться
Skinconsult ai
Чего хочет твоя кожа?
Что такое свободные радикалы?
Свободные радикалы — это, говоря простыми словами, молекулы, которые провоцируют процесс окисления, атакуя обычные клетки и пытаясь отнять у них один электрон. Затронутая клетка сама становится свободным радикалом, распространяя окислительную реакцию на прилегающие клетки, или разрушается.
Медицинский эксперт марки Vichy Екатерина Турубара: «Особенность отдельно взятой молекулы свободных радикалов заключается во внешней оболочке, лишенной одного электрона. В стремлении восстановить баланс эти молекулы наносят урон живым клеткам через окислительные реакции».
Химия как наука выделяет различные молекулы с непарными электронами. Но для понимания процессов старения кожи важны именно радикалы кислорода, или активный кислород.
Как образуются свободные радикалы в организме человека
Свободные радикалы постоянно вокруг нас: в воздухе, в еде и воде, но синтезируются они и в организме человека — в результате химических реакций ферментирования и окисления. В небольшом количестве активный кислород выступает незаменимым участником клеточного дыхания и регуляции кровяного давления. Но как только его образуется слишком много, организм начинает разрушаться.
Свободнорадикальная теория старения гласит (и исследования это подтверждают), что повреждения от свободных радикалов накапливаются на протяжении жизни и приводят к старению.
Вредоносный излишек активного кислорода выделяется в результате воздействия ряда внешних факторов:
Курение и употребление алкоголя — еще два примера источника токсинов, а следовательно, и активного кислорода.
Свободные радикалы в коже
Откуда берутся свободные радикалы кислорода в коже человека? Из воздуха они оседают на внешнем слое эпидермиса, а воздействие агрессивных факторов внешней среды заставляет кожу производить уже собственные молекулы активного кислорода.
Свободные радикалы наносят повреждения мембране клеток, состоящей из липидов, тем самым ослабляя защитные механизмы кожи, разрушают клетки и волокна внеклеточного матрикса. Этот процесс называют оксидативным стрессом.
В результате образуются возрастные изменения кожи, опережающие хронологическое старение:
Ученые, специализирующиеся на старении кожи, связывают свободнорадикальное старение с гликацией. Вы наверняка знаете, что гликирование коллагена и эластина — тех самых, что отвечают за тургор и эластичность кожи, — приводит к деградации этих соединительных волокон. Они окружаются сахарами, затвердевают и теряют способность к регенерации. Оказывается, в числе конечных продуктов гликации присутствуют и свободные радикалы. Так, склонная к гликированию кожа более подвержена оксидативному стрессу. И наоборот — свободные радикалы способствуют процессу гликации.
Можно ли приостановить влияние свободных радикалов на организм?
Полностью вывести свободные радикалы из организма не получится, но этого и не требуется. Все же в разумных пределах они нам необходимы.
Достаточно замедлить ускоренный процесс окисления в организме, то есть не позволять активному кислороду запускать оксидативный стресс.
Для этого нужны соединения со способностью гасить процесс окисления. Их химики назвали антиоксидантами.
Антиоксиданты и свободные радикалы вступают в реакцию, и победителями всегда выходят первые.
Свободные радикалы и антиоксиданты
Антиоксиданты ограничивают активность свободных радикалов. Они отдают свои электроны, в итоге радикал становится стабильным и безопасным, но сами антиоксиданты не радикализуются. Иными словами, на них разрушительный процесс оксидации завершается. При этом антиоксиданты не мешают оксигенации — естественному насыщению клеток обычным живительным кислородом, лишенным окислительного потенциала.
Медицинский эксперт марки Vichy Екатерина Турубара: «Выделяют четыре группы антиоксидантов: витамины, полифенолы, ферменты и минералы. В косметологии чаще применяются антиоксиданты растительного происхождения: витамины С и Е, ресвератрол, байкалин и экстракт байкальского шлемника. С их помощью можно приостановить влияние свободных радикалов на организм, замедляя еще не заметные глазу ранние возрастные изменения и корректируя уже появившиеся признаки старения».
Борьба со свободными радикалами с помощью ухода от Vichy
Организм получает свою порцию спасительных антиоксидантов с пищей, особенно с овощами и фруктами. Коже этого недостаточно, даже если выпивать литр апельсинового сока ежедневно.
Для защиты от свободных радикалов косметологи и дерматологи предлагают подбирать средства ухода, содержащие антиоксиданты и вещества, повышающие сопротивляемость кожи окислению и агрессивному воздействию окружающей среды. Эффективность защитных и восстанавливающих комплексов в гаммах Slow Âge и LiftActiv доказана клинически, а это значит, что возрастные изменения, как и активность свободных радикалов, находятся под контролем.
Свободные радикалы
Содержание
Активные формы кислорода и свободные радикалы [ править | править код ]
К активным формам кислорода (АФК) относятся следующие соединения:
Свободный радикал — это любое самостоятельно существующее соединение, которое несет на внешней орбите хотя бы один неспаренный электрон (обозначается точкой •). Особенно страдают от действия свободных радикалов ненасыщенные жиры: воздействие на них свободных радикалов приводит к перекисному окислению липидов. Свободные радикалы — очень нестабильные, короткоживущие молекулы, которые практически сразу реагируют с ближайшими молекулами, вызывая повреждение клетки. Чтобы восстановить свою пару электронов на внешней орбите, свободный радикал забирает электрон у соседней молекулы. Но теперь уже другая молекула несет неспаренный электрон и становится свободным радикалом. По цепной реакции электрон передается от одной молекулы к другой, нарушая установленные законы и порядок в клетке. И результатом этих действий может оказаться повреждение клетки.
Образование свободных радикалов [ править | править код ]
Дыхательная цепь [ править | править код ]
Дыхательная цепь — главный источник свободных радикалов кислорода. Теоретически молекулярный кислород должен полностью восстанавливаться в комплексе IV четырьмя электронами с образованием воды и без образования каких-либо других промежуточных соединений. Но иногда кислород восстанавливается не полностью, и образуются супероксид-анион-радикалы. Кроме того, зачастую утечка электронов происходит из комплексов I и II в реакциях с убихиноном, и эти электроны тоже восстанавливают кислород. В целом около 2% молекулярного кислорода в клетке переходит в форму свободных супероксид-радикалов, и природа разработала защитные механизмы, чтобы избавиться от них.
Ионизирующее излучение [ править | править код ]
Если Н2О и О2 подвергаются воздействию ионизирующего излучения, образуются свободные радикалы. Этот принцип используется в лучевой терапии рака, хотя излучение может пагубно влиять и на здоровые клетки. При лучевой терапии свободные радикалы в большом количестве образуются в прицельно облучаемых опухолевых клетках, вызывая летальные повреждения их ДНК.
Загрязняющие вещества (поллютанты) [ править | править код ]
Табачный дым содержит эпоксиды и пероксиды, которые могут повреждать альвеолы легких. В табачных смолах присутствуют свободные радикалы, образовавшиеся из хинонов и семихинонов. Вдыхание неорганических частиц, например, асбеста, вызывает повреждение ткани легких свободными радикалами.
Ишемия миокарда и реперфузионное повреждение миокарда [ править | править код ]
Реперфузия — жизненно важный механизм, благодаря которому восстанавливается поток насыщенной кислородом крови к ишемизированным тканям. Однако реперфузия приводит к образованию свободных радикалов кислорода. Считается, что они ответственны за повреждение тканей при реперфузии.
Ионы металлов [ править | править код ]
Ионы переходных металлов, особенно ионы меди и железа, катализируют образование опасных гидроксильных радикалов (•ОН) из перекиси водорода в реакции Хабера—Вайса. Поскольку железо участвует в окислительном повреждении, концентрация свободных ионов железа в клетке должны регулироваться хелаторами железа (например, внутриклеточными белками, депонирующими железо, например ферритином).
Свободные радикалы: польза или вред? [ править | править код ]
Полезное действие свободных радикалов [ править | править код ]
Вредное воздействие свободных радикалов [ править | править код ]
Как правило, свободные радикалы причиняют организму вред. Они вызывают перекисное окисление липидов и нарушают их структуру, повреждают ДНК и вызывают рак. Окислительное повреждение клеток свободными радикалами приводит к преждевременному старению организма и развитию целого ряда дегенеративных заболеваний (чаще всего сердечно-сосудистых). Самые опасные свободные радикалы — гидроксильные (•ОН).
Механизмы защиты от свободных радикалов и активных форм кислорода [ править | править код ]
Ферментативная защита [ править | править код ]
Супероксиддисмутаза переводит супероксид-анионы в пероксид водорода, а каталаза вызывает разложение пероксида водорода на неопасную для организма воду и молекулярный кислород (рис. 15.1). Кроме того, пероксид водорода разрушается цитозольным ферментом — селензависимой глутатионпероксидазой, и это основной путь удаления пероксида водорода из клетки.
Перехватчики свободных радикалов [ править | править код ]
Перехватчики свободных радикалов — молекулы, которые реагируют со свободными радикалами и делают их безопасными для организма. Особенно богаты ими продукты с высоким содержанием витаминов А, С и Е, а также продукты, содержащие в большом количестве такие соединения растительного происхождения, как фенолы, полифенолы, флавоноиды. Эти вещества имеют высокую способность к поглощению радикалов кислорода (oxygen radical absorbance capacity, ORAC) и являются мощными перехватчиками свободных радикалов. Считается, что они снижают риск развития некоторых хронических дегенеративных заболеваний.
