Тэц как расшифровывается
Тэц как расшифровывается
Теплоэлектроцентраль
Полезное
Смотреть что такое «Теплоэлектроцентраль» в других словарях:
теплоэлектроцентраль — теплоэлектроцентраль … Орфографический словарь-справочник
Теплоэлектроцентраль — предприятие, производящее электрическую и тепловую энергию. См. также: Электростанции Финансовый словарь Финам … Финансовый словарь
теплоэлектроцентраль — ТЭЦ Паротурбинная электростанция, предназначенная для производства электрической энергии и тепла. [ГОСТ 26691 85] теплоэлектроцентраль Тепловая электростанция, вырабатывающая и отпускающая потребителям одновременно электрическую энергию и тепло… … Справочник технического переводчика
ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ — (ТЭЦ), паротурбинная тепловая электростанция, вырабатывающая и отпускающая потребителям одновременно 2 вида энергии: электрическую и тепловую (в виде горячей воды, пара). В России мощность отдельных ТЭЦ достигает 1,5 1,6 ГВт при часовом отпуске… … Современная энциклопедия
ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ — (ТЭЦ теплофикационная электростанция), тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды … Большой Энциклопедический словарь
ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ — ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ, и, жен. Тепловая электростанция, вырабатывающая электроэнергию и тепло (горячую воду, пар) (ТЭЦ). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
теплоэлектроцентраль — сущ., кол во синонимов: 4 • станция (85) • теплоцентраль (3) • тэц (1) • … Словарь синонимов
Теплоэлектроцентраль — (ТЭЦ), паротурбинная тепловая электростанция, вырабатывающая и отпускающая потребителям одновременно 2 вида энергии: электрическую и тепловую (в виде горячей воды, пара). В России мощность отдельных ТЭЦ достигает 1,5 1,6 ГВт при часовом отпуске… … Иллюстрированный энциклопедический словарь
ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ — (ТЭЦ) паротурбинная электростанция, вырабатывающая и отпускающая потребителям электрическую энергию и теплоту, получаемую в результате использования отработавшего пара. ТЭЦ используется для технологических процессов в промышленности, для… … Большая политехническая энциклопедия
Теплоэлектроцентраль — ТЭЦ 26 (Южная ТЭЦ) в Москве … Википедия
Тэц как расшифровывается
Литва, техн., энерг.
тепловая электроцентраль
теплоэлектроцентраль
Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
тепловая энергоцентраль
теплоэнергоцентраль
Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
теория электрических цепей
тепловой электрический цех
Полезное
Смотреть что такое «ТЭЦ» в других словарях:
ТЭЦ-20 — Страна … Википедия
ТЭЦ-11 — Страна … Википедия
ТЭЦ-23 — ТЭЦ 23 … Википедия
ТЭЦ-27 — ТЭЦ 27 … Википедия
ТЭЦ-9 — Страна … Википедия
ТЭЦ-22 — Страна … Википедия
ТЭЦ-26 — ТЭЦ 26 … Википедия
ТЭЦ-1 — ТЭЦ 1: Барнаульская ТЭЦ 1. Владивостокская ТЭЦ 1. Владимирская ТЭЦ 1. Волгодонская ТЭЦ 1. Волжская ТЭЦ 1. Калининградская ТЭЦ 1. Костромская ТЭЦ 1. Красноярская ТЭЦ 1. Пензенская ТЭЦ 1. Саранская ТЭЦ 1. Хабаровская ТЭЦ 1. Уфимская ТЭЦ 1.… … Википедия
ТЭЦ-28 — ТЭЦ 28 … Википедия
ТЭЦ — (теплоэлектроцентраль). Первой в СССР ТЭЦ стала Ленинградская электростанция № 3 (набережная р. Фонтанки, 104), переоборудованная в 1924 для выработки электрической и тепловой энергии (с 1934 имени Л. Л. Гинтера). Постепенно все городские… … Санкт-Петербург (энциклопедия)
ТЭЦ — расшифровка
Аббревиатура ТЭЦ расшифровывается, как Теплоэлектроцентраль.
Сокращение ТЭЦ пришло к нам со времен СССР. ТЭЦ является ТЭС (Тепловая электростанция) и работает по тем же циклам, что и любая другая тепловая электростанция: паровой цикл и паро-газовый цикл.
Функция ТЭЦ — снабжать население и предприятия электричеством и тепловой энергией (горячее водоснабжение, отопление и пар на производство).
На ТЭЦ устанавливают теплофикационные турбины — типа Т, противодавленческие — типа Р и теплофикационные с промышленным отбором пара — типа ПТ.
В отопительный сезон ТЭЦ работают по тепловому графику. Т.е. прежде всего держат температуру сетевой воды в прямой магистрали в зависимости от температуры наружного воздуха и наличия ветра. По электрическому графику ТЭЦ могут работать в летнее время, допустим тогда, когда отключены отборы с турбины на теплофикацию.
Строительство ТЭЦ экономически выгодно в городах с населением в несколько сот тысяч человек.
Смотрим видео «Работа на ТЭЦ»
Значение слова «ТЭЦ»
1. сокр. к теплоэлектроцентраль; разновидность тепловой электростанции, которая не только производит электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения ◆ Яша работал в Ленинграде на ТЭЦ, ― он был по специальности инженером-электриком. Светлана Аллилуева, «Двадцать писем другу», 1963 г. (цитата из НКРЯ) ◆ Продукты сгорания ТЭЦ, работающей на малокалорийном топливе или природном газе, очищаются в фильтрах. Владимир Котелев, ««Водородный» белок — соперник «нефтяного»», 1974 г. // «Техника — молодежи» (цитата из НКРЯ)
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова примощённый (прилагательное):
Что такое АЭС, ТЭЦ и ТЭС?
Современный мир требует огромного количества энергии (электрической и тепловой), которая производится на электростанциях различного типа.
Человек научился добывать энергию из нескольких источников (углеводородное топливо, ядерные ресурсы, падающая вода, ветер и т.д.) Однако и по сей день наиболее востребованными и эффективными остаются тепловые и атомные электростанции, о которых и пойдет речь.
Что такое АЭС?
Атомная электростанция (АЭС) – это объект, на котором для производства энергии используется реакция распада ядерного топлива.
Попытки использования управляемой (то есть контролируемой, прогнозируемой) ядерной реакции для выработки электроэнергии были предприняты советскими и американскими учеными одновременно – в 40-х годах прошлого века. В 50-х годах «мирный атом» стал реальностью, и во многих странах мира стали строить АЭС.
В мире не утихают споры о целесообразности использования атомной энергии для выработки электричества. Сторонники АЭС говорят об их высокой продуктивности, безопасности реакторов последнего поколения, а также о том, что такие электростанции не загрязняют окружающую среду. Противники утверждают, что АЭС потенциально чрезвычайно опасны, а их эксплуатация и, особенно, утилизация отработанного топлива сопряжены с огромными расходами.
Что такое ТЭС?
Наиболее традиционным и распространенным в мире видом электростанциЙ являются ТЭС. Тепловые электростанции (так расшифровывается данная аббревиатура) вырабатывают электроэнергию за счет сжигания углеводородного топлива – газа, угля, мазута.
Схема работы ТЭС выглядит следующим образом: при сгорании топлива образуется большое количество тепловой энергии, с помощью которой нагревается вода. Вода превращается в перегретый пар, который подается в турбогенератор. Вращаясь, турбины приводят в движение детали электрогенератора, образуется электрическая энергия.
На некоторых ТЭЦ фаза передачи тепла теплоносителю (воде) отсутствует. В них используются газотурбинные установки, в которых турбину вращают газы, полученные непосредственно при сжигании топлива.
Существенным преимуществом ТЭС считается доступность и относительная дешевизна топлива. Однако есть у тепловых станций и недостатки. Это, прежде всего, экологическая угроза окружающей среде. При сжигании топлива в атмосферу выбрасывается большое количество вредных веществ. Чтобы сделать ТЭС более безопасными, применяется ряд методов, в том числе: обогащение топлива, установка специальных фильтров, задерживающих вредные соединения, использование рециркуляции дымовых газов и т.п.
Что такое ТЭЦ?
Само название данного объекта напоминает предыдущее, и на самом деле, ТЭЦ, как и тепловые электростанции преобразуют тепловую энергию сжигаемого топлива. Но помимо электроэнергии теплоэлектроцентрали (так расшифровывается ТЭЦ) поставляют потребителям тепло. ТЭЦ особенно актуальны в холодных климатических зонах, где нужно обеспечить жилые дома и производственные здания теплом. Именно поэтому ТЭЦ так много в России, где традиционно используется центральное отопление и водоснабжение городов.
По принципу работы ТЭЦ относятся к конденсационным электростанциям, но в отличие от них, на теплоэлектроцентралях часть выработанной тепловой энергии идет на производство электричества, а другая часть – на нагрев теплоносителя, который и поступает к потребителю.
ТЭЦ более эффективна по сравнению с обычными ТЭС, поскольку позволяет использовать полученную энергию по максимуму. Ведь после вращения электрогенератора пар остается горячим, и эту энергию можно использовать для отопления.
Помимо тепловых, существуют атомные ТЭЦ, которые в перспективе должны сыграть ведущую роль в электро- и теплоснабжении северных городов.
Тепловые электростанции (ТЭЦ, КЭС): разновидности, типы, принцип работы, топливо
Тепловые электростанции могут быть с паровыми и газовыми турбинами, с двигателями внутреннего сгорания. Наиболее распространены тепловые станции с паровыми турбинами, которые в свою очередь подразделяются на: конденсационные (КЭС) — весь пар в которых, за исключением небольших отборов для подогрева питательной воды, используется для вращения турбины, выработки электрической энергии;теплофикационные электростанции — теплоэлектроцентрали (ТЭЦ), являющиеся источником питания потребителей электрической и тепловой энергии и располагающиеся в районе их потребления.
Конденсационные электростанции
Конденсационные электростанции часто называют государственными районными электрическими станциями (ГРЭС). КЭС в основном располагаются вблизи районов добычи топлива или водоемов, используемых для охлаждения и конденсации пара, отработавшего в турбинах.
Характерные особенности конденсационных электрических станции
КЭС могут работать на твердом (уголь, торф), жидком (мазут, нефть) топливе или газе.
Топливоподача и приготовление твердого топлива заключается в транспортировке его из складов в систему топливоприготовления. В этой системе топливо доводится до пылевидного состояния с целью дальнейшего вдувания его к горелкам топки котла. Для поддержания процесса горения специальным вентилятором в топку нагнетается воздух, подогретый отходящими газами, которые отсасываются из топки дымососом.