Способность к поглощению радикалов кислорода, величина ORAC [ править | править код ]
Относительно недавно усилился интерес к полезным свойствами продуктов с высокими значениями ORAC. Величина ORAC — это оценка общего содержания антиоксидантов в пище (например, фенолов и витаминов С и Е), которая выражается в ммоль ТЭ/кг, где ТЭ — это «тролокс-эквивалент». Тролокс — водорастворимый аналог витамина Е, который обладает мощным антиоксидантными свойствами и используется как эталонный препарат при тестировании пищевых продуктов в лабораторных условиях.
Свободные радикалы в организме человека и антиоксиданты
Среди множества угроз человеку в последнее время много разговоров о радикалах и том непоправимом вреде, который они способны нанести. Прежде чем говорить о защите организма от свободных радикалов надо понять, что это такое, какой от них вред и какие средства от свободных радикалов, могут реально помочь. Для этого придётся прочесть список антиоксидантов и узнать, какие от чего помогают.
Влияние радикалов на человека
Что такое свободный радикал? Это результат деятельности клеток, т. е. материалы, образующиеся в итоге некоторых процессов, например, разложения жиров, метаболизма и процессов воспаления.
Требуется отметить, что далеко не все вещества подобного происхождения относятся к вредоносным свободным радикалам. К последним относят не более 5% от общего числа.
Свободные радикалы появляются в итоге выработки энергии клеткой. По сути, это атом или молекул, в состав которой входит один свободный электрон, это и определяет его возможности вызывать процессы окисления.
Как показывают результаты многочисленных исследований среди общего объема отходов от деятельности клеток составляет не более 5%, если это число превышено, то это создает угрозу человеческому организму.
Радикалы могут на элементарном уровне повредить клетки, за счёт своих окислительных характеристик. Повреждения молекул могут вызвать серьезные последствия, вплоть до появления раковых опухолей.
Справедливости ради надо отметить, что отдельные радикалы вырабатываются иммунной системой и они уничтожают вирусы и вредоносные микроорганизмы.
Отдельные радикалы заняты созданием гормонов и активации других элементов. Они требуются человеку для генерации энергии, и различных веществ в которых он испытывает потребность.
Между тем нельзя забывать и том, что большой объем радикалов приводит к появлению еще их большего объема. А, это может привести росту ущерба для человека. Итогом, присутствия большого количества этих элементарных частиц может привести к тому, что произойдёт смена алгоритмов кодирования в клетках генетических данных, произойдет нарушение белковой структуры. Все дело в именной системе, она распознает белки такого типа как вредные и приложит все усилия для их уничтожения. В результате, белки, которые прошли мутацию приводят к повреждению защитного иммунного механизма. Это вызывает появление лейкемии и другим формам онкологических заболеваний.
Наличию свободных радикалов способствует скопление воды в организме. Приводит ускорению старения. Приводит к нарушению уровня кальция, а это также приводит к появлению различных заболеваний.
Немного истории
В середине прошлого века, советские ученые совершили открытие свободных радикалов, и после этого, мир как будто сошёл с ума. Исследователи, постоянно обнаруживали новые характеристики радикалов при этом научные разработки постепенно перемещались от чистой химии в сторону медицины.
С течением времени, люди стали узнавать то, что раковые патологии, старение, и даже бесплодие напрямую связаны с этими элементами.
В наши дни их рассматривают как ущербные молекулы, с отсутствующим электроном. Они прилагают массу усилий для того, чтобы его вернуть, отнимая их у других элементов, т. е. штатных молекул. Из тех, которые выстраиваются все клетки и соответственно органические ткани.
После атаки, совершенной радикалами, начнется невозвратимый операция окисления, инициирующей процедуру уничтожения тканей.
Другими словами, отняв у полноценной молекулы электрон, радикал возвращается в исходное положение, а молекула, его потерявшая становится радикал.
Количество поражённых молекул резко возрастает и происходит замыкание круга.
В результате этого, элементарные частицы, которые были пассивны, начинают вступать в химическое взаимодействие. Например, коллаген, вступивший в контакт с кислородом, приобретает излишнюю активность, что позволяет ему вступать с подобными молекулами. Такие соединения менее эластичны и скопление таких соединений приводит к старению кожи, появлению морщин и других неприятностей.
Кстати, как пример, воздействия радикалов можно назвать процесс ржавления металла.
Под их действием организм человек, постепенно начинает «ржаветь» и изнашиваться.
Основания для формирования свободных радикалов
В организме протекает постоянная выработка этих элементов. Этому способствуют определенные факторы. Изначально была определена первопричина появления свободных радикалов под действием радиации. Другая, менее распространенная причина — это прием некоторых лекарственных средств. Подвергаясь разнообразным изменения во время реакций внутри человека они теряют свои элементарные частицы и трансформируются в свободные электроны.
Ещё одна из причин образования этих электродов — это курение. Никотиновая смола и смолы, содержащиеся в табаке, провоцируют ряд реакций, в результате которых, происходит выделение свободных радикалов.
Но самыми распространенные поводы для образования радикалов, создают плохая экология, отработанные газы, жирная еда, постоянные стрессы.
При дыхании в легкие проникает большое количество агрессивных молекул защитится от которых практически нереально.
Наше любимое солнце, которое приносит человеку тепло и свет, по сути, это главный производитель свободных радикалов. Его лучи способствуют процессу фотостарения. Ультрафиолет попадает внутрь клеток кожи и выбивает электроны из элементов, которые образуют и мембрану, и клеточную среду. Итогом этого становится то, что вследствие этого, происходит старение и изнашивание кожных покровов.
Излучение, попадая в молекулы вышибет из них электрон, превращает ее в радикал. После такие молекулы начинают нести вред человеческому организму, в соответствии с механизмом, который был описан выше.
Многочисленные исследования показали и то, что на появление свободных радикалов оказывает и стресс, который постоянно испытывает современный человек. Во время стрессов происходит выделение таких гормонов, как адреналин, причём в объёмах, многократно превышающих потребности организма. Такое выделение приводит к нарушению клеточного питания, и их дыхания. В результате происходит накопление и разнесение радикалов по организму.
Итогом распространения становится старение и износ организма в целом.
Последствия избытка радикалов
При рассмотрении деятельности радикалов можно отметить, что они способствуют развитию следующих заболеваний:
Внешние источники радикалов
Кроме того, что радикалы образуются вследствие жизнедеятельности организма, существует опасность попадания радикалов из внешней среды. В частности, среди каналов поступления этих каналов можно выделить следующие:
Не представляют пользу и некоторые продукты, например, кукурузное масло, в состав которого входит жирные кислоты.
Кроме этого, свободные радикалы образуются в большом объеме в продуктах, прошедших длительную термическую обработку.
Самые опасные радикалы
Радикалы играют существенную роль в деятельности организма. Одни выступают в качестве индикаторов, другие требуются для настройки синтезирования различных соединений, а некоторые занимаются борьбой с вредоносными микроорганизмами. Между тем существуют и такие, которые способны нанести серьезный вред биологическим соединениям.
Гидроксильные радикалы наносят самый опасный ущерб организму. Н их долю приходится порядка 50% всех его поражений. Они поражают в первую очередь нуклеиновые кислоты и мембранные белки.
Следующий по агрессивности считают пероксинитрит. Он повреждает белок и это приводит к гибели некоторых ферментов. Пероксинитрит наносит невосполнимый ущерб клеточным мембранам и в результате, может быть осуществлена модификация ДНК.
Защита от радикалов
Довольно давно, медики нашли способы противостояния действию нестабильных частиц и охраны организма от них. Таким защитным свойством обладают вещества, которые называют антиоксиданты.
Эти вещества в своей структуре имеют дополнительный электрон. То есть, при попадании в организм, антиоксиданты передают свой электрон радикалу, тем самым нейтрализуя его действие на другие вещества. В результате этого, обе молекулы приобретают стабильность, но радикал теряет свои разрушающие возможности и перестает нести вред.
Внутренняя защита
Человеческий организм, располагает достаточными возможностями для устранения действия свободных радикалов.
Повреждения, нанесенные на клеточном уровне, достаточно быстро устраняются. В организме существует определенная система, которая следит за всеми нарушениями ДНК и при их обнаружении немедленно выполняет их восстановление. Ловушкой для радикалов выступает система антиоксидантной защиты. С ее помощью происходит ограничение роста количества свободных радикалов и перенаправляет их по тем путям обмена веществ, где могут принести реальную пользу.
В кишечной микрофлоре присутствуют около 50 триллионов микроорганизмов. Многие из них принимают участие в распаде веществ, которые могут участвовать в генерации радикалов. Например, мощнейшим генератором радикалов, выступает перекись водорода. Его действие нейтрализует фермент под названием глутатионпероксидазы. Он принуждает вступать радикалы во взаимодействие друг с другом, в результате которого происходит образование воды и кислорода.
Для обеспечения функционирования таких ферментов, требуются такие вещества, как коэнзимам. К этим веществам относят определённые витамины В, С, А, Е и микроэлементы, например, селен, медь и некоторые другие. Именно от них зависят здоровье и самочувствие человека.