Жидкое топливо подается к горелкам непосредственно со склада в подогретом виде специальными насосами.
Подготовка газового топлива состоит в основном в регулировании давления газа перед сжиганием. Газ от месторождения или хранилища транспортируется по газопроводу к газораспределительному пункту (ГРП) станции. На ГРП осуществляется распределение газа и регулирование его параметров.
Процессы в пароводяном контуре
Основной пароводяного контур осуществляет следующие процессы:
Интересное видео о работе ТЭЦ можно посмотреть ниже:
Для компенсации потерь пара в основную пароводяную систему насосом подается подпиточная вода, предварительно прошедшая химическую очистку.
Следует отметить, что для нормальной работы пароводяных установок, особенно со сверх критическими параметрами пара, важное значение имеет качество воды, подаваемой в котел, поэтому турбинный конденсат пропускается через систему фильтров обессоливания. Система водоподготовки предназначена для очистки подпиточной и конденсатной воды, удаления из нее растворенных газов.
На станциях, использующих твердое топливо, продукты сгорания в виде шлака и золы удаляются из топки котлов специальной системой шлака- и золоудаления, оборудованной специальными насосами.
При сжигании газа и мазута такой системы не требуется.
На КЭС имеют место значительные потери энергии. Особенно велики потери тепла в конденсаторе (до 40..50 % общего количества тепла, выделяемого в топке), а также с отходящими газами (до 10 %). Коэффициент полезного действия современных КЭС с высокими параметрами давления и температуры пара достигает 42 %.
Электрическая часть КЭС представляет совокупность основного электрооборудования (генераторов, трансформаторов) и электрооборудования собственных нужд, в том числе сборных шин, коммутационной и другой аппаратуры со всеми выполненными между ними соединениями.
Генераторы станции соединяются в блоки с повышающими трансформаторами без каких-либо аппаратов между ними.
В связи с этим на КЭС не сооружается распределительное устройство генераторного напряжения.
Распределительные устройства на напряжения 110—750 кВ в зависимости от количества присоединений, напряжения, передаваемой мощности и требуемого уровня надежности выполняются по типовым схемам электрических соединений. Поперечные связи между блоками имеют место только в распределительных устройствах высшего напряжения или в энергосистеме, а также по топливу, воде и пару.
В связи с этим каждый энергоблок можно рассматривать как отдельную автономную станцию.
Для обеспечения электроэнергией собственных нужд станции выполняются отпайки от генераторов каждого блока. Для питания мощных электродвигателей (200 кВт и более) используется генераторное напряжение, для питания двигателей меньшей мощности и осветительных установок — система напряжения 380/220 В. Электрические схемы собственных нужд станции могут быть различными.
Ещё одно интересное видео о работе ТЭЦ изнутри:
Теплоэлектроцентрали
Теплоэлектроцентрали, являясь источниками комбинированной выработки электрической и тепловой энергии, имеют значительно больший, чем КЭС, коэффициент полезного действия (до 75 %). Это объясняется тем. что часть отработавшего в турбинах пара используется для нужд промышленного производства (технологии), отопления, горячего водоснабжения.
Этот пар или непосредственно поступает для производственных и бытовых нужд или частично используется для предварительного подогрева воды в специальных бойлерах (подогревателях), из которых вода через теплофикационную сеть направляется потребителям тепловой энергии.
Основное отличие технологии производства энергии на ТЭЦ в сравнении с КЭС состоит в специфике пароводяного контура. Обеспечивающего промежуточные отборы пара турбины, а также в способе выдачи энергии, в соответствии с которым основная часть ее распределяется на генераторном напряжении через генераторное распределительное устройство (ГРУ).
Связь ТЭЦ с другими станциями энергосистемы выполняется на повышенном напряжении через повышающие трансформаторы. При ремонте или аварийном отключении одного генератора недостающая мощность может быть передана из энергосистемы через эти же трансформаторы.
Для увеличения надежности работы ТЭЦ предусматривается секционирование сборных шин.
Так, при аварии на шинах и последующем ремонте одной из секций вторая секция остается в работе и обеспечивает питание потребителей по оставшимся под напряжениям линиям.
По таким схемам сооружаются промышленные ТЭЦ с генераторами до 60 мВт, предназначенные для питания местной нагрузки в радиусе 10 км.
На крупных современных ТЭЦ применяются генераторы мощностью до 250 мВт при общей мощности станции 500—2500 мВт.
Такие ТЭЦ сооружаются вне черты города и электроэнергия передается на напряжении 35—220 кВ, ГРУ не предусматривается, все генераторы соединяются в блоки с повышающими трансформаторами. При необходимости обеспечить питание небольшой местной нагрузки вблизи блочной ТЭЦ предусматриваются отпайки от блоков между генератором и трансформатором. Возможны и комбинированные схемы станции, при которых на ТЭЦ имеется ГРУ и несколько генераторов соединены по блочным схемам.
ПЕРЕЧЕНЬ СОКРАЩЕНИЙ
АЗ – аварийная защита; активная зона (ядерного реактора)
АСПТ, АСТ – атомная станция промышленного теплоснабжения, атомная
АСУТП – автоматизированная система управления технологическими
АТЭЦ – атомная теплоэлектроцентраль
АЧР – автоматическая частотная разгрузка
АЭС – атомная электрическая станция
БН – бустерный насос
БОУ – блочная обессоливающая установка
БРОУ, БРУ – быстродействующая редукционно-охладительная установка,
БЩУ – блочный щит управления
ВВЭР – водо-водяной энергетический реактор
ВПУ – водоподготовительная установка
ВС – верхняя ступень (сетевого подогревателя)
ВСП – верхний сетевой подогреватель
ВХР – водно-химический режим
ВЭР – вторичные энергоресурсы
ВЭС – ветровая электростанция
ГАВР – гидразин-аммиачный водный режим
ГАЭС – гидроаккумулирующая электростанция
ГеоТЭС – геотермальная теплоэлектростанция
ГеЭС – гелиоэлектростанция (солнечная электростанция)
ГЗЗ – главная запорная задвижка
ГК – генерирующая компания (в энергосистеме)
ГОСТ – государственный стандарт
ГОЭЛРО – государственный план электрификации России (1920 г.)
ГП – генеральный план (электростанции)
ГРП – газораспределительный пункт
ГРЭС – государственная районная электростанция
ГТ, ГТД, ГТУ, ГТУ-ТЭЦ, ГТЭС – газовая турбина, газотурбинный двигатель,
газотурбинная установка, ТЭЦ с ГТУ,
гут – грамм условного топлива
ГЦК – главный циркуляционный контур
ГЦН – главный циркуляционный насос
ГЩУ – главный щит управления
ДВ – дутьевой вентилятор
ДВД – деаэратор высокого давления
ДИ – деаэратор испарителя
ДН – дренажный насос
ДНД – деаэратор низкого давления
ДПТС – деаэратор подпитки теплосети
ДТ – дымовая труба
ДЭС – дизельная электростанция
ЗРУ – закрытое распределительное устройство
ЗШО, ЗШУ – золошлакоотвал, золошлакоудаление
КЗ – короткое замыкание
КИ – конденсатор испарителя
КИА, КИП – контрольно-измерительная аппаратура,
КИУМ – коэффициент использования установленной мощности
КМПЦ – контур многократной принудительной циркуляции
КН – конденсатный насос
КНС – насос конденсата сетевых подогревателей
КО – конденсатоочистка; конденсатоотводчик; компенсатор объема
КПД – коэффициент полезного действия
КПТ – конденсатно-питательный тракт
КПТЭ – комбинированное производство тепловой и электрической энергии
КТ – конденсатный тракт
КТО, КТП, КТПР – коэффициент теплоотдачи, коэффициент теплопередачи,
КТЦ – котлотурбинный цех (электростанции)
КУ – котельная установка; котел-утилизатор
КЦ – котельный цех (электростанции)
КЭН – конденсатный электронасос
КЭС – конденсационная электростанция
ЛЭП – линия электропередачи
МАГАТЭ – Международное агентство по атомной энергии
МБ – материальный баланс
МГДУ – магнитогидродинамическая установка
МИРЭК, МИРЭС – Мировая энергетическая конференция, Мировой
МПА – максимальная проектная авария (на АЭС)
НВИЭ – нетрадиционные и возобновляемые источники энергии
НКВР – нейтрально-кислородный водный режим
НОК – насос обратного конденсата
НС – нижняя ступень (сетевого подогревателя)
НСП – нижний сетевой подогреватель
НСС – начальник смены станции
ОВ – охлаждающая вода; очищенная вода; охладитель выпара (деаэратора)
ОВК – объединенный вспомогательный корпус
ОД – охладитель дренажа
ОДУ – объединенное диспетчерское управление
ОК – обратный конденсат; обратный клапан
ОП – охладитель продувки
ОРУ – открытое распределительное устройство
ОСТ – отраслевой стандарт
ОУ – охладительная установка; охладитель уплотнений
ОЭ – основой эжектор; охладитель эжектора
ПБ – пиковый бойлер; пожарная безопасность
ПВ – питательная вода
ПВД – подогреватель высокого давления
ПВК – пиковый водогрейный котел
ПВТ – пароводяной тракт
ПГ – парогенератор; природный газ
ПГУ – парогазовая установка; парогенерирующая установка
ПДК – предельно допустимая концентрация
ПЕ – перегреватель свежего пара
ПК – паровой котел; пиковый котел; предохранительный клапан
ПКВД, ПКНД – паровой котел высокого, низкого давления
ПН – питательный насос
ПНД – подогреватель низкого давления
ПП – промежуточный пароперегреватель; полупроводник
ППР – паропреобразователь; планово-предупредительный ремонт
ПРК – пускорезервная котельная
ПСВ – подогреватель сетевой воды
ПТ – паровая турбина; паровой тракт; подготовка топлива
ПТС – принципиальная тепловая схема
ПТУ – паротурбинная установка
ПТЭ – правила технической эксплуатации
ПУ – подогреватель уплотнений
ПУЭ – правила устройства электроустановок
ПХ – паровая характеристика
ПЭ – подогреватель эжекторов; пусковой эжектор
ПЭН – питательный электронасос