Великолепная четвёрка
В последние время, ученые из США пришли к интересному выводу. Для защиты от действия радикалов наибольший эффект дают витамины А, С, Е и химический элемент — селен.
Роль витамина А в штатной работе организма давно известна. Недостаток этого витамина приводит к постоянным простудам, падению зрения, росту риска появления онкологических заболеваний. Но только в последние годы, специалисты выявили влияние бета-каротина на антиоксидантную оборону клеток. Этот витамин, нейтрализует кислород и таким образом выполняет защиту клеток организма.
Витамин С, знаменит тем, что оказывает целебное влияние при возникновении цинги и простудных заболеваниях. Но, нельзя недооценивать значение аскорбиновой кислоты в охране организма от онкологических заболеваний. Определенное количество витамина С создает препятствия перед нитратами, то есть, он не дает им трансформироваться в нитрозоаминные соединения, которые являются одной из причин возникновения онкологических заболеваний.
Кроме этого, этот витамин, предохраняет глазные клетки от процессов окисления, таким образом, мешает возникновению катаракты.
Если витамин Е, в достаточных объемах имеется в организме, то он защитит жиры, которые входят клеточные мембраны. Кстати, если капнуть этот витамин в банку с маслом, то оно долгое время сохраниться и не прогоркает.
Он тормозит реакцию окисления, спровоцированную радикалами и тем самым, продлевает жизнь клеток.
Как снизить окисление организма?
Единственным надёжным способом обороны организма от воздействия радикалов считаются антиоксиданты. Эти элементы отдают свободный электрон радикалам и тем самым блокируют их действие и прекращают окислительные процессы.
ВАЖНО! ДЛЯ ПОДДЕРЖАНИЯ ЗДОРОВЬЯ В НАДЛЕЖАЩЕМ СОСТОЯНИИ НЕОБХОДИМО ОБЕСПЕЧИВАТЬ ЗАЩИТУ СВОЕГО ОРГАНИЗМА, ДЛЯ ЭТОГО ТРЕБУЕТСЯ УПОТРЕБЛЯТЬ В ПИЩУ, КАК МОЖНО БОЛЬШЕ СВЕЖИХ ОВОЩЕЙ И ФРУКТОВ.
Что такое антиоксиданты
Антиоксидант — это замедлитель реакции окисления. Это могут быть вещества натурального или искусственного происхождения. Они компенсируют токсичное действие радикалов, путем передачи им свободного электрона.
Эти вещества находятся в живой пище, то есть в овощах, фруктах и во многих других, к ним относят лимонную кислоту, пектины, витамин С. Но молекулы этих веществ имеют большой размер, и они не всегда могут попасть внутрь клетки через мембрану. Это вносит определенные сложности в их работу.
Не так давно был открыт новый и очень действенный антиоксидант — газообразный водород. Водород признан терапевтическим газом, который не имеет побочных эффектов. Кроме этого, учёные выяснили, что это вещество может быть использовано в качестве антиоксиданта. Размеры молекул водорода позволяет проходить через мембраны и вступать в реакцию с радикалами. Результатом таких реакций становится появление воды, то есть при работе этого антиоксиданта не возникает каких-либо токсичных веществ. Это свойство, позволяет отнести водород к самым эффективным антиоксидантам.
В недавнее время доставить газ в организм было довольно сложно это обусловлено малым весом газа. Но японские медики разработали способ доставки водорода в нужное место и больше такой проблемы не существует.
Один из способов охраны организма, это постоянный приём в пищу овощей и фруктов.
Ниже приведена таблица, в которой показаны продукты и антиоксиданты в них содержащиеся.
Таблица 1. Продукты и антиоксиданты в них содержащиеся.
Название витамина | Продукты, в которых находится |
---|---|
Провитамин А | Морковь, шпинат, тыква, абрикос, манго, сладкий красный перец, сладкий картофель (батат), папайя |
Витамин С | Цитрусовые, смородина черная, клубника, шиповник, петрушка, томаты, черемша, капуста, перец сладкий |
Витамин Е | Злаки цельно зерновые, проросшие зерна пшеницы, миндаль, арахис, семечки подсолнуха, растительные масла холодного отжима |
Селен | Чеснок, лук, капуста, томаты, молоко, яичные желтки, мясо, прессованный творог, рыба, морепродукты |
1.Провитамин А. это вещество, снижающее риск развития онкологических заболеваний. В частности, рака легких или желудка. Для поддержания организма в порядке достаточно всего 5 мг в сутки.
2.Витамин С. При его регулярном приеме жизнь человека может быть продлена на 15 лет. В нашей медицине принято, то, что, предельный суточный прием этого вещества не должен превышать 2000 мг.
3.Витамин Е, призван охранять организм от расстройства жирового обмена. Кроме этого, это вещество способствует повышению эффективности работы иммунной системы, стабилизирует количество холестерина и помогает выведению токсинов. Потребность для взрослого человека составляет от 8 до 10 мк в сутки.
4.Селен — этот химический элемент не только антиоксидант, его часто применяют для снятия тревожного состояния. По разным данным потребление может лежать в диапазоне от 0,2 до 0,8 мг
По некоторым данным предельно мощным антиоксидантом является экстракт кары сосновой. Он способен поднимать эффективность действия витамина С.
Рейтинг продуктов по содержанию антиоксидантов
В таблице No2 размещены данные о содержании антиоксидантов в разных продуктах.
Надо понимать, что эти данные носят условный характер, просто в таблице собраны те продукты, в которых содержится самое большое количество антиоксидантов.
Рейтинг популярности | Название продукта |
---|---|
1 | Какао-порошок несладкий |
2 | Тмин |
3 | Петрушка сушеная |
4 | Базилик сушеный |
5 | Шалфей |
6 | Перец черный |
7 | Тимьян свежий |
8 | Ягоды Годжи |
9 | Перца Chili порошок |
10 | Паприка (сушеный сладкий перец) |
Формируя рацион питания необходимо помнить о том, что при равном количестве антиоксидантов продукты отличаются уровнем калорийности и это требуется учитывать. Кстати, при составлении меню не помешает проконсультироваться со специалистами — диетологами.
Свободные РАДИКАЛЫ и АНТИОКСИДАНТЫ в организме: что нужно знать
Каждая клетка тела содержит жир, который геронтолог д-р Р. Велфорд именует «собственным маслом организма», которое в какое-то время тоже становится прогорклым.
Представьте, что вы вынимаете чудесное красное яблоко из вазы на столе. Вы режете его тонкими ломтиками. Затем звонит телефон, потом приносят почту…
Два часа спустя вы возвращаетесь к своему яблоку. Оставленные на тарелке ломтики потемнели. Они подверглись атаке и испорчены молекулами кислорода воздуха, теми же молекулами, что разъедают металл автомобилей.
Так как именно кислород совершает это «грязное дело», мы говорим, что яблоко и автомобиль окислены. Молекулы, выполняющие функцию окисления, были названы оксидантами.
Давайте представим, что вы оставили на теплой кухне пачку сливочного масла на неделю другую. Когда вы начинаете его использовать, то, вероятно, чувствуете по запаху или на вкус, что масло прогоркло. Это другой случай работы оксидантов.
К сожалению, каждая клетка тела содержит жир, который геронтолог д-р Р. Велфорд именует «собственным маслом организма», которое в какое-то время тоже становится прогорклым.
Степень разрушения организма зависит от многих факторов, включая продолжительность реакции и места, где действовал «противник».
Она также зависит от генетической предрасположенности, типа клеточного питания, состояния здоровья и уровня эмоционального стресса личности.
Когда нарушение происходит в кровеносных сосудах, оно может вызвать заболевание капилляров.
Когда оно затрагивает ДНК, в генетической информации, заложенной внутри каждого клеточного ядра, могут возникнуть дефекты или рак.
Когда повреждаются липиды внутри хрусталика глаза, образуется катаракта.
Таким образом, кислород заработал титул «универсального оксиданта», и кажется, список заболеваний и состояний, вызываемых его действием становится с каждым днем все длиннее.
Обвиняются свободные радикалы
Оксиданты часто являются свободными радикалами. Свободными от чего? Химики называют радикалами мельчайшие частицы, которые поддерживают свою уникальность. В организме свободный радикал «свободен» потому, что он теряет электрон.
Может быть, вы видели изображение атома с чем-то вращающимся вокруг ядра? Это что-то – электрон.
Молекулы стабильны, когда они имеют равные пары электронов (спаренные электроны). Когда молекула теряет электрон, она превращается в свободный радикал и усердно и неразборчиво «ворует» недостающий электрон.
К сожалению, жертва кражи тоже становится свободным радикалом и немедленно начинает поиск своего электрона для очередной кражи, создавая другой свободный радикал.
Образуется целый каскад электронных краж, он и приводит к разрушению тканей организма.
Кроме того, эта разрушительная цепная реакция создает новые соединения, которые также вносят беспорядок.
Свободные радикалы особенно неравнодушны к полиненасыщенным жирным кислотам, которые составляют около половины жирового содержания мембраны, окружающей каждую клетку в вашем теле.
Где рождаются свободные радикалы
Свободные радикалы рождаются в процессе клеточного метаболизма, который заключается в обычном ежедневном устранении различных дефектов, приеме питательных веществ, выработке энергии, воспроизводстве, удалении отходов, остающихся после выполнения всех других функций.
Свободные радикалы образуются также при употреблении спиртов, консервированного мяса; они появляются в ходе искусственного крашения, при переработке нефтепродуктов;
они попадают в организм вместе с вдыхаемыми парами, гербицидами, асбестовой пылью, смогом, ультрафиолетовой радиацией, рентгеновским излучением, а также при химиотерапии, курении, эмоциональном стрессе, при высоких физических нагрузках и травмах, в составе некоторых лекарств, а также в ряде других случаев.
Обычно организм находит собственные пути нейтрализации свободных радикалов. Несчастье происходит тогда, когда свободных радикалов в нем накапливается слишком много и организм уже не сможет их нейтрализовать.
Организм защищается сам
Когда в живых тканях происходит окисление, организм отвечает выработкой веществ, которые окружают оксиданты и контролируют их уничтожение. Эти вещества называются антиоксидантами.
Но если они существуют, спросите вы, почему же люди все-таки болеют? Почему нарушение не всегда предотвращается бдительностью этих внутренних защитников – антиоксидантов?
Давайте представим дошкольное учреждение, где на 30 трех- и четырехлетних детей всего один учитель! Он находится на своем месте в положенное время.
Но стоит только детям начать активно двигаться, как бедная леди тут же оказывается задавленной превосходящей численностью и энергией. Ей постоянно необходим рядом персонал старших помощников.
Та же ситуация складывается в организме в борьбе против окисления.
«Борцов» против разрушающего действия свободных радикалов объединяют в систему антиоксидантной защиты. Она борется за нас на четырех уровнях:
— во-первых, сдерживает образование оксидантов: кислород направляется только в те области, где он приносит пользу, и не пропускается в области, где он может напроказничать; она также останавливает инициирование окисления металлами, подобными железу ( в образование свободных радикалов включаются также медь, кадмий, марганец, свинец);
— во-вторых, система защиты перехватывает оксиданты-инициаторы образования радикалов и прерывает цепную реакцию воспроизводства других многочисленных оксидантов;
— в-третьих, устраняет нарушения, вызванные оксидантами, которые не удалось перехватить;
— в-четвертых, элиминирует и заменяет разрушенные молекулы, а также самоочищается, удаляя нежелательные вещества, выделяемые в процессе их жизнедеятельности.
Термин «система защиты антиоксидантов» подразумевает тесную взаимозависимость, усилие команды защитников. В состав игроков команды входят бактерии, энзимы и питательные вещества.
Бактерии. Кишечные бактерии сами по себе нельзя считать антиоксидантами. Но они разлагают биохимические вещества, которые могут превращаться в оксиданты. Таким образом, бактерии являются нашей первой защитной полосой.
Энзимы. В момент образования оксидантов появляется вторая защитная полоса. Она составлена из энзимов – белковых молекул, которые разрушают некоторые из наиболее опасных оксидантов, прежде чем те начнут цепную реакцию.
Энзимы, как объясняет диетолог Э.Сомер, «подобны оборудованию линии по производству автомобилей; они ускоряют сборочный процесс, не становясь при этом частью машины».
Хотя два вещества при достаточном количестве времени могут, очевидно, столкнуться друг с другом и прореагировать, энзимы придают уверенности, что это произойдет и произойдет быстро.
Например, «химическая реакция, которой могут потребоваться часы или годы, чтобы осуществиться случайно, в присутствии энзима будет происходить во много (тысячи раз!) быстрее».
Хорошим примером энзима антиоксиданта является супероксиддисмутаза. Пероксиддисмутаза (ПОД) может останавливать цепную реакцию в момент ее прохождения. Поэтому ПОД называется прерывающим цепь антиоксидантом.
Он заставляет оксидант, названный пероксидом, мутировать или вступать в реакцию самому с собой, в процессе которой он распадается на отдельные, менее токсичные части.
В частности, ПОД заставляет пероксид распадаться (дисмутировать) на перекись водорода (являющуюся более слабым оксидантом) и кислород.
Глутатионпероксидаза предупреждает образование свободных радикалов.
Перекись водорода, оставшись одна, будет, очевидно, реагировать сама с собой и распадаться на воду и кислород, но эта спонтанная трансформация происходит медленнее по сравнению с тем изменением, которое влечет присутствие глютатионпероксидазы.
Наш организм производит миллионы энзимов, и каждый из этих энзимов отвечает только за одну химическую реакцию. Однако он может выполнять эту реакцию не один. Многие энзимы имеют помощников, называемых коэнзимами, или кофакторами. Многие кофакторы являются питательными веществами.
Антиоксиданты-кофакторы включают селен, медь, рибофлавин, глютатион, коэнзим Q10, цистеин, марганец, цинк и биофлавоноиды. Все эти питательные элементы можно найти в рационе, богатом фруктами, овощами и цельными зернами. Все они помогают антиоксидантам-энзимам, которые защищают наше здоровье.
Например, селен является коэнзимом глютатионпероксидазы. На практике это означает, что если ваш рацион сильно обеднен селеном, вы несможете получить антиоксиданта глютатионпероксидазы с необходимой активностью, что принесет вам ощутимый вред.
Когда в организме мало марганца, цинка и меди, создается недостаточно ПОД для защиты от цепных реакций свободных радикалов, снова происходит разрушение.
Понравилась статья? Напишите свое мнение в комментариях.
Великолепная четвёрка против свободных РАДИКАЛОВ
Среди множества угроз человеку в последнее время много разговоров о радикалах и том непоправимом вреде, который они способны нанести. Прежде чем говорить о защите организма от свободных радикалов надо понять, что это такое, какой от них вред и какие средства от свободных радикалов, могут реально помочь. Для этого придётся прочесть список антиоксидантов и узнать, какие от чего помогают.
Вред свободных радикалов и роль антиоксидантов
Среди множества угроз человеку в последнее время много разговоров о радикалах и том непоправимом вреде, который они способны нанести. Прежде, чем говорить о защите организма от свободных радикалов, надо понять, что это такое, какой от них вред и какие средства от свободных радикалов могут реально помочь. Для этого придётся прочесть список антиоксидантов и узнать, какие от чего помогают.
Влияние радикалов на человека
Что такое свободный радикал? Это результат деятельности клеток, т. е. материалы, образующиеся в итоге некоторых процессов, например, разложения жиров, метаболизма и процессов воспаления.
Требуется отметить, что далеко не все вещества подобного происхождения относятся к вредоносным свободным радикалам. К последним относят не более 5% от общего числа.
Свободные радикалы появляются в итоге выработки энергии клеткой. По сути, это атом или молекул, в состав которой входит один свободный электрон, это и определяет его возможности вызывать процессы окисления.
Как показывают результаты многочисленных исследований среди общего объема отходов от деятельности клеток составляет не более 5%, если это число превышено, то это создает угрозу человеческому организму.
Радикалы могут на элементарном уровне повредить клетки, за счёт своих окислительных характеристик. Повреждения молекул могут вызвать серьезные последствия, вплоть до появления раковых опухолей.
Справедливости ради надо отметить, что отдельные радикалы вырабатываются иммунной системой и они уничтожают вирусы и вредоносные микроорганизмы.
Отдельные радикалы заняты созданием гормонов и активации других элементов. Они требуются человеку для генерации энергии, и различных веществ в которых он испытывает потребность.
Между тем нельзя забывать и том, что большой объем радикалов приводит к появлению еще их большего объема. А, это может привести росту ущерба для человека. Итогом, присутствия большого количества этих элементарных частиц может привести к тому, что произойдёт смена алгоритмов кодирования в клетках генетических данных, произойдет нарушение белковой структуры. Все дело в именной системе, она распознает белки такого типа как вредные и приложит все усилия для их уничтожения. В результате, белки, которые прошли мутацию приводят к повреждению защитного иммунного механизма. Это вызывает появление лейкемии и другим формам онкологических заболеваний.
Наличию свободных радикалов способствует скопление воды в организме. Приводит ускорению старения. Приводит к нарушению уровня кальция, а это также приводит к появлению различных заболеваний.
Немного истории
В середине прошлого века, советские ученые совершили открытие свободных радикалов, и после этого, мир как будто сошёл с ума. Исследователи, постоянно обнаруживали новые характеристики радикалов при этом научные разработки постепенно перемещались от чистой химии в сторону медицины.
С течением времени, люди стали узнавать то, что раковые патологии, старение, и даже бесплодие напрямую связаны с этими элементами.
В наши дни их рассматривают как ущербные молекулы, с отсутствующим электроном. Они прилагают массу усилий для того, чтобы его вернуть, отнимая их у других элементов, т. е. штатных молекул. Из тех, которые выстраиваются все клетки и соответственно органические ткани.
После атаки, совершенной радикалами, начнется невозвратимый операция окисления, инициирующей процедуру уничтожения тканей.
Другими словами, отняв у полноценной молекулы электрон, радикал возвращается в исходное положение, а молекула, его потерявшая становится радикал.
Свободные радикалы
Количество поражённых молекул резко возрастает и происходит замыкание круга.