Р – расширитель; реактор (ядерный)
РАО – радиоактивные отходы
энергетики и электрификации «Единая
электроэнергетическая система России»
РБМК – реактор большой мощности канальный (кипящий)
РБН – реактор на быстрых нейтронах
РВП – регенеративный воздухоподогреватель
РД – руководящий документ
РЗА – релейная защита и автоматика
РОУ – редукционно-охладительная установка
РП – регенеративный подогреватель
РТН – реактор на тепловых нейтронах
РТС – развернутая (полная) тепловая схема
РУ – редукционная установка; реакторная установка; распределительное
РЦ – реакторный цех (атомной электростанции)
РЭК – региональная энергетическая комиссия
РЭС – районные электрические сети
САОЗ – система аварийного охлаждения зоны (ядерного реактора)
САР, САУ – система автоматического регулирования, система
СВО, СГО – спецводоочистка, спецгазоочистка (на АЭС)
СЗЗ – санитарно-защитная зона
СК – стопорный клапан; сетевая компания (в энергосистеме)
СКД, СКП – сверхкритическое давление, сверхкритические параметры
СН – сетевой насос; собственные нужды
СНиП – санитарные нормы и правила
СП – сетевой подогреватель
СТВ – система технического водоснабжения
СУЗ – система управления и защиты (ядерного реактора)
СХТМ – система химико-технологического мониторинга
СЦТ – система централизованного теплоснабжения
СЭС – солнечная электростанция
ТБ – тепловой баланс; топливный баланс; техника безопасности
ТВ – техническая вода
ТВД – турбина высокого давления
ТВС, твэл – тепловыделяющая сборка, тепловыделяющий элемент
ТГВТ – топливно-газо-воздушный тракт
ТГУ – турбогенераторная установка
ТИ – тепловая изоляция
ТК – теплофикационный пучок конденсатора турбины; технологический
канал (ядерного реактора); топливная кассета (для АЭС)
ТНД – турбина низкого давления
ТО – теплообменник; техническое обслуживание
ТП – тепловой потребитель; турбопривод (насоса); технологический процесс
ТПН – питательный насос с турбоприводом (турбопитательный насос)
ТТЦ – топливно-транспортный цех (электростанции)
ТУ – турбоустановка; технические условия
ТХ – топливное хозяйство; тепловая характеристика
ТЦ – турбинный цех (электростанции)
ТЭБ – топливно-энергетический баланс
ТЭК – топливно-энергетический комплекс
ТЭО – технико-экономическое обоснование (проекта)
ТЭР – топливно-энергетические ресурсы
ТЭС – тепловая электрическая станция
ТЭЦ-ЗИГМ – теплоэлектроцентраль заводского изготовления на
ТЭЦ-ЗИТТ – теплоэлектроцентраль заводского изготовления на твердом
ФОРЭМ – федеральный оптовый рынок энергии и мощности (России)
ФЭК – федеральная энергетическая комиссия
ХОВ – химочищенная вода
ХХ – холостой ход (турбины)
ХЦ – химический цех (электростанции)
ЦВ – циркуляционная вода
ЦВД, ЦНД, ЦСД – цилиндр высокого, низкого, среднего давления (турбины)
ЦН – циркуляционный насос
ЦТАИ – цех тепловой автоматики и измерений (электростанции)
ЦЦР – цех централизованного ремонта (электростанции)
ЧВД, ЧНД, ЧСД – часть высокого, низкого, среднего давления (турбины)
ЭДС – электродвижущая сила
ЭС – электрическая станция; электрические сети; Энергетическая стратегия
ЭУ – энергетическая установка; эжектор уплотнений
ЭХ – энергетическая характеристика
ЭЦ – электроцех (электростанции)
ЭЭС – электроэнергетическая система
ЛИТЕРАТУРА
1. Волков Э.П., Ведяев В.А., Обрезков В.И. Энергетические установки электростанций. М.: Энергоатомиздат, 1983.
2. Гиршфельд В.Я., Морозов Г.Н. Тепловые электрические станции. М.: Энергоатомиздат, 1986.
3. Грибков А.М., Гаврилов Е.И., Полтавец В.М. Основы проектирования и эксплуатации тепловых электростанций. Казань: Изд-во КГЭУ, 2004.
4. Дементьев Б.А. Ядерные энергетические реакторы. М.: Энергоатомиздат, 1990.
5. Дэвинс Д. Энергия. М.: Энергоатомиздат, 1985.
6. Елизаров Д.П. Теплоэнергетические установки электростанций. М.: Энергоиздат, 1982.
7. Киселев Г.П. Условные обозначения энергетического оборудования, трубопроводов и арматуры в тепловых схемах. Методические указания по дипломному проектированию для специальности «Тепловые электрические станции». М.: Изд-во МЭИ, 1981.
8. Литвин А.М. Основы теплоэнергетики. М.: Энергия, 1973.
9. Маргулова Т.Х. Атомные электрические станции. М.: Высшая школа, 1974, 1978, 1984.
10. Маргулова Т.Х., Подушко Л.А. Атомные электрические станции. М.: Энергоиздат, 1982.
11. Нигматуллин И.Н., Нигматуллин Б.И. Ядерные энергетические установки. М.: Энергоатомиздат, 1986.
12. Правила технической эксплуатации электрических станций и сетей Российской Федерации. М.: СПО ОРГРЭС, 2003.
13. Проценко А.Н. Покорение атома. М.: Атомиздат, 1964.
14. Проценко А.Н. Энергия будущего. М.: Молодая гвардия, 1985.
15. Проценко А.Н. Энергетика сегодня и завтра. М.: Молодая гвардия, 1987.
16. Рыжкин В.Я. Тепловые электрические станции. М.: Энергоатомиздат, 1976, 1987.
17. Соколов Е.Я. Теплофикация и тепловые сети. М.: Изд-во МЭИ, 2001.
18. Промышленные тепловые электростанции/ Под ред. Е.Я.Соколова. М.: Энергия, 1979.
19. Стерман Л.С., Лавыгин В.М., Тишин С.Г. Тепловые и атомные электрические станции. М.: Изд-во МЭИ, 2004, 2008.
20. Стерман Л.С., Тевлин С.А., Шарков А.Т. Тепловые и атомные электрические станции. М.: Энергоиздат, 1982.
21. Тепловые и атомные электрические станции/ Под ред. А.В. Клименко, В.М. Зорина. М.: Изд-во МЭИ, 2003.
22. Чичирова Н.Д., Шагиев Н.Г., Евгеньев И.В. Химия комплексных соединений. Комплексные соединения в теплоэнергетике. Казань: Изд-во КГЭИ, 1999.
23. Шагиев Н.Г., Мельников В.Н., Дик В.П. Экономика ядерной энергетики и организация производства. М.: Изд-во МЭИ, 1994.
Теплоэлектростанция
Определение ТЭС, типы и характеристики ТЭС. классификация ТЭС
Определение ТЭС, типы и характеристики ТЭС. классификация ТЭС, устройство ТЭС
Содержание
Содержание
— Использование тепла мини-ТЭЦ
— Топливо для мини-ТЭЦ
— Мини-ТЭЦ и экология
— Влияние на окружающую среду
Теплова́яэлектроста́нция это (или теплова́я электри́ческая ста́нция) — электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.
Основными узлами тепловой электрической станции являются:
— двигатели — силовые агрегаты тепловой электро станции
Градирня
Гради́рня (нем. gradieren — сгущать соляной раствор; первоначально градирни служили для добычи соли выпариванием) — устройство для охлаждения большого количества воды направленным потоком атмосферного воздуха. Иногда градирни называют также охладительными башнями.
В настоящее время градирни в основном применяются в системах оборотного водоснабжения для охлаждения теплообменных аппаратов (как правило, на тепловых электростанциях, ТЭЦ). В гражданском строительстве градирни используются при кондиционировании воздуха, например, для охлаждения конденсаторов холодильных установок, охлаждения аварийных электрогенераторов. В промышленности градирни используются для охлаждения холодильных машин, машин-формовщиков пластических масс, при химической очистке веществ.
Процесс охлаждения происходит за счёт испарения части воды при стекании её тонкой плёнкой или каплями по специальному оросителю, вдоль которого в противоположном движению воды направлении подаётся поток воздуха. При испарении 1 % воды, температура оставшейся понижается на 5,48 °C.
Как правило, градирни используют там, где нет возможности использовать для охлаждения большие водоёмы (озёра, моря). Кроме того, данный способ охлаждения экологически более чистый.
Простой и дешёвой альтернативой градирням являются брызгальные бассейны, где вода охлаждается простым разбрызгиванием.
Характеристики
Основной параметр градирни — величина плотности орошения — удельная величина затраты воды на 1 мІ площади орошения.
Основные конструктивные параметры градирен определяются технико-экономическим расчётом в зависимости от объёма и температуры охлаждаемой воды и параметров атмосферы (температуры, влажности и т. д.) в месте установки.
Использование градирен в зимнее время, особенно в суровых климатических условиях, может быть опасно из-за вероятности обмерзания градирни. Происходит это чаще всего в том месте, где происходит соприкосновение морозного воздуха с небольшим количеством теплой воды. Для предотвращения обмерзания градирни и, соответственно, выхода её из строя следует обеспечивать равномерное распределение охлаждаемой воды по поверхности оросителя и следить за одинаковой плотностью орошения на отдельных участках градирни. Нагнетательные вентиляторы тоже часто подвергаются обледенению из-за неправильного использования градирни.
Классификация
В зависимости от типа оросителя, градирни бывают:
По способу подачи воздуха:
вентиляторные (тяга создаётся вентилятором);
башенные (тяга создаётся при помощи высокой вытяжной башни);
открытые (атмосферные), использующие силу ветра и естественную конвекцию при движении воздуха через ороситель.
Вентиляторные градирни наиболее эффективны с технической точки зрения, так как обеспечивают более глубокое и качественное охлаждение воды, выдерживают большие удельные тепловые нагрузки (однако требуют издержек электрической энергии для привода вентиляторов).
Типы
Конденсационные электростанции (ГРЭС)
Теплоэлектроцентрали (теплофикационные электростанции, ТЭЦ)
Электростанции на базе парогазовых установок
Электростанции на основе поршневых двигателей
С воспламенением от сжатия (дизель)
C воспламенением от искры
Теплоелектроцентраль
Теплоэлектроцентра́ль (ТЭЦ) — разновидность тепловой электростанции, которая производит не только электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов). Как правило, ТЭЦ должна работать по теплофикационному графику, то есть выработка электрической энергии зависит от выработки тепловой энергии.
При размещении ТЭЦ учитывается близость потребителей тепла в виде горячей воды и пара.
Мини-ТЭЦ
Мини-ТЭЦ — малая теплоэлектроцентраль.