В результате этого, элементарные частицы, которые были пассивны, начинают вступать в химическое взаимодействие. Например, коллаген, вступивший в контакт с кислородом, приобретает излишнюю активность, что позволяет ему вступать с подобными молекулами. Такие соединения менее эластичны и скопление таких соединений приводит к старению кожи, появлению морщин и других неприятностей.
Кстати, как пример, воздействия радикалов можно назвать процесс ржавления металла.
Под их действием организм человек, постепенно начинает «ржаветь» и изнашиваться.
Основания для формирования свободных радикалов
В организме протекает постоянная выработка этих элементов. Этому способствуют определенные факторы. Изначально была определена первопричина появления свободных радикалов под действием радиации. Другая, менее распространенная причина — это прием некоторых лекарственных средств. Подвергаясь разнообразным изменения во время реакций внутри человека они теряют свои элементарные частицы и трансформируются в свободные электроны.
Ещё одна из причин образования этих электродов — это курение. Никотиновая смола и смолы, содержащиеся в табаке, провоцируют ряд реакций, в результате которых, происходит выделение свободных радикалов.
Но самыми распространенные поводы для образования радикалов, создают плохая экология, отработанные газы, жирная еда, постоянные стрессы.
При дыхании в легкие проникает большое количество агрессивных молекул защитится от которых практически нереально.
Наше любимое солнце, которое приносит человеку тепло и свет, по сути, это главный производитель свободных радикалов. Его лучи способствуют процессу фотостарения. Ультрафиолет попадает внутрь клеток кожи и выбивает электроны из элементов, которые образуют и мембрану, и клеточную среду. Итогом этого становится то, что вследствие этого, происходит старение и изнашивание кожных покровов.
Излучение, попадая в молекулы вышибет из них электрон, превращает ее в радикал. После такие молекулы начинают нести вред человеческому организму, в соответствии с механизмом, который был описан выше.
Многочисленные исследования показали и то, что на появление свободных радикалов оказывает и стресс, который постоянно испытывает современный человек. Во время стрессов происходит выделение таких гормонов, как адреналин, причём в объёмах, многократно превышающих потребности организма. Такое выделение приводит к нарушению клеточного питания, и их дыхания. В результате происходит накопление и разнесение радикалов по организму.
Итогом распространения становится старение и износ организма в целом.
Последствия избытка радикалов
При рассмотрении деятельности радикалов можно отметить, что они способствуют развитию следующих заболеваний:
Внешние источники радикалов
Кроме того, что радикалы образуются вследствие жизнедеятельности организма, существует опасность попадания радикалов из внешней среды. В частности, среди каналов поступления можно выделить следующие:
Не представляют пользу и некоторые продукты, например, кукурузное масло, в состав которого входит жирные кислоты.
Кроме этого, свободные радикалы образуются в большом объеме в продуктах, прошедших длительную термическую обработку.
Самые опасные радикалы
Радикалы играют существенную роль в деятельности организма. Одни выступают в качестве индикаторов, другие требуются для настройки синтезирования различных соединений, а некоторые занимаются борьбой с вредоносными микроорганизмами. Между тем существуют и такие, которые способны нанести серьезный вред биологическим соединениям.
Гидроксильные радикалы наносят самый опасный ущерб организму. Н их долю приходится порядка 50% всех его поражений. Они поражают в первую очередь нуклеиновые кислоты и мембранные белки.
Следующий по агрессивности считают пероксинитрит. Он повреждает белок и это приводит к гибели некоторых ферментов. Пероксинитрит наносит невосполнимый ущерб клеточным мембранам и в результате, может быть осуществлена модификация ДНК.
Защита от радикалов
Довольно давно, медики нашли способы противостояния действию нестабильных частиц и охраны организма от них. Таким защитным свойством обладают вещества, которые называют антиоксиданты.
Эти вещества в своей структуре имеют дополнительный электрон. То есть, при попадании в организм, антиоксиданты передают свой электрон радикалу, тем самым нейтрализуя его действие на другие вещества. В результате этого, обе молекулы приобретают стабильность, но радикал теряет свои разрушающие возможности и перестает нести вред.
Внутренняя защита
Человеческий организм, располагает достаточными возможностями для устранения действия свободных радикалов.
Повреждения, нанесенные на клеточном уровне, достаточно быстро устраняются. В организме существует определенная система, которая следит за всеми нарушениями ДНК и при их обнаружении немедленно выполняет их восстановление. Ловушкой для радикалов выступает система антиоксидантной защиты. С ее помощью происходит ограничение роста количества свободных радикалов и перенаправляет их по тем путям обмена веществ, где могут принести реальную пользу.
В кишечной микрофлоре присутствуют около 50 триллионов микроорганизмов. Многие из них принимают участие в распаде веществ, которые могут участвовать в генерации радикалов. Например, мощнейшим генератором радикалов, выступает перекись водорода. Его действие нейтрализует фермент под названием глутатионпероксидазы. Он принуждает вступать радикалы во взаимодействие друг с другом, в результате которого происходит образование воды и кислорода.
Для обеспечения функционирования таких ферментов, требуются такие вещества, как коэнзимам. К этим веществам относят определённые витамины В, С, А, Е и микроэлементы, например, селен, медь и некоторые другие. Именно от них зависят здоровье и самочувствие человека.
Великолепная четвёрка
В последние время, ученые из США пришли к интересному выводу. Для защиты от действия радикалов наибольший эффект дают витамины А, С, Е и химический элемент — селен.
Роль витамина А в штатной работе организма давно известна. Недостаток этого витамина приводит к постоянным простудам, падению зрения, росту риска появления онкологических заболеваний. Но только в последние годы, специалисты выявили влияние бета-каротина на антиоксидантную оборону клеток. Этот витамин, нейтрализует кислород и таким образом выполняет защиту клеток организма.
Витамин С, знаменит тем, что оказывает целебное влияние при возникновении цинги и простудных заболеваниях. Но, нельзя недооценивать значение аскорбиновой кислоты в охране организма от онкологических заболеваний. Определенное количество витамина С создает препятствия перед нитратами, то есть, он не дает им трансформироваться в нитрозоаминные соединения, которые являются одной из причин возникновения онкологических заболеваний.
Кроме этого, этот витамин, предохраняет глазные клетки от процессов окисления, таким образом, мешает возникновению катаракты.
Если витамин Е, в достаточных объемах имеется в организме, то он защитит жиры, которые входят клеточные мембраны. Кстати, если капнуть этот витамин в банку с маслом, то оно долгое время сохраниться и не прогоркает.
Он тормозит реакцию окисления, спровоцированную радикалами и тем самым, продлевает жизнь клеток.
Как снизить окисление организма?
Единственным надёжным способом обороны организма от воздействия радикалов считаются антиоксиданты. Эти элементы отдают свободный электрон радикалам и тем самым блокируют их действие и прекращают окислительные процессы.
ВАЖНО! ДЛЯ ПОДДЕРЖАНИЯ ЗДОРОВЬЯ В НАДЛЕЖАЩЕМ СОСТОЯНИИ НЕОБХОДИМО ОБЕСПЕЧИВАТЬ ЗАЩИТУ СВОЕГО ОРГАНИЗМА, ДЛЯ ЭТОГО ТРЕБУЕТСЯ УПОТРЕБЛЯТЬ В ПИЩУ, КАК МОЖНО БОЛЬШЕ СВЕЖИХ ОВОЩЕЙ И ФРУКТОВ.
Что такое антиоксиданты
Антиоксидант — это замедлитель реакции окисления. Это могут быть вещества натурального или искусственного происхождения. Они компенсируют токсичное действие радикалов, путем передачи им свободного электрона.
Эти вещества находятся в живой пище, то есть в овощах, фруктах и во многих других, к ним относят лимонную кислоту, пектины, витамин С. Но молекулы этих веществ имеют большой размер, и они не всегда могут попасть внутрь клетки через мембрану. Это вносит определенные сложности в их работу.
Не так давно был открыт новый и очень действенный антиоксидант — газообразный водород. Водород признан терапевтическим газом, который не имеет побочных эффектов. Кроме этого, учёные выяснили, что это вещество может быть использовано в качестве антиоксиданта. Размеры молекул водорода позволяет проходить через мембраны и вступать в реакцию с радикалами. Результатом таких реакций становится появление воды, то есть при работе этого антиоксиданта не возникает каких-либо токсичных веществ. Это свойство, позволяет отнести водород к самым эффективным антиоксидантам.
В недавнее время доставить газ в организм было довольно сложно это обусловлено малым весом газа. Но японские медики разработали способ доставки водорода в нужное место и больше такой проблемы не существует.
Один из способов охраны организма, это постоянный приём в пищу овощей и фруктов.
Ниже приведена таблица, в которой показаны продукты и антиоксиданты в них содержащиеся.
Таблица 1. Продукты и антиоксиданты в них содержащиеся.
Название витамина | Продукты, в которых находится |
Провитамин А | Морковь, шпинат, тыква, абрикос, манго, сладкий красный перец, сладкий картофель (батат), папайя |
Витамин С | Цитрусовые, смородина черная, клубника, шиповник, петрушка, томаты, черемша, капуста, перец сладкий |
Витамин Е | |
Селен | Чеснок, лук, капуста, томаты, молоко, яичные желтки, мясо, прессованный творог, рыба, морепродукты |
1.Провитамин А. это вещество, снижающее риск развития онкологических заболеваний. В частности, рака легких или желудка. Для поддержания организма в порядке достаточно всего 5 мг в сутки.