Устройство мини-ТЭЦ
Мини-ТЭЦ — это теплосиловые установки, служащие для совместного производства электрической и тепловой энергии в агрегатах единичной мощностью до 25 МВт, независимо от вида оборудования. В настоящее время нашли широкое применение в зарубежной и отечественной теплоэнергетике следующие установки: противодавленческие паровые турбины, конденсационные паровые турбины с отбором пара, газотурбинные установки с водяной или паровой утилизацией тепловой энергии, газопоршневые, газодизельные и дизельные агрегаты с утилизацией тепловой энергии различных систем этих агрегатов. Термин когенерационные установки используется в качестве синонима терминов мини-ТЭЦ и ТЭЦ, однако он является более широким по значению, так как предполагает соместное производство (co — совместное, generation — производство) различных продуктов, которыми могут быть, как электрическая и тепловая энергия, так и другие продукты, например, тепловая энергия и углекислый газ, электрическая энергия и холод и т. д. Фактически термин тригенерация, предполагающий производство электричества, тепловой энергии и холода также является частным случаем когенерации. Отличительной особенностью мини-ТЭЦ является более экономичное использование топлива для произведенных видов энергии в сравнении с общепринятыми раздельными способами их производства. Это связано с тем, что электроэнергия в масштабах страны производится в основном в конденсационных циклах ТЭС и АЭС, имеющих электрический КПД на уровне 30-35 % при отсутствии теплового приобретателя. Фактически такое положение дел определяется сложившимся соотношением электрических и тепловых нагрузок населенных пунктов, их различным характером изменения в течение года, а также невозможностью передавать тепловую энергию на большие расстояния в отличие от электрической энергии.
Модуль мини-ТЭЦ включает газопоршневой, газотурбинный или дизельный двигатель, генератор электричества, теплообменник для утилизации тепла от воды при охлаждении двигателя, масла и выхлопных газов. К мини-ТЭЦ обычно добавляют водогрейный котел для компенсации тепловой нагрузки в пиковые моменты.
Назначение мини-ТЭЦ
Основное предназначение мини-ТЭЦ является выработка электрической и тепловой энергии из различных видов топлива.
Концепция строительства мини-ТЭЦ в непосредственной близости к приобретателю имеет ряд преимуществ (в сравнении с большими ТЭЦ):
позволяет избежать расходов на строитпреимуществогостоящих и опасных высоковольтных линий электропередач (ЛЭП);
исключаются потери при передаче энергии;
отпадает необходимость финансовых издержек на выполнение технических условий на подключение к сетям
бесперебойное снабжение электричеством приобретателя;
электроснабжение качественной электричеством, соблюдение заданных значений напряжения и частоты;
возможно, получение прибыли.
В современном мире строительство мини-ТЭЦ набирает обороты, преимущества очевидны.
Использование тепла мини-ТЭЦ
Значимую часть энергии сгорания топлива при выработке электричества составляет тепловая энергия.
Существует варианты использования тепла:
непосредственное использование тепловой энергии конечными потребителями (когенерация);
горячее водоснабжение (ГВС), отопление, технологические нужды (пар);
частичное преобразование тепловой энергии в энергию холода (тригенерация);
холод вырабатывается абсорбционной холодильной машиной, потребляющей не электрическую, а тепловую энергию, что дает возможность достаточно эффективно использовать тепло летом для кондиционирования помещений или для технологических нужд;
Топливо для мини-ТЭЦ
Виды используемого топлива
газ: Природный газ магистральный, Природный газ сжиженный и другие горючие газы;
жидкое топливо: нефть, мазут, дизтопливо, биодизель и другие горючие жидкости;
твердое топливо: уголь, древесина, торф и прочие разновидности биотоплива.
Наиболее эффективным и недорогим топливом в Российской Федерации является магистральный Природный газ, а так же попутный газ.
Мини-ТЭЦ и экология
Использование в практических целях отработавшего тепла двигателей электростанций, является отличительной особенностью мини-ТЭЦ и носит название когенерация (теплофикация).
Замена котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, мини-ТЭЦ способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению общего экологического состояния.
Источник энергии для газопоршневых и газотурбинных мини-ТЭЦ, как правило, Природный газ. Природный или попутный газ органическое топливо, не загрязняющее атмосферу твёрдыми выбросами
Газотурбинный двигатель
Газотурбинный двигатель (ГТД, ТРД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. В отличие от поршневого двигателя, в ГТД процессы происходят в потоке движущегося газа.
Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, туда же подаётся топливо, которое, сгорая, образует большое количество продуктов сгорания под высоким давлением. Затем в газовой турбине энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струёй газа лопаток, часть которой расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на приводимый агрегат. Работа, потребляемая этим агрегатом, является полезной работой ГТД. Газотурбинные двигатели имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.
Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.
Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т.д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.
Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрПреимуществогрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.
Парогазовая установка
Парогазовая установка — электрогенерирующая станция, служащая для производства тепло- и электричества. Отличается от паросиловых и газотурбинных установок повышенным КПД.
Принцип действия
Парогазовая установка состоит из двух отдельных установок: паросиловой и газотурбинной. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как Природный газ, так и продукты нефтяной промышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газотурбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор.
Преимущества
Парогазовые установки имеют электрический КПД порядка 51—58 %, в то время как у работающих отдельно паросиловых или газотурбинных установок он колеблется в районе 35—38 %. Благодаря этому не только снижается затрата топлива, но и уменьшается выброс парниковых газов.
Поскольку парогазовая установка более эффективно извлекает тепло из продуктов сгорания, можно сжигать топливо при более высоких температурах, в результате уровень выбросов оксида азота в атмосферу ниже чем у установок других типов.
Относительно низкая стоимость производства.
Распространение
Несмотря на то, что преимущества парогазового цикла были впервые доказаны еще в 1950-х годах советским академиком Христиановичем, этот тип энергогенерирующих установок не получил в Российской Федерации широкого применения. В СССР были построены несколько экспериментальных ПГУ. Примером могут служить энергоблоки мощностью 170 МВт на Невинномысской ГРЭС и мощностью 250 МВт на Молдавской ГРЭС. В последние годы в Российской Федерации введены в эксплуатацию ряд мощных парогазовых энергоблоков. Среди них:
2 энергоблока мощностью 450 МВт каждый на Северо-западной ТЭЦ в Санкт-Петербурге;
1 энергоблок мощностью 450 МВт на Калининградской ТЭЦ-2;
1 ПГУ мощностью 220 МВт на Тюменской ТЭЦ-1;
2 ПГУ мощностью 450 МВт на ТЭЦ-27 и 1 ПГУ на ТЭЦ-21 в Москве;
1 ПГУ мощностью 325 МВт на Ивановской ГРЭС;
2 энергоблока мощностью 39 МВт каждый на Сочинской ТЭС
По состоянию на сентябрь 2008 г. в Российской Федерации в различных стадиях проектирования или строительства находятся несколько ПГУ.
В Европе и США подобные установки функционируют на большинстве тепловых электростанций.
Конденсационная электростанция
Конденсационная электростанция (КЭС) — тепловая электростанция, производящая только электрическую энергию. Исторически получила наименование «ГРЭС» — государственная районная электростанция. С течением времени термин «ГРЭС» потерял свой первоначальный смысл («районная») и в современном понимании означает, как правило, конденсационную электростанцию (КЭС) большой мощности (тысячи МВт), работающую в объединённой энергосистеме наряду с другими крупными электростанциями. Однако следует учитывать, что не все станции, имеющие в своём названии аббревиатуру «ГРЭС», являются конденсационными, некоторые из них работают как теплоэлектроцентрали.
История
Первая ГРЭС «Электропередача», сегодняшняя «ГРЭС-3», сооружена под Москвой в г. Электрогорске в 1912—1914 гг. по инициативе инженера Р. Э. Классона. Основное топливо — торф, мощность — 15 МВт. В 1920-х планом ГОЭЛРО предусматривалось строительство нескольких тепловых электростанций, среди которых наиболее известна Каширская ГРЭС.
Принцип работы
Вода, нагреваемая в паровом котле до состояния перегретого пара (520—565 градусов Цельсия), вращает паровую турбину, приводящую в движение турбогенератор.
Избыточное тепло выбрасывается в атмосферу (близлежащие водоёмы) через конденсационные установки в отличие от теплофикационных электростанций, отдающих избыточное тепло на нужды близлежащих объектов (например, отопление домов).
Конденсационная электростанция как правило работает по циклу Ренкина.
Основные системы
КЭС является сложным энергетическим комплексом, состоящим из зданий, сооружений, энергетического и иного оборудования, трубопроводов, арматуры, контрольно-измерительных приборов и автоматики. Основными системами КЭС являются:
система золо- и шлакоудаления, очистки дымовых газов;
техническое водоснабжение (для отвода избыточного тепла);
система химической очистки и подготовки воды.
При проектировании и строительстве КЭС ее системы размещаются в зданиях и сооружениях комплекса, в первую очередь в главном корпусе. При эксплуатации КЭС персонал, управляющий системами, как правило, объединяется в цеха (котлотурбинный, электрический, топливоподачи, химводоподготовки, тепловой автоматики и т. п.).
Котельная установка располагается в котельном отделении главного корпуса. В южных районах Российской Федерации котельная установка может быть открытой, то есть не иметь стен и крыши. Установка состоит из паровых котлов (парогенераторов) и паропроводов. Пар от котлов передается турбинам по паропроводам «острого» пара. Паропроводы различных котлов, как правило, не соединяются поперечными связями. Такая схема называется «блочной».
Паротурбинная установка располагается в машинном зале и в деаэраторном (бункерно-деаэраторном) отделении главного корпуса. В нее входят:
паровые турбины с электрическим генератором на одном валу;
конденсатор, в котором пар, прошедший турбину, конденсируется с образованием воды (конденсата);
конденсатные и питательные насосы, обеспечивающие возврат конденсата (питательной воды) к паровым котлам;
рекуперативные подогреватели низкого и высокого давления (ПНД и ПВД) — теплообменники, в которых питательная вода подогревается отборами пара от турбины;
деаэратор (служащий также ПНД), в котором вода очищается от газообразных примесей;
трубопроводы и вспомогательные системы.
Топливное хозяйство имеет различный состав в зависимости от основного топлива, на которое рассчитана КЭС. Для угольных КЭС в топливное хозяйство входят:
размораживающее устройство (т. н. «тепляк», или «сарай») для оттаивания угля в открытых полувагонах;
разгрузочное устройство (как правило, вагоноопрокидыватель);
угольный склад, обслуживаемый краном-грейфером или специальной перегрузочной машиной;
дробильная установка для предварительного измельчения угля;
конвейеры для перемещения угля;
системы аспирации, блокировки и другие вспомогательные системы;
система пылеприготовления, включая шаровые, валковые, или молотковые углеразмольные мельницы.
Система пылеприготовления, а также бункера угля располагаются в бункерно-деаэраторном отделении главного корпуса, остальные устройства топливоподачи — вне главного корпуса. Изредка устраивается центральный пылезавод. Угольный склад рассчитывается на 7-30 дней непрерывной работы КЭС. Часть устройств топливоподачи резервируется.
Топливное хозяйство КЭС на Природном газе наиболее просто: в него входит газораспределительный пункт и газопроводы. Однако на таких электростанциях в качестве резервного или сезонного источника используется мазут, поэтому устраивается и мазутное хозяйство. Мазутное хозяйство сооружается и на угольных электростанциях, где мазут применяется для растопки котлов. В мазутное хозяйство входят:
мазутохранилище со стальными или железобетонными резервуарами;
мазутная насосная станция с подогревателями и фильтрами мазута;
трубопроводы с запорно-регулирующей арматурой;
противопожарная и другие вспомогательные системы.
Система золошлакоудаления устраивается только на угольных электростанциях. И зола, и шлак — негорючие остатки угля, но шлак образуется непосредственно в топке котла и удаляется через лётку (отверстие в шлаковой шахте), а зола уносится с дымовыми газами и улавливается уже на выходе из котла. Частицы золы имеют значительно меньшие размеры (порядка 0,1 мм), чем куски шлака (до 60 мм). Системы золошлакоудаления могут быть гидравлические, пневматические или механические. Наиболее распространённая система оборотного гидравлического золошлакоудаления состоит из смывных аппаратов, каналов, багерных насосов, пульпопроводов, золошлакоотвалов, насосных и водоводов осветлённой воды.
Выброс дымовых газов в атмосферу является наиболее опасным воздействием тепловой электростанции на окружающую природу. Для улавливания золы из дымовых газов после дутьевых вентиляторов устанавливают фильтры различных типов (циклоны, скрубберы, электрофильтры, рукавные тканевые фильтры), задерживающие 90—99 % твердых частиц. Однако для очистки дыма от вредных газов они непригодны. За рубежом, а в последнее время и на отечественных электростанциях (в том числе газо-мазутных), устанавливают системы десульфуризации газов известью или известняком (т. н. deSOx) и каталитического восстановления оксидов азота аммиаком (deNOx). Очищенный дымовой газ выбрасывается дымососом в дымовую трубу, высота которой определяется из условий рассеивания оставшихся вредных примесей в атмосфере.
Электрическая часть КЭС предназначена для производства электрической энергии и её распределения потребителям. В генераторах КЭС создается трехфазный электрический ток напряжением обычно 6—24 кВ. Так как с повышением напряжения потери энергии в сетях существенно уменьшаются, то сразу после генераторов устанавливаются трансформаторы, повышающие напряжение до 35, 110, 220, 500 и более кВ. Трансформаторы устанавливаются на открытом воздухе. Часть электрической энергии расходуется на собственные нужды электростанции. Подключение и отключение отходящих к подстанциям и потребителям линий электропередачи производится на открытых или закрытых распределительных устройствах (ОРУ, ЗРУ), оснащенных выключателями, способными соединять и разрывать электрическую цепь высокого напряжения без образования электрической дуги.
Система технического водоснабжения обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин. Системы разделяются на прямоточные, оборотные и смешанные. В прямоточных системах вода забирается насосами из естественного источника (обычно из реки) и после прохождения конденсатора сбрасывается обратно. При этом вода нагревается примерно на 8—12 °C, что в ряде случаев изменяет биологическое состояние водоёмов. В оборотных системах вода циркулирует под воздействием циркуляционных насосов и охлаждается воздухом. Охлаждение может производиться на поверхности водохранилищ-охладителей или в искусственных сооружениях: брызгальных бассейнах или градирнях.
В маловодных районах вместо системы технического водоснабжения применяются воздушно-конденсационные системы (сухие градирни), представляющие собой воздушный радиатор с естественной или искусственной тягой. Это решение обычно вынужденное, так как они дороже и менее эффективны с точки зрения охлаждения.
Система химводоподготовки обеспечивает химическую очистку и глубокое обессоливание воды, поступающей в паровые котлы и паровые турбины, во избежание отложений на внутренних поверхностях оборудования. Обычно фильтры, ёмкости и реагентное хозяйство водоподготовки размещается во вспомогательном корпусе КЭС. Кроме того, на тепловых электростанциях создаются многоступенчатые системы очистки сточных вод, загрязненных нефтепродуктами, маслами, водами обмывки и промывки оборудования, ливневыми и талыми стоками.
Влияние на окружающую среду
Воздействие на атмосферу. При горении топлива потребляется большое количество кислорода, а также происходит выброс значительного количества продуктов сгорания таких как: летучая зола, газообразные окислы серы азота, часть которых имеет большую химическую активность.
Воздействие на гидросферу. Прежде всего сброс воды из конденсаторов турбин, а также промышленные стоки.
Воздействие на литосферу. Для захоронения больших масс золы требуется много места. Данные загрязнения снижаются использованием золы и шлаков в качестве строительных материалов.
Современное состояние
В настоящее время в Российской Федерации работают типовые ГРЭС мощностью 1000—1200, 2400, 3600 МВт и несколько уникальных, используются агрегаты по 150, 200, 300, 500, 800 и 1200 МВт. Среди них следующие ГРЭС (входящие в состав ОГК):
Верхнетагильская ГРЭС — 1500 МВт;
Ириклинская ГРЭС — 2430 МВт;
Каширская ГРЭС — 1910 МВт;
Нижневартовская ГРЭС — 1600 МВт;
Пермская ГРЭС — 2400 МВт;
Уренгойская ГРЭС — 24 МВт.
Псковская ГРЭС — 645 МВт;
Серовская ГРЭС — 600 МВт;
Ставропольская ГРЭС — 2400 МВт;
Сургутская ГРЭС-1 — 3280 МВт;
Троицкая ГРЭС — 2060 МВт.
Гусиноозёрская ГРЭС — 1100 МВт;
Костромская ГРЭС — 3600 МВт;
Печорская ГРЭС — 1060 МВт;
Харанорская ГРЭС — 430 МВт;
Черепетская ГРЭС — 1285 МВт;
Южноуральская ГРЭС — 882 МВт.
Берёзовская ГРЭС — 1500 МВт;
Смоленская ГРЭС — 630 МВт;
Сургутская ГРЭС-2 — 4800 МВт;
Шатурская ГРЭС — 1100 МВт;
Яйвинская ГРЭС — 600 МВт.
Конаковская ГРЭС — 2400 МВт;
Невинномысская ГРЭС — 1270 МВт;
Рефтинская ГРЭС — 3800 МВт;
Среднеуральская ГРЭС — 1180 МВт.
Киришская ГРЭС — 2100 МВт;
Красноярская ГРЭС-2 — 1250 МВт;
Новочеркасская ГРЭС — 2400 МВт;
Рязанская ГРЭС (блоки № 1-6 — 2650 МВт и блок № 7 (вошедшая в состав Рязанской ГРЭС бывшая ГРЭС-24 — 310 МВт) — 2960 МВт;
Череповецкая ГРЭС — 630 МВт.
Верхнетагильская ГРЭС
Верхнетаги́льская ГРЭС — тепловая электростанция в Верхнем Тагиле (Свердловская область), работающая в составе «ОГК-1». В эксплуатации с 29 мая 1956 года.
Станция включает 11 энергоблоков электрической мощностью 1497 МВт и тепловой — 500 Гкал/ч. Топливо станции: Природный газ (77 %), уголь (23 %). Численность персонала — 1119 человек.
Строительство станции проектной мощностью 1600 МВт началось в 1951 году. Целью строительства было обеспечение тепловой и электрической энергией Новоуральского электрохимического комбината. В 1964 году электростанция достигла проектной мощности.
С целью улучшения теплоснабжения городов Верхний Тагил и Новоуральск была произведена модернизация станции:
Четыре конденсационных турбоагрегата К-100-90(ВК-100-5)ЛМЗ были заменены на теплофикационные турбины Т-88/100-90/2,5.
На ТГ-2,3,4 установлены сетевые подогреватели типа ПСГ-2300-8-11 для нагрева сетевой воды в схеме теплоснабжения Новоуральска.
На ТГ-1,4 установлены сетевые подогреватели для теплоснабжения Верхнего Тагила и промплощадки.
Все работы выполнялись по проекту ХФ ЦКБ.
В ночь с 3 на 4 января 2008 года на Сургутской ГРЭС-2 произошла авария: частичное обрушение кровли над шестым энергоблоком мощностью 800 МВт привело к остановке двух энергоблоков. Ситуацию осложняло то, что ещё один энергоблок (№ 5) был на ремонте: В итоге были остановлены энергоблоки № 4, 5, 6. Эту аварию удалось локализовать к 8 января. Весь этот период времени ГРЭС работала в особенно напряжённом режиме.
В срок соответственно до 2010 года и 2013 года планируется строительство двух новых энергоблоков (топливо — Природный газ).
На ГРЭС существует проблема выбросов в окружающую среду. «ОГК-1» подписала контракт с «Инженерным центром энергетики Урала» на 3,068 млн рублей, который предусматривает разработку проекта реконструкции котла Верхнетагильской ГРЭС, который приведёт к снижению выбросов для соблюдения нормативов ПДВ.
Каширская ГРЭС
Каши́рская ГРЭС имени Г. М. Кржижановского в городе Кашира Московской области, на берегу Оки.
Историческая станция, построена под личным контролем В. И. Ленина по плану ГОЭЛРО. На момент ввода в строй станция мощностью 12 МВт была второй по мощности электростанцией в Европе.
Станция была построена по плану ГОЭЛРО, строительство велось под личным контролем В. И. Ленина. Строилась в 1919—1922 годах, для строительства на месте села Терново возведён рабочий посёлок Новокаширск. Пущена 4 июня 1922 года, стала одной из первых советских районных ТЭС.
Псковская ГРЭС
Псковская ГРЭС — государственная районная электростанция, расположена в 4,5 километрах от поселка городского типа Дедовичи — районного центра Псковской области, на левом берегу реки Шелонь. С 2006 года является филиалом ОАО «ОГК-2».
Высоковольтные ЛЭП связывают Псковскую ГРЭС с Белоруссией, Латвией и Литвой. Материнская организация считает это преимуществом: существует канал экспортирования энергоресурсов, который активно используется.
Установленная мощность ГРЭС 430 МВт, она включает в себя два высоко маневренных энергоблока по 215 МВт. Эти энергоблоки построены и введены в эксплуатацию в 1993 и 1996 годах. Первоначальпреимуществомрвой очереди включал в себя строительство трёх энергоблоков.
Основной вид топлива — Природный газ, он поступает на станцию через ответвление магистрального экспортного газопровода. Энергоблоки были изначально созданы для работы на фрезерном торфе; они были реконструированы по проекту ВТИ для сжигания Природного газа.