2.Витамин С. При его регулярном приеме жизнь человека может быть продлена на 15 лет. В нашей медицине принято, то, что, предельный суточный прием этого вещества не должен превышать 2000 мг.
3.Витамин Е, призван охранять организм от расстройства жирового обмена. Кроме этого, это вещество способствует повышению эффективности работы иммунной системы, стабилизирует количество холестерина и помогает выведению токсинов. Потребность для взрослого человека составляет от 8 до 10 мк в сутки.
4.Селен — этот химический элемент не только антиоксидант, его часто применяют для снятия тревожного состояния. По разным данным потребление может лежать в диапазоне от 0,2 до 0,8 мг
По некоторым данным предельно мощным антиоксидантом является экстракт кары сосновой. Он способен поднимать эффективность действия витамина С.
Рейтинг продуктов по содержанию антиоксидантов
В таблице No2 размещены данные о содержании антиоксидантов в разных продуктах.
Надо понимать, что эти данные носят условный характер, просто в таблице собраны те продукты, в которых содержится самое большое количество антиоксидантов.опубликовано econet.ru.
Название продукта | |
1 | Какао-порошок несладкий |
2 | Тмин |
3 | Петрушка сушеная |
4 | Базилик сушеный |
5 | Шалфей |
6 | Перец черный |
7 | Тимьян свежий |
8 | Ягоды Годжи |
9 | Перца Chili порошок |
10 | Паприка (сушеный сладкий перец) |
Понравилась статья? Напишите свое мнение в комментариях.
Радикалы свободные
Полезное
Смотреть что такое «Радикалы свободные» в других словарях:
РАДИКАЛЫ СВОБОДНЫЕ — (радикалы хим.) (1) неустойчивые высокоактивные частицы, образующиеся из молекул, главным образом органических соединений, подвергнутых воздействию высокой температуры, радиации, ультрафиолетового излучения, катализаторов и др., и обладающие… … Большая политехническая энциклопедия
РАДИКАЛЫ СВОБОДНЫЕ — РАДИКАЛЫ СВОБОДНЫЕ, химические частицы с одним или несколькими неспаренными электронами. Парамагнитны; как правило, реакционноспособны. Промежуточно образуются во многих химических реакциях (горение, полимеризация, радиолиз, ферментативное… … Современная энциклопедия
Радикалы свободные — РАДИКАЛЫ СВОБОДНЫЕ, химические частицы с одним или несколькими неспаренными электронами. Парамагнитны; как правило, реакционноспособны. Промежуточно образуются во многих химических реакциях (горение, полимеризация, радиолиз, ферментативное… … Иллюстрированный энциклопедический словарь
радикалы свободные — атомы или химические соединения с неспаренным электроном (обозначается жирной точкой), например H, CH3, C(С6Н5)3. Парамагнитны, реакционноспособны. Короткоживущие радикалы промежуточные частицы во многих химических реакциях. Некоторые свободные… … Энциклопедический словарь
Радикалы свободные — Свободные радикалы в химии частицы (как правило, неустойчивые), содержащие один или несколько неспаренных электронов. По другому определению свободный радикал вид молекулы или атома, способный к независимому существованию (то есть обладающий… … Википедия
РАДИКАЛЫ СВОБОДНЫЕ — хим. частицы с неспаренными электронами на внеш. орбиталях; обладают парамагнетизмом и высокой реакц. способностью. Р. с. могут быть короткоживущими (время жизни доли секунды) или долгоживущими (до неск. лет), нейтральными или заряженными (см.… … Химическая энциклопедия
РАДИКАЛЫ СВОБОДНЫЕ — атомы или хим. соед. с неспаренным электроном (обозначается жирной точкой), напр. Н, СН3, С(С6Н5)3. Парамагнитны, реакционноспособны. Короткоживущие радикалы промежуточные частицы во мн. хим. реакциях. Нек рые Р. с. стабильны и выделены в индивид … Естествознание. Энциклопедический словарь
РАДИКАЛЫ СВОБОДНЫЕ — частицы (атомы или атомные группы) с неспаренными электронами на внеш. атомных или молекулярных орбиталях. Образуются из молекул под действием нагревания, электромагн. излучения, потока частиц высоких энергий, в присутствии катализаторов. Могут… … Большой энциклопедический политехнический словарь
СВОБОДНЫЕ РАДИКАЛЫ — см. Радикалы свободные … Большой Энциклопедический словарь
Свободные радикалы
Свободные радикалы в химии — частицы (как правило, неустойчивые), содержащие один или несколько неспаренных электронов на внешней электронной оболочке. По другому определению свободный радикал — вид молекулы или атома, способный к независимому существованию (то есть обладающий относительной стабильностью) и имеющий один или два неспаренных электрона. Неспаренный электрон занимает атомную или молекулярную орбиталь в одиночку. Как правило, радикалы обладают парамагнитными свойствами, так как наличие неспаренных электронов вызывает взаимодействие с магнитным полем. Кроме этого наличие неспаренного электрона способно значительно усилить реакционную способность, хотя это свойство радикалов широко варьируется.
Содержание
Образование
Радикал может образоваться в результате потери одного электрона нерадикальной молекулой:
или при получении одного электрона нерадикальной молекулой:
Большинство радикалов образуются в ходе химических реакций при гомолитической диссоциации связей. Они сразу же претерпевают дальнейшие превращения в более устойчивые частицы:
Зарождение радикальной цепи можно инициировать действием на вещество жестких условий (высокие температуры, электромагнитное излучение, радиация). Многие перекисные соединения — также хорошие радикалообразующие частицы.
Самые стабильные свободные радикалы
Некоторые вещества — свободные радикалы, из-за тех или иных кинетических или стерических ограничений, являются достаточно стабильными при нормальных условиях. Классическим примером такого радикала является трифенилметил (радикал Гомберга), дифенилпикрилгидразил (ДФПГ), вердазил (с четырьмя атомами азота), нитроксильные радикалы, например, ди-трет-бутилнитроксил (перегоняется без разложения) и др. [источник?]
Ссылки
См. также
Полезное
Смотреть что такое «Свободные радикалы» в других словарях:
СВОБОДНЫЕ РАДИКАЛЫ — см. Радикалы свободные … Большой Энциклопедический словарь
СВОБОДНЫЕ РАДИКАЛЫ — кинетически независимые частицы (атомы, молекулы), у к рых имеются неспаренные электроны. Обладают высокой реакц. способностью и при комнатных темп рах неустойчивы. С. р. образуются в живых клетках в результате биохимич. реакций, а также при… … Биологический энциклопедический словарь
свободные радикалы — см. Радикалы свободные. * * * СВОБОДНЫЕ РАДИКАЛЫ СВОБОДНЫЕ РАДИКАЛЫ, см. Радикалы свободные (см. РАДИКАЛЫ СВОБОДНЫЕ) … Энциклопедический словарь
Свободные радикалы (организация) — Свободные радикалы Либертарное движение «Свободные радикалы» Дата основания: 1 ноября … Википедия
Свободные радикалы (значения) — Свободные радикалы понятие в химии. Частицы, содержащие один или несколько неспаренных электронов «Свободные радикалы» (Либертарное движение «Свободные радикалы») российская общественная организация … Википедия
Свободные радикалы — см. Радикалы свободные … Большая советская энциклопедия
СВОБОДНЫЕ РАДИКАЛЫ — см. Радикалы свободные … Большой энциклопедический политехнический словарь
СВОБОДНЫЕ РАДИКАЛЫ — см. Радикалы свободные … Естествознание. Энциклопедический словарь
Либертарное движение «Свободные радикалы» — «Свободные радикалы» (Либертарное движение «Свободные радикалы») общественная организация, созданная в России по инициативе и при поддержке членов ряда правозащитных организаций в 2006 году. Основу движения составляют… … Википедия
О свободных радикалах простыми словами
Мы то и дело слышим это понятие. Отовсюду. Разве что не из утюга. Так можно ли однозначно сказать, полезны они или вредны?
Свободные радикалы – частицы (молекулы или атомы), несущие на оболочке 1 или несколько непарных электронов, благодаря которым они легко взаимодействуют с различными субстанциями. Они способны к независимому существованию. Во время химических реакций они принимают кислород от других веществ, либо его отдают.
По иронии судьбы кислород (О2) – элемент, без которого невозможна жизнь, — при определенных условиях может оказывать и негативное влияние на живые существа. При образовании так называемых реактивных форм О2 (ROS – англ.) он может переходить к другим соединениям.
Рассмотрим роль свободных радикалов
Как и многие субстанции, они имеют и положительное, и отрицательное значения. Они участвуют в уничтожении бактерий и вирусов, в производстве ряда гормонов, стимулируют ферментную активность клетки. Это необходимый компонент в обмене веществ и энергии.
Свободные радикалы в организме человека образуются во время нормального метаболизма, и иммунная система контролирует их появление и нейтрализацию, поддерживая их баланс. Однако, чрезмерное образование свободных радикалов отрицательно сказывается на нашей жизнедеятельности.
Когда их становится много?
При воздействии внешних факторов (рентгеновские лучи и радиация, влияние озона, загрязнение окружающей среды, химикаты и пестициды).