Издержка электричества на собственные нужды составляет 6,1 %.
Ставропольская ГРЭС
Ставропольская ГРЭС — тепловая электростанция Российской Федерации. Находится в городе Солнечнодольск Ставропольского края.
Загрузка электростанции позволяет осуществлять экспортные поставки электричества за рубеж: в Грузию и в Азербайджан. При этом гарантируется поддержание перетоков в системообразующей электрической сети Объединенной энергосистемы Юга на допустимых уровнях.
Входит в состав Оптовой генерирующей организации № 2 (ОАО «ОГК-2»).
Издержка электричества на собственные нужды станции составляет 3,47 %.
Основным топливом станции является Природный газ, но в качестве резервного и аварийного топлива станцией может использоваться мазут. Топливный баланс по состоянию на 2008 год: газ — 97 %, мазут — 3 %.
Смоленская ГРЭС
Смоленская ГРЭС — тепловая электростанция Российской Федерации. Входит в состав Оптовой генерирующей фирмы № 4 (ОАО «ОГК-4») с 2006.
12 января 1978 был введён в эксплуатацию первый блок ГРЭС, проектирование которой началось в 1965, а строительство — в 1970. Станция расположена в посёлке Озёрный Духовщинского района Смоленской области. Первоначально предполагалось использовать в качестве топлива торф, но по причине отставания строительства торфодобывающих предприятий использовались другие виды топлива (подмосковный уголь, интинский уголь, сланец, хакасский уголь). Всего сменилось 14 видов топлива. С 1985 окончательно установлено, что энергию будут получать из Природного газа и угля.
Сегодняшняя установленная мощность ГРЭС составляет 630 МВт.
Источники
Рыжкин В. Я. Тепловые электрические станции. Под ред. В. Я. Гиршфельда. Учебник для вузов. 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 328 с.
Полезное
Смотреть что такое «Теплоэлектростанция» в других словарях:
теплоэлектростанция — теплоэлектростанция … Орфографический словарь-справочник
теплоэлектростанция — сущ., кол во синонимов: 1 • электростанция (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
теплоэлектростанция — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN heat and power station Power station which produces both electricity and hot water for the local population. A CHP (Combined Heat and Power Station) plant may operate on almost … Справочник технического переводчика
теплоэлектростанция — šiluminė elektrinė statusas T sritis fizika atitikmenys: angl. heat power plant; steam power plant vok. Wärmekraftwerk, n rus. тепловая электростанция, f; теплоэлектростанция, f pranc. centrale électrothermique, f; centrale thermique, f; usine… … Fizikos terminų žodynas
теплоэлектростанция обычного типа — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN conventional power stationconventional thermal power station … Справочник технического переводчика
теплоэлектростанция, работающая на отходах — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN waste fed heating and power plant Heating and power production plant where fuel is provided from refuse. (Source: PHCa) [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en… … Справочник технического переводчика
теплоэлектростанция, работающая на угле — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN coal fired power plant Power plant which is fuelled by coal. (Source: CAMB) [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] Тематики охрана окружающей среды EN coal… … Справочник технического переводчика
теплоэлектростанция — теплоэлектростанция, теплоэлектростанции, теплоэлектростанции, теплоэлектростанций, теплоэлектростанции, теплоэлектростанциям, теплоэлектростанцию, теплоэлектростанции, теплоэлектростанцией, теплоэлектростанциею, теплоэлектростанциями,… … Формы слов
Теплоэлектростанция — … Википедия
теплоэлектростанция — теплоэлектрост анция, и … Русский орфографический словарь
Как расшифровать сокращения ГЭС, ТЭС и АЭС?
Окружающий мир 3 класс Задание 4 С помощью учебника расшифруй сокращения.
ГЭС_____________________________
ТЭС_____________________________
АЭС_____________________________
Многие не по наслышке знают о существовании этих сокращений, аббревиатур, ведь все они означают предприятия энергетической промышленности, без которых в наших домах не было бы света и тепла, не смогли бы ездить троллейбусы и трамваи, остановились бы предприятия, не стало бы воды в квартирах. Но вот расшифровка данных названий не всем знакома. Восполним этот пробел:
Существуют еще такие предприятия как ГРЭС и ТЭЦ, которые расшифровываются как Государственная Районная Электростанция и ТеплоЭнергоЦентраль (ТеплоЭлектроЦентраль).
Теперь запишем расшифровку в учебнике:
Тепловые электростанции (ТЭЦ, КЭС): разновидности, типы, принцип работы, топливо
Снабжение населения теплом и электроэнергией является одной из основных задач государства. Кроме того, без выработки электричества невозможно представить себе развитую производящую и перерабатывающую промышленность, без которой экономика страны не может существовать в принципе.
Одним из способов решения проблемы нехватки энергии является строительство ТЭЦ. Расшифровка этого термина довольно проста: это так называемая теплоэлектроцентраль, являющаяся одной из наиболее распространенных разновидностей тепловых электростанций. В нашей стране они весьма распространены, так как работают на органическом ископаемом топливе (уголь), к характеристикам которого предъявляют весьма скромные требования.
Особенности
Вот что такое ТЭЦ. Расшифровка понятия вам уже знакома. Но какие же особенности имеет данная разновидность электростанций? Ведь неслучайно же их выделяют в отдельную категорию!?
Дело в том, что они вырабатывают не только электроэнергию, но и тепло, которое подается потребителям в виде горячей воды и пара. Нужно заметить, что электричество является побочным продуктом, так как пар, который подается в системы отопления, сперва вращает турбины генераторов. Комбинирование двух предприятий (котельной и электростанции) хорошо тем, что удается значительно сократить потребление топлива.
Впрочем, это же приводит к довольно незначительному «ареалу распространения» ТЭЦ. Расшифровка проста: так как от станции подается не только электричество, которое с минимальными потерями можно транспортировать на тысячи километров, но и нагретый теплоноситель, их нельзя располагать на значительном удалении от населенного пункта. Неудивительно, что практически все ТЭЦ построены в непосредственной близости от городов, жителей которых они отапливают и освещают.
Преимущества ТЭС
ТЭС — это, таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:
Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.
Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.
Экологическое значение
Благодаря тому, что при постройке такой электростанции удается избавиться от многих старых городских котельных, которые играют чрезвычайно негативную роль в экологическом состоянии района (огромное количество копоти), чистоту воздуха в городе порой удается повысить на порядок. Кроме того, новые ТЭЦ позволяют ликвидировать завалы мусора на городских свалках.
Новейшее очистительное оборудование позволяет эффективно очищать выброс, а энергетическая эффективность такого решения оказывается чрезвычайно велика. Так, выделение энергии от сжигания тонны нефти идентично тому ее объему, которое выделяется при утилизации двух тонн пластика. А уж этого «добра» хватит на десятки лет вперед!
Чаще всего строительство ТЭЦ предполагает использование ископаемого топлива, о чем мы уже говорили выше. Впрочем, в последние годы планируется создание атомных станций, которые будут монтироваться в условиях труднодоступных регионов Крайнего Севера. Так как подвоз топлива туда исключительно затруднен, атомная энергетика является единственным надежным и постоянным источником энергии.
Что такое АЭС?
Атомная электростанция (АЭС) – это объект, на котором для производства энергии используется реакция распада ядерного топлива.
Попытки использования управляемой (то есть контролируемой, прогнозируемой) ядерной реакции для выработки электроэнергии были предприняты советскими и американскими учеными одновременно – в 40-х годах прошлого века. В 50-х годах «мирный атом» стал реальностью, и во многих странах мира стали строить АЭС.
В мире не утихают споры о целесообразности использования атомной энергии для выработки электричества. Сторонники АЭС говорят об их высокой продуктивности, безопасности реакторов последнего поколения, а также о том, что такие электростанции не загрязняют окружающую среду. Противники утверждают, что АЭС потенциально чрезвычайно опасны, а их эксплуатация и, особенно, утилизация отработанного топлива сопряжены с огромными расходами.
Какими они бывают?
Бывают ТЭЦ (фото которых есть в статье) промышленные и «бытовые», отопительные. Как несложно догадаться из названия, промышленные электростанции обеспечивают электричеством и теплом крупные производственные предприятия.
Зачастую строятся еще на этапе возведения завода, составляя вместе с ним единую инфраструктуру. Соответственно, «бытовые» разновидности возводятся неподалеку от спальных микрорайонов города. В промышленных ТЭЦ тепло передается в виде горячего пара (не больше 4-5 км), в случае отопительных – при помощи горячей воды (20-30 км).
Сведения об оборудовании станций
Основным оборудованием этих предприятий являются турбинные агрегаты, которые переводят механическую энергию в электричество, и котлы, ответственные за выработку пара, который вращает маховики генераторов. В состав турбинного агрегата входит как сама турбина, так и синхронный генератор. Трубины с противодавлением 0,7—1,5 Мн/м2 ставят на те ТЭЦ, которые снабжают теплом и энергией промышленные объекты. Модели же с давлением 0,05—0,25 Мн/м2 служат для обеспечения бытовых потребителей.
Математические модели и методы, используемые в задачах управления ТЭС
Как известно, технологический процесс на ТС заключается в поэтапном преобразовании различных видов энергии. Технологический процесс имеет особенность — конечный продукт — электроэнергия — не подлежит складированию. Косвенным показателем соответствия между паропроизводительностью котла мощностью турбины служит давление перегретого пара.
Современные ТЭС делятся на два типа:
Для описания технологических процессов и формирования критериев управления составляются математические модели
. Их изображают в форме уравнений.
В качестве объекта управления, характеризующего технологический процесс на ТЭС в целом, обычно выбирают типичный энергоблок. Технологический процесс, протекающий в таком блоке, можно представить в виде двух последовательных процессов: в паровом котле и турбогенераторе.
Вопросы КПД
В принципе, все выработанное тепло можно использовать полностью. Вот только количество электроэнергии, которое вырабатывается на ТЭЦ (расшифровка этого термина вам уже известна), напрямую зависит от тепловой нагрузки. Проще говоря, в весенне-летний период ее выработка снижается едва ли не до нуля. Таким образом, установки с противодавлением используются только для снабжения промышленных мощностей, у которых величина потребления более-менее равномерна на протяжении всего периода.
Установки конденсирующего типа
В этом случае для снабжения потребителей теплом используется лишь так называемый «пар отбора», а все остальное тепло зачастую попросту теряется, рассеиваясь в окружающей среде. Чтобы снизить потери энергии, такие ТЭЦ должны работать с минимальным выпуском тепла в конденсирующую установку.
Впрочем, еще со времен СССР строятся такие станции, в которых конструктивно предусмотрен гибридный режим: они могут работать как обычные конденсационные ТЭЦ, но их турбинный генератор вполне допускает функционирование в режиме противодавления.
Новые технологии сжигания угля
КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.
Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.
Метод «oxyfuel capture»
Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.
Метод «pre-combustion»
Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO2 – оксид серы. Далее происходит удаление СО2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.
«Тепловые» разновидности ТЭЦ
Как вы уже могли понять, выработка тепла на такого рода электростанциях отличается крайней неравномерностью на протяжении года. В идеальном случае около 50% горячей воды или пара идет на обогрев потребителей, а весь остальной теплоноситель используется для выработки электричества. Именно так работает Юго-Западная ТЭЦ в Северной столице.
Отпуск тепла в большинстве случаев выполняется по двум схемам. Если используется открытый вариант, то горячий пар от турбин идет непосредственно к потребителям. В случае если была выбрана закрытая схема работы, теплоноситель подается после прохождения теплообменников. Выбор схемы определяется исходя из многих факторов. В первую очередь учитывается расстояние от обеспечиваемого теплом и электричеством объекта, количество населения и сезон. Так, Юго-Западная ТЭЦ в Петербурге работает по закрытой схеме, так как она обеспечивает большую эффективность.
ТЭС и ТЭЦ: различия
Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.
Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.
Характеристики используемого топлива
Может использоваться твердое, жидкое и газообразное топливо. Так как ТЭЦ зачастую строятся в непосредственной близости от крупных населенных пунктов и городов, зачастую приходится использовать достаточно ценные его виды, газ и мазут. Применение же в качестве такового угля и мусора в нашей стране достаточно ограниченно, так как далеко не на всех станциях установлено современное эффективное воздухоочистительное оборудование.
Чтобы очистить выхлоп установок, используются специальные уловители твердых частиц. Чтобы рассеивать твердые частицы в достаточно высоких слоях атмосферы, строят трубы высотой в 200—250 метров. Как правило, все теплоэлектроцентрали (ТЭЦ) стоят на достаточно большом расстоянии от источников водоснабжения (реки и водохранилища). А потому используется искусственные системы, включающие в свой состав градирни. Прямоточное снабжение водой встречается крайне редко, в весьма специфичных условиях.
Какие предъявляются требования к ТЭС
ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:
Особенности газовых станций
Особняком стоят газовые ТЭЦ. Теплоснабжение потребителей осуществляется не только за счет энергии, которая вырабатывается при сжигании сжиженного газа, но и при утилизации тепла газов, которые при этом образуются. КПД таких установок чрезвычайно высоко. В некоторых случаях в качестве ТЭЦ могут использоваться и атомные станции. Это особенно распространено в некоторых арабских странах.
Там эти станции играют сразу две роли: обеспечивают снабжение населения электроэнергией и технической водой, так как попутно исполняют функции опреснителей морской воды. А сейчас рассмотрим основные ТЭЦ нашей страны и ближнего зарубежья.
Как работают ТЭС на газе
По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.
Юго-Западная, Санкт-Петербург
В нашей стране известностью пользуется Западная ТЭЦ, которая расположена в Санкт-Петербурге. Зарегистрирована как ОАО «Юго-Западная ТЭЦ». Строительство этого современного объекта преследовало сразу несколько функций:
Но эта станция известна еще и тем, что одной из первых в России стала соответствовать строжайшим экологическим требованиям. Для нового предприятия городское правительство выделило площадь более 20 Га. Дело в том, что под строительство была отведена резервная площадь, оставшаяся от Кировского района. В тех краях был старый сборник золы от ТЭЦ-14, а потому район был не пригоден для строительства жилья, но чрезвычайно удачно расположен.
Запуск состоялся в конце 2010 года, причем на церемонии присутствовало практически все руководство города. В строй были введены две новейшие автоматические котельные установки.
Главное – электричество
Обозначение «ГРЭС» – пережиток советского индустриального мегапроекта, на начальном этапе которого, в рамках плана ГОЭЛРО, решалась задача ликвидации дефицита, прежде всего, электрической энергии. Расшифровывается оно просто – «государственная районная электрическая станция». Районами в СССР называли территориальные объединения (промышленности с населением), в которых можно было организовать единое энергоснабжение. И в узловых географических точках, обычно вблизи крупных месторождений сырья, которое можно было использовать в качестве топлива, и ставили ГРЭС. Впрочем, газ на такие станции можно подавать и по трубопроводам, а уголь, мазут и другие виды топлива завозить по железной дороге. А на Березовскую ГРЭС в красноярском Шарыпово уголь вообще приходит по 14-километровому конвейеру.
В современном понимании ГРЭС – это конденсационная электростанция (КЭС), по сравнению с ТЭЦ, очень мощная. Ведь главная задача такой станции – выработка электроэнергии, причем в базовом режиме (то есть равномерно в течение дня, месяца или года). Поэтому ГРЭС, как правило, расположены вдали от крупных городов – благодаря линиям электропередач такие объекты генерации работают на всю энергосистему. И даже на экспорт – как, например, Гусиноозерская ГРЭС в Бурятии, с момента своего запуска в 1976 году обеспечивающая львиную долю поставок в Монголию. И выполняющая для этой страны роль «горячего резерва».
В то же время на других ГРЭС, входящих в СГК – например, на Томь-Усинской (1345,4 МВт) и Беловской (1260 МВт) в Кузбассе, а также на Назаровской (1308 МВт) в Красноярском крае – 97% сжигаемого угля идет на генерацию электричества. И всего 3% – на выработку тепла. И такая же картина, за редким исключением – практически на любой другой ГРЭС.
Алексей Кутырев начальник управления эксплуатации ТЭС Кузбасского филиала
«Для ТЭЦ электроэнергия, в отличие от ГРЭС – продукт побочный, такие станции в СССР и в России работают, прежде всего, для подогрева теплоносителя – и вырабатывают тепло, которое потом идет в жилые дома или на промышленные предприятия в виде пара. А сколько получается в итоге электроэнергия – не так уж и важно. Важно – выдать нужные гигакалории, чтобы потребителям, в основном – населению, было комфортно»
Крупнейшей в России ГРЭС и третьей в мире тепловой станцией является Сургутская ГРЭС-2(входит в «Юнипро») – ее мощность 5657,1 МВт (мощнее в нашей стране – только две ГЭС, Саяно-Шушенская и Красноярская). При довольно приличном КИУМ более 64,5% эта станция выработала в 2021 году почти 32 млрд кВт*часов электрической энергии. Эта ГРЭС работает на попутном нефтяном и природном газе. Крупнейшей же по мощности ГРЭС в стране, работающей на твердом топливе (угле), является Рефтинская — она расположена в 100 км от Екатеринбурга. 3,8 ГВт электрической мощности позволяют вырабатывать объемы, покрывающие 40% потребности всей Свердловской области. В качестве основного топлива на станции используется экибастузский каменный уголь.
Кемеровская ГРЭС давно перепрофилирована в классическую теплоэлектроцентраль, ей оставлено лишь историческое название – ГРЭС.
Мурманская
Город Мурманск известен как база нашего флота на Балтийском море. Но еще он характеризуется крайней суровостью климатических условий, что накладывает определенные требования на его энергетическую систему. Неудивительно, что Мурманская ТЭЦ во многом является совершенно уникальным техническим объектом даже в масштабах всей страны.
Она была введена в эксплуатацию еще в 1934 году, и с тех пор продолжает исправно снабжать жителей города теплом и электроэнергией. Впрочем, в первые пять лет Мурманская ТЭЦ являлась обычной электростанцией. Первые 1150 метров теплотрассы были проложены только в 1939 году. Дело в запущенной Нижне-Туломской ГЭС, которая практически полностью перекрывала потребности города в электричестве, а потому появилась возможность высвободить часть тепловой выработки для отопления городских домов.
Станция характерна тем, что весь год работает в сбалансированном режиме, так как ее тепловая и «энергетическая» выработки приблизительно равны. Впрочем, в условиях полярной ночи ТЭЦ в некоторые пиковые моменты начинает использовать большую часть топлива именно для выработки электроэнергии.
В приоритете – тепло
Принципиальное отличие ТЭЦ от ГРЭС, при том что все это котлотурбинные и паротурбинные электростанции — разные типы турбин. На теплоэлектроцентралях ставят теплофикационные турбины марки «Т», отличие которых от конденсационных турбин типа «К» (которые работают на ГРЭС) – наличие регулируемых отборов пара. В дальнейшем он направляется, например, к подогревателям сетевой воды, откуда она идет в батареи квартир или в краны с горячей водой. Наибольшее распространение в нашей стране исторически получили турбины Т-100, так называемые «сотки». Но работают на ТЭЦ и противодавленческие турбины типа «Р», которые производят технологический пар (у них нет конденсатора и пар, после того, как выработал электроэнергию в проточной части, идет напрямую промышленному потребителю). Бывают и турбины типа «ПТ», которые могут работать и на промышленность, и на теплофикацию.
В турбинах типа «К» процесс расширения пара в проточной части заканчивается его кондесацией (что позволяет получать на одной установке большую мощность – до 1,6 ГВт и более).
Алексей Кутырев начальник управления эксплуатации ТЭС Кузбасского филиала
«Для ТЭЦ электроэнергия, в отличие от ГРЭС – продукт побочный, такие станции в СССР и в России работают, прежде всего, для подогрева теплоносителя – и вырабатывают тепло, которое потом идет в жилые дома или на промышленные предприятия в виде пара. А сколько получается в итоге электроэнергия – не так уж и важно. Важно – выдать нужные гигакалории, чтобы потребителям, в основном – населению, было комфортно»
В отопительный сезон ТЭЦ работают по так называемому «тепловому графику» – поддерживают температуру сетевой воды в магистрали в зависимости от температуры наружного воздуха. В этом режиме ТЭЦ могут нести и базовую нагрузку по электроэнергии, демонстрируя, кстати, очень высокие коэффициенты использования установленной мощности (КИУМ). По электрическому графику ТЭЦ обычно работают в теплые месяцы года, когда отборы на теплофикацию с турбин отключаются. ГРЭС же работают исключительно по электрическому графику.
Случается, что теплоэлектроцентрали вообще не производят электрической энергии – хотя таких сейчас и меньшинство. Связано это с тем, что в отличие от гигакалорий, стоимость которых жестко регулируются государством, киловатты в России являются рыночным товаром. В этих условиях даже те ТЭЦ, что ранее не работали на оптовый рынок электроэнергии и мощности, постарались на него выйти. В структуре СГК, например, такой путь прошла Красноярская ТЭЦ-3, до марта 2012 года вырабатывавшая только тепловую энергию. Но с 1 марта того года на ней ввели в строй первый угольный энергоблок в России на 208 МВт, построенный в рамках ДПМ. С тех пор эта станция вообще стала образцово-показательной в СГК по энергоэффективности и экологичности.