Нерациональное питание с чрезмерным содержанием жиров, вредные привычки, такие как бесконтрольное употребление алкогольной продукции, табакокурение также увеличивают их синтез. Избыточная инсоляция (увлечение загаром), злоупотребление лекарственными препаратами не проходят даром. Надо помнить о том, что имеются свободные радикалы и в продуктах. Это кондитерские изделия длительного срока годности, колбасные изделия, а также жиры, содержащие большое количество ненасыщенных жирных кислот. Их много в кукурузном и подсолнечном масле, в чипсах, пицце низкого качества. При росте окисления происходит стимуляция еще большего синтеза этих соединений.
Почему эти вещества вдруг забеспокоили ученых?
Свободные радикалы в организме воздействуют на клеточную ДНК. Возникают клеточные мутации на генном уровне, что влечет за собой аномалии и патологию разного рода.
Все это вызывает развитие воспалительных реакций, а воспаление лежит в основе множества болезней. Ускоряется возникновение сердечно-сосудистых заболеваний (атеросклероз), сахарного диабета, онкологических и кожных заболеваний в относительно раннем возрасте прогрессирует преждевременное старение. При сбоях в иммунной системе эти кислородные соединения приводят к нашему старению.
Неужели ничего нельзя сделать? Или мы можем себя защитить?
Свободные радикалы и антиоксиданты
Существуют особые субстанции, которые поглощают непарные электроны и тем самым осуществляют защиту от свободных радикалов. Их называют антиоксидантами. Они бывают нескольких видов, это преимущественно минералы и витамины. Наиболее распространены и эффективны вит. А, Е и С, также бета-каротин (провитамин А). Среди других – ликопин, селен, лютеин, астаксатин, альфа-липоевая кислота, коэнзим Q10.
Витамин С способствует выработке коллагена, который дает эластичность нашей коже, обеспечивая упругость тканей костно-сухожильного аппарата. Также он отвечает за уровень холестерина в организме, поддерживает норму железа в крови, помогает восстановлению кожного покрова и ногтей.
Ликопин также уменьшает вредное действие свободных радикалов.
Бета-каротин – мощный антиокислитель, содержится в овощах и фруктах и придает им яркий красный и оранжевый цвет. Он отвечает за здоровый цвет лица, помогает нормальной работе сальных и потовых желез.
Селен (Se) замедляет старение нашего кожного покрова, защищает нас от воздействия солей тяжелых металлов, борется с угревой сыпью у подростков. Нехватка его проявляется снижением остроты зрения, аппетита, наличием кожных болезней, длительно незаживающих ран, ссадин, царапин. Дефицит его у женщин вызывает снижением репродуктивной функции, затруднение зачатия и вынашивания плода.
Витамин Е позволяет нейтрализовать свободные радикалы. Кроме того, он обладает противоканцерогенным действием, препятствует воздействию прямых солнечных лучей, тем самым помогает коже дольше не стариться. Улучшает реологические свойства крови, чем препятствует тромбообразованию.
Альфа-липоевая кислота – еще один представитель этой группы. Это жирная кислота, которая принимает участие в обменных процессах, способствует выработке энергии. Она участвует в поддержании нормального уровня сахара крови, обладает антиканцерогенным действием, снижает вероятность развития болезней сердца и сосудов.
Астаксатин из подгруппы каротиноидов – важный для здоровья сердечно-сосудистой системы элемент, связывает холестерин, выводит свободные радикалы.
Итак, описанные полезные субстанции уравновешивают окислительный процесс, помогают в лечении при вышеуказанных заболеваниях. Они связывают непарный электрон, вы это уже знаете из строения свободных радикалов, тем самым нейтрализуют реакцию данных молекул и делают их безопасными.
Касаемо представительниц прекрасного пола свободные радикалы это простыми словами молекулы, первоочередно значимые тем, что они своим действием на клетки ускоряют старение кожи, создают условия для преждевременного процесса состаривания, потери карсаса в виде коллагена и эластина. Разрушая эти молекулы своим пагубным эффектом, создается почва для снижения упругости и более раннего появления морщин, пигментных пятен и других признаков старения. Это более ранний механизм состаривания, совсем не тот, что генетически запрограммирован в нас. Зато мы в состоянии на него повлиять, нейтрализовать его антиоксидантами, в отличие от безысходной генетики.
Окисление в результате действия свободных радикалов поддается коррекции и его можно остановить.
Если вы решили начать своевременную профилактику, или уже отметили у себя какие-то симптомы, то подойти к проблеме следует с нескольких сторон: это и диета, богатая природными антиоксидантами, и привлечение наружных средств для помощи в разрешении кожных проблем, содержащих эти полезные вещества, и, разумеется, прием витаминно-минеральных составов.
Немаловажным является то, что эти соединения усиливают действие друг друга. Таким образом, если применять какой-либо 1 компонент (например, витамин С), то мы добьемся значительно менее выраженного эффекта, нежели используя правильно подобранный комплекс антиоксидантов со взаимным усилением веществ.
В настоящее время производится множество витаминов, а также их комбинаций с микро- и макроэлементами. Поэтому крайне полезно знать, какое сочетание важно для предотвращения указанных выше проблем.
Оксилик ® – оптимально выверенный и правильно подобранный антиоксидантный комплекс. Он содержит 5 основных сильнейших соединений, а именно, витамин Е, С, бета-каротин (провитамин А), ликопин и селен. Уникальность и ценность Оксилика еще и в содержании органического Se вместе с его переносчиками – аминокислотами цистеином и метионином. Подобный состав воздействует наиболее продуктивно, связывая свободные радикалы кислорода
Немаловажно удобство его применения, ведь чем меньше кратность приема, тем легче нам вспомнить о нем и соблюсти рекомендации. Это неоднократно показали исследования о комплаентности (англ. Patient compliance) или приверженности пациента к лечению, так популярные в последнее время.
Как принимать:
Взрослым и детям старше 14 лет —
по 1 капсуле 1 раз в день вместе
с приемом пищи.
Свободные радикалы что это
До настоящего времени нет единой классификации этих соединений, не достаточно четко определена их роль в процессах жизнеобеспечения клеток в условиях нормы. Большее количество экспериментальных работ направлено на исследование патогенеза заболеваний инфекционной и неинфекционной природы, в которых свободнорадикальное окисление является типовым процессом дезинтеграции биологических систем, одним из терминальных звеньев развития патологии, независимо от характера инициирующего его этиологического фактора [36,37,38].
В ряде работ предпринята попытка разделить образующиеся в нашем организме радикалы на чужеродные и природные [5]. Источником чужеродных радикалов могут быть ксенобиотики, а также вода, кислород и другие соединения эндогенного происхождения, подвергшиеся воздействию ионизирующего излучения, ультрафиолетового облучения, интенсивного светового воздействия лазера [10].
В соответствии с данными литературы свободные радикалы в условиях нормы играют важную роль в процессах жизнеобеспечения клеток в различных биологических системах, участвуя в реакциях окислительного фосфорилирования, биосинтеза простагландинов и нуклеиновых кислот, в регуляции липидного обмена, в процессах митоза, а также метаболизма катехоламинов [35]. Однако их роль в биологических системах чрезвычайно динамична, поскольку свободные радикалы относятся к категории высокореактогенных молекул, избыточное образование которых может достаточно быстро привести к дезорганизации клеточных структур, нарушению функциональной активности клеток [12,13,19].
Высокая реактогенность свободных радикалов обусловлена тем, что на внешней электронной орбитали у них находится неспаренный электрон, в отличие от обычных органических молекул. В связи с этим свободные радикалы выступают в роли активных окислителей, захватывающих недостающий электрон от различных соединений и тем самым повреждающих их структуру [5,15,16].
ОСНОВНЫЕ ИСТОЧНИКИ ОБРАЗОВАНИЯ СВОБОДНЫХ РАДИКАЛОВ
К настоящему времени довольно четко определены источники происхождения свободных радикалов в биологических системах, дана определенная оценка их метаболической значимости в условиях нормы и патологии.
Как указывалось выше, основным источником свободных радикалов является кислород, к активным формам которого относят диоксид или супероксидный анион-радикал, перекись водорода, гидроксильный радикал, реже в эту группу включают синглетный кислород [4, 5, 6, 8, 12, 23, 33, 34].
Инициация свободнорадикального окисления может быть обусловлена различными причинами, но первостепенную роль в этом процессе играют промежуточные продукты восстановления кислорода. В свою очередь активные формы кислорода могут образовываться интрацеллюлярно в сфере действия оксидазных энзимов, а также экстрацеллюлярно, в частности при участии лейкоцитов [20,23,21,22,39].
Как известно, в условиях нормы около 93-95% молекулярного кислорода подвергается тетравалентному восстановлению с образованием воды в митохондриях в биологическом процессе, связанном с генерацией АТФ [11, 35]. В то же время кислород участвует в процессе метаболизма таких субстратов, как ксантин, гипоксантин, L- и D-аминокислоты. Атомы водорода от этих соединений с помощью флавиновых коферментов переносятся непосредственно на молекулярный кислород, минуя систему цитохромов и цитохромоксидазы. Конечным продуктом окисления субстратов в этих реакциях является перекись водорода. В балансе тканевого дыхания на долю этих реакций с образованием в качестве конечного продукта перекиси водорода приходится около 5-7% [14,15,17,39,40,41]. Образующаяся в этих реакциях перекись водорода или разлагается каталазой, или используется в реакциях, катализируемых пероксидазой, содержащейся в значительных количествах в пероксисомах клеток печени и почек [9,12, 15,41].