Красноярская ТЭЦ-3 до марта 2012 года вырабатывала только тепловую энергию. А сейчас является образцово-показательной в СГК по энергоэффективности и экологичности.
Крупнейшие ТЭЦ в России работают на газе и находятся под крылом «Мосэнерго». Самой мощной, вероятно, можно считать ТЭЦ-26, расположенную в московском районе Бирюлево Западное – по крайней мере, по показателю электрической мощности 1841 МВт она опережает все другие ТЭЦ страны. Эта электростанция обеспечивает централизованное теплоснабжение промышленных предприятий, общественных и жилых зданий с населением более 2 млн человек в районах Чертаново, Ясенево, Бирюлево и Марьино. Тепловая мощность у этой ТЭЦ хоть и высока (4214 Гкал/час), но не является рекордной. У ТЭЦ-21 того же «Мосэнерго» мощность по теплу выше – 4918 Гкал/час, хотя по электроэнергии она немногим уступает «коллеге» (1,76 ГВт).
Новополоцкая станция, Белоруссия
Проектирование и строительство этого объекта началось в августе 1957 года. Новая Новополоцкая ТЭЦ должна была решить вопрос не только теплоснабжения города, но и обеспечения электричеством строившегося в том же районе нефтеперерабатывающего завода. В марте 1958 года проект был окончательно подписан, одобрен и утвержден.
Первую очередь ввели в эксплуатацию в 1966 году. Вторая была запущена в 1977 году. Тогда же Новополоцкая ТЭЦ была в первый раз модернизирована, ее пиковую мощность увеличили до 505 МВт, а чуть позже заложили третью очередь строительства, завершенную в 1982 году. В 1994 г. станция была переведена на сжиженный природный газ.
К настоящему моменту в модернизацию предприятия уже вложено порядка 50 миллионов американских долларов. Благодаря столь внушительным денежным вливаниям предприятие не только было полностью переведено на газ, но и получило огромное количество совершенно нового оборудования, которое позволит станции прослужить еще десятки лет.
Выводы
Как ни странно, но на сегодняшний день именно устаревшие ТЭЦ являются действительно универсальными и перспективными станциями. Используя современные нейтрализаторы и фильтры, нагревать воду можно, сжигая практически весь мусор, который производит населенный пункт. При этом достигается тройная выгода:
Кроме того, в прибрежных районах вполне реально строительство ТЭЦ, которые одновременно будут являться опреснителями морской воды. Такая жидкость вполне пригодна для полива, для животноводческих комплексов и промышленных предприятий. Словом, настоящая технология будущего!
Тэц как расшифровывается
Смотреть что такое «ТЭЦ» в других словарях:
ТЭЦ-20 — Страна … Википедия
ТЭЦ-11 — Страна … Википедия
ТЭЦ-23 — ТЭЦ 23 … Википедия
ТЭЦ-27 — ТЭЦ 27 … Википедия
ТЭЦ-9 — Страна … Википедия
ТЭЦ-22 — Страна … Википедия
ТЭЦ-26 — ТЭЦ 26 … Википедия
ТЭЦ-1 — ТЭЦ 1: Барнаульская ТЭЦ 1. Владивостокская ТЭЦ 1. Владимирская ТЭЦ 1. Волгодонская ТЭЦ 1. Волжская ТЭЦ 1. Калининградская ТЭЦ 1. Костромская ТЭЦ 1. Красноярская ТЭЦ 1. Пензенская ТЭЦ 1. Саранская ТЭЦ 1. Хабаровская ТЭЦ 1. Уфимская ТЭЦ 1.… … Википедия
ТЭЦ — топливно энергетический цикл энерг. ТЭЦ техническо экологический центр техн. Пример использования ТЭЦ «Немчиновка» ТЭЦ термофикационная электростанция Литва … Словарь сокращений и аббревиатур
ТЭЦ-28 — ТЭЦ 28 … Википедия
Основные типы станций: ТЭЦ, КЭС, ГЭС, АЭС, ГТУ, ПГУ. Возобновляемые источники энергии: ГэоЭС, ВЭС, ПЭС и др
Электрическая станция — это совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции, гидроэлектрические станции, гидроаккумулирующие электростанции, атомные электростанции, приливные электростанции, ветроэлектростанции, геотермические электростанции и электростанции с магнитогидродинамическим генератором.
Тепловая электростанция (ТЭС) — электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. По своему функциональному назначению Тепловые электрические станции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара.
На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется сначала в механическую, а затем в электрическую.
Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.
Первые ТЭС появились в конце XIX в. (1882г. — в Нью-Йорке, 1883г. — в Петербурге, 1884г. — в Берлине). В начале XXI в. ТЭС — продолжает оставаться основным видом электрических станций.
Технология производства электроэнергии на тепловой электростанции (рис. 1.1 ГРЭС) включает четыре основных компонента: подсистему подготовки и подачи топлива, паровую подсистему (котел и система транспортировки пара). Уголь, поступающий на электростанцию (угольный склад 2), проходит несколько ступеней подготовки. Из него удаляются металлические примеси, происходит дробление особо крупных кусков, после предварительной подготовки уголь поступает в бункер сырого угля. Из бункера уголь попадает в угольные мельницы 1, где происходит его измельчение до состояния пыли. Угольная пыль попадает либо в бункер пыли 3, а потом по пылепроводам в топку котла 9 либо сразу в топку. При сжигании топлива в топку котла необходимо подавать воздух, который также проходит несколько ступеней подготовки, заключающихся в подогреве холодного воздуха в воздухоподогревателях. После чего воздух попадает в топку либо в питатели пыли для осуществления транспорта пыли.
При сжигании топлива, подаваемого в топку котла, происходит образование водяного пара в замкнутом объеме под давлением (в случае небольших котлов) или в трубах, образующих топочные экраны (в современных промышленных котлах). Для повышения КПД процесса используются различные устройства, являющиеся частью котла или связанные с ним, например пароперегреватели 4, промежуточные пароперегреватели, экономайзеры.
Отходами процесса сжигания являются отходящие газы, а в случае использования угля или нефтепродуктов зола. Очистка отходящих газов производится в пылеуловителях — электрических фильтрах, в которых на угольных станциях осуществляется очистка уходящих газов от угольной пыли. Газы удаляются через дымовую трубу 7. Также в процессе сгорания образуются шлаки, которые удаляются системой шлакоудаления.
Пар высокой температуры и высокого давления, образующийся в котле, поступает в паровую турбину 8. Проходя через турбину, пар вращает ротор, а затем попадает в конденсатор 5, где поддерживаются низкая температура и низкое давление.
Пар низкого давления, покидающий турбину, конденсируется на трубках конденсатора, по которым циркулирует (ЦН) охлаждающая вода. По пароводяному тракту конденсат насосами 6 возвращается в котел, где снова превращается в пар. Поскольку конденсат является практически несжимаемой жидкостью с относительно небольшим объемом, его закачка в трубы котла, находящиеся под высоким давлением, не требует значительных затрат энергии. Конденсат, перед тем как попасть в котел, проходит по пароводяному тракту, где его подогревают в подогревателях низкого и высокого давления, производят очистку от воздуха в деаэраторе и поднимают давление до давления в котле в конденсаторном насосе (КН) и питательном насосе (ПН).
Ротор турбины механически связан с ротором турбогенератора G1.
Электроэнергия, вырабатываемая генератором, поступает через повышающий блочный трансформатор Т1 на распределительное устройство высокого напряжения (РУВН) и по линиям электропередачи W в энергосистему. Распределительное устройство содержит: сборные шины К; высоковольтные выключател Q; разъединители QS; измерительные трансформаторы тока TA и напряжения TV; ограничители перенапряжений нелинейные ОПН.
Собственные нужды, обеспечивающие работу станции, получают питание от рабочих (РТСН) и пуско-резервных (ПРТСН) трансформаторов собственных нужд. Мощные потребители собственных нужд подключаются к распределительному устройству РУСН (6—10) кВ, остальные к РУСН 0,4 кВ.
Одно из основных отличий теплоэлектроцентрали от конденсационных станций, установка на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе и затем поступает в конденсатор, а другая, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и используется для нужд теплоснабжения и производства.
Второе отличие ТЭЦ от КЭС заключается в технологической схеме. КЭС являются электростанциями с мощными энергоблоками (достигнута мощность 1200 кВт) и высокими параметрами пара. Это обусловливает блочный принцип построения таких электростанций, т. е. электростанция строится блоками котел–турбина–генератор–трансформатор.
На ТЭЦ же установлены значительно менее мощные энергоблоки, поэтому с точки зрения надежности тепло- и электроснабжения, а также для повышения экономичности работы электростанции возможно объединение на параллельную работу котлов (котлы выдают пар в общий коллектор пара.
ТЭЦ строят обычно вблизи потребителей — промышленных предприятий или жилых массивов, так как радиус действия мощных городских ТЭЦ по снабжению горячей водой не превышает 10 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км. Пар для производственных процессов при давлении 0,6—1,6 МПа может быть передан не далее чем на 2—3 км.
Этим обусловлено следующее отличие ТЭЦ: так как потребители электроэнергии находятся вблизи электростанции, то отпадает необходимость в двойном преобразовании электроэнергии сначала в высокое напряжения, а затем наоборот, что уменьшает потери электроэнергии в силовых трансформаторах. Для электроснабжения потребителей строятся распределительные устройства на генераторном напряжении (ГРУ), рис. 1.2. Мощные ТЭЦ строят по блочному или смешанному принципу: часть блоков подключена к ГРУ, а часть — по блочному принципу, рис 1.2.
РУВН |
ГРУ (6-10) кВ |
G1 |
G2 |
G3 |
G4 |
Рис. 1.2. Станция смешанного типа.
Тепловые конденсационные электростанции имеют невысокий КПД (30—40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. Коэффициент полезного действия ТЭЦ достигает 60—70%.
Современные паровые турбины для ТЭС — весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1,2 млн. кВт, и это не является пределом.
Вопросы для самопроверки по разделу 1:
1. Развитие электронергетики.
2. Условные обозначения элементов электрических схем.
3. Система заземления нейтралей электрических сетей.
4. Технологические схемы ТЭЦ.
5. Технологическая схема ГРЭС.
6. Классификация станций.
7. Показатели графиков нагрузки.
8. Виды графиков нагрузки.
9. Показатели качества электроэнергии.
10. Классификация потребителей электроэнергии.