В инициации образования перекиси водорода играют роль флавожелезопротеиды, медьсодержащие оксидазы, молибденсодержащие ферменты (ксантиндегидрогеназа, ксантиноксидаза, альдегидроксидаза). Перекись водорода не является в прямом смысле свободным радикалом, однако, обладает способностью инициировать свободнорадикальное окисление, поэтому является цитотоксическим соединением [1,15].
Как указывалось выше, основная часть молекулярного кислорода подвергается тетравалентному окислению в митохондриях с образованием воды в системе, сопряженной с синтезом АТФ [29,30].
Главной задачей митохондрий является обеспечение макроэргами энергозависимых внутриклеточных реакций. Согласно с хемиосматической теории английского биохимика Питера Митчелла, атомы водорода, отобранные от субстратов в дыхательной цепи или системе транспорта электронов, превращаются в протоны, которые через внутреннюю митохондриальную мембрану при участии «насосов» проходят в межмембранное пространство. Последнее обеспечивает возникновение химического и электрического градиентов на границе, образованной внутренней мембранной. Синтез АТФ, требующий затраты энергии, осуществляется за счет энергии осмотического градиента [17, 28, 29, 30, 33].
В условиях нормы внутренняя митохондриальная мембрана непроницаема для Н+, ОН-, К+, Сl-. Разница в ионном составе между двумя сторонами внутренней митохондриальной мембраны является непременным условием для синтеза АТФ [17,31,33,35].
Таким образом, очевидно, что источником активных форм кислорода может служить митохондриальная дыхательная цепь [17,31].
Касаясь значения гидроксильного радикала, следует отметить, что он может образовывать при радиолизе воды в реакции Хабера-Вейса, а также в реакции Фентона между ионом 2-х валентного железа и перекисного водорода [4,5,6]:
Н2О2 + Fe2+ → Fe3+ + OH- + OH•
Радикал гидроксила чрезвычайно активен и оказывает разрушающее действие на различные молекулы. Действуя на SH-группы, гистидиновые и другие аминокислоты, остатки белков, HO• вызывает денатурацию последних, инактивирует ферменты, разрушает углеводные мостики между нуклеотидами и таким образом разрывает цепи ДНК и РНК, инициирует процессы липопероксидации, вызывает мутации и гибель клеток [4,6,38,41].
Достаточно интенсивное образование свободных радикалов, в частности супероксида, осуществляется в реакциях микросомального окисления с участием цитохрома Р-450 [17,40].
Цитохром Р-450 представляет собой группу оксигеназ (гидроксилаз), обеспечивающих оксигенирование в мембранах эндоплазматического ретикулума продуктов метаболизма и ксенобиотиков. Промежуточным продуктом этих реакций является супероксидный радикал (О2 •-). Последний образуется в процессе разрыва двойной связи в ароматическом кольце. Образование О2 •- и перекиси водорода происходит при самопроизвольном окислении гемоглобина, ферредоксинов, восстановленных цитохромом В5 гидрохининов, тетрагидроптеридинов, адреналина [4,6,14,40].
Среди ферментативных путей образования супероксидного радикала следует отметить системы, содержащие катионы переменной валентности (железа, меди) [15].
В инициации свободнорадикального окисления могут участвовать катионрадикалы молибдена, марганца, кобальта, железосерные кластеры, радикал монодегидроаскорбиновой кислоты. Помимо интермедиаторов восстановления кислорода в инициации свободнорадикального окисления участвует синглетный кислород. В клетках синглетный кислород может образовываться в реакциях, катализируемых пероксидазами, липоксигеназами, а также в процессе микросомального НАДФ•Н- зависимого перекисного окисления липидов [5,6,9,12,13]. Синглетный кислород не является свободным радикалом, однако, реагируя с биомолекулами, он вызывает появление свободных радикалов, инициирует перекисное окисление холестерина и ненасыщенных жирных кислот [35].
Н2О2 используется фагоцитом с участием миелопероксидазы для образования гипохлорита [22,39]:
Н2О2 + Cl- → Н2О + ClO-
Гипохлорит разрушает стенку бактерии, тем самым обеспечивая их гибель. В процессе фагоцитоза возможно образование и другого чрезвычайно реактогенного свободного радикала •OH [5,9,13,14,21,22,39].
Как указывалось выше, к числу первичных природных радикалов относится семихинон (•QH) [14].
Как известно, при окислении субстратов в цикле трикарбоновых кислот, происходит последовательный отрыв атомов водорода от субстрата и образование восстановленных форм пиридиннуклеотидов НАДН и НАДФ•Н. Далее электроны от этих соединений переносятся по системе дыхательной цепи на кислород. Возможным звеном цепи переноса электронов служит убихинон (коэнзим Q), при одноэлектронном окислении которого, образуется семихинон (•QH). Последний может возникать и при одноэлектронном восстановлении убихинона [15,17].
БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ОКСИДА АЗОТА.
Идентификация структуры и функции оксида азота в 1986г не только как расслабляющего фактора сосудов, но и как медиатора нервной, иммунной систем вызывало большое внимание к этому соединению.
В настоящее время очевидно участие оксида азота в поддержании сердечно-сосудистой гомеостаза, регуляции дыхания, фагоцитоза, морфогенеза, памяти, пресинаптического высвобождения нейропередатчиков [7,18,24,26,27,28].
В условиях патологии оксид азота играет важную роль в механизмах развития бактериально-токсического шока, заболеваний воспалительной природы, ишемических повреждений органов и тканей, эпилепсии и других форм патологии [3,11,36,37,38].
Описано несколько форм NO-синтазы: конститутивная, постоянно присутствующая в ткани (сNOS) и индуцибельная (iNOS). По преимущественной локализации в тканях принято выделять нейрональную (nNOS), эндотелиальную (eNOS) и макрофагальную (mac NOS). Первые два вида ферментов являются преимущественно конститутивными, последняя функционирует как индуцибельная форма NOS [6,26,27,34].
Последние время несколько изменилась классификация разновидностей NO-синтазы [25]. Автор указывает, что семейство NO-синтаз включает:
NO-синтаза 1 типа обнаружена преимущественно в структурах центральной и периферической нервной системы, экспрессируется постоянно в условиях нормы и патологии, участвует в регуляции артериального давления.
Констуциональная эндотелиальная NO-синтаза 3-го типа участвует в регуляции сосудистого тонуса, экспрессируется не только в эндотелии сосудов, но и в кардиомиоцитах, тромбоцитах, эндотелии легких, почек, NO-синтаза экспрессируется постоянно в условиях нормы и патологии [25].
Касаясь механизмов действия конституциональной (нейрональной и эндотелиальной) NO-синтазы, следует отметить, что фермент генерирует образование NO в ответ на стимуляцию определенного подтипа рецепторов (NМДА), чувствительных к глутамату, как правило, под влиянием цитокинов [7,25].
Установлено, что вслед за активацией NМДА подтипа глутаминовых рецепторов в структурах мозга возникает проникновение в клетку Са2+, который, связываясь с кальмодулином, активирует NO-синтазу и обеспечивает образование оксида азота. Последний взаимодействует с гуанилатциклазой, обеспечивает увеличение образование цГМФ и реализацию при его участии различных функциональных и метаболических изменений. Следует отметить, что избыточное накопление оксида азота в структурах мозга обеспечивает не только развитие вазодилатации и дезагрегации, что играет адаптивную роль в условиях ишемии, но может привести и к развитию судорожных расстройств [25,27].
Индуцибельная NO-синтаза эндотелия может экспрессироваться при участии нейрогуморальных медиаторов через активацию специфических рецепторов эндотелиоцитов под влиянием адреналина, норадреналина, ацетилхолина, гистамина, брадикинина, АДФ, серотонина, тромбина, эндотелина и др. [25].
Помимо основного вазодилатирующего эффекта, оксид азота тормозит адгезию и агрегацию тромбоцитов, адгезию лейкоцитов, синтез эндотелина 1, пролиферацию гладкомышечных клеток сосудов, явления апоптоза, оказывает цитопротекторный эффект и вызывает развитие других адаптивных реакций [20, 21, 22, 25, 26, 27, 35].
Однако NO, образуясь в чрезмерных концентрациях в условиях патологии, может быть важным патогенетическим фактором развития эндотоксинового шока, оказывать выраженное цитотоксическое действие за счет образования пероксинитрата в процессе реакции с супероксидом [34,35,36,37,38]:
В свою очередь пероксинитрит, образующейся в этой реакции, может разлагаться с образованием чрезвычайно реактогенного гидроксильного радикала, вызывающего деструкцию практически всех компонентов клетки [29,33,34].
В данной статье сделан акцент на происхождении и биологических эффектах супероксида, нитроксида, гидроксила и убихинона. В последующем целесообразно остановиться на роли этих радикалов в активации процессов липопероксидации и молекулярно-клеточных механизмах дезорганизации субклеточных структур в условиях патологии, а также значение антиоксидантных систем в развитии адаптивных реакций.
- Свободные отношения что это
- Свр россии что это