закон гаусса в дифференциальной форме

Теорема Гаусса

Для полноценного описания электростатического поля заданной системы зарядов в вакууме достаточно экспериментально подтвержденного закона Кулона и принципа суперпозиции. Но при этом существует возможность свойства электростатического поля охарактеризовать в ином обобщенном виде, не опираясь на утверждения касательно кулоновского поля точечного заряда.

Поток вектора напряженности

Δ Φ = E Δ S cos α = E n Δ S.

закон гаусса в дифференциальной форме

Φ = ∑ ∆ Φ i = ∑ E m ∆ S i

Когда речь идет о поверхности замкнутого типа, всегда используется внешняя нормаль.

закон гаусса в дифференциальной форме

Теорема Гаусса. Доказательство

Теорема или закон Гаусса для электростатического поля в вакууме является одним из основных электродинамических законов.

Уравнение Гаусса имеет вид:

Φ = 1 ε 0 ∑ q в н у т р

где R является радиусом сферы.

закон гаусса в дифференциальной форме

Так, мы доказали теорему Гаусса.

Теорема Гаусса, по сути, есть следствие закона Кулона и принципа суперпозиции. Однако, взяв за изначальную аксиому утверждения теоремы, следствием станет закон Кулона, в связи с чем теорему Гаусса порой называют альтернативной формулировкой закона Кулона.

Опираясь на теорему Гаусса, в определенных случаях легко определить напряженность электрического поля вокруг заряженного тела (при наличии заранее угаданных симметрии заданного распределения зарядов и общей структуры поля).

Применение теоремы Гаусса

закон гаусса в дифференциальной форме

Если r ≥ R , то весь поток вектора напряженности пройдет через боковую поверхность цилиндра, поскольку поток через оба основания есть нуль. Формула площади боковой поверхности цилиндра запишется как: 2 π r l . Применим закон Гаусса и получим:

В указанном выражении τ является зарядом длины цилиндра. Далее можно записать:

Данное выражение не имеет зависимости от радиуса R заряженного цилиндра, а значит оно применимо и к полю длинной однородно заряженной нити.

Точно так же теорема и формула Гаусса применимы для определения электрического поля в иных случаях, когда распределение зарядов охарактеризовано какой-либо симметрией, к примеру, симметрией относительно центра, плоскости или оси. Во всех этих случаях необходимо выбирать замкнутую гауссову поверхность подходящей формы.

К примеру, в случае центральной симметрии поверхность оптимально выбрать в виде сферы, у которой центр расположен в точке симметрии. Когда мы имеем симметрию относительно оси, подходящим видом замкнутой поверхности будет соосный цилиндр, закрытый с обоих торцов (аналогично рассмотренному выше примеру).

При отсутствии симметрии и невозможности угадать общую структуру поля, теорема Гаусса не сможет быть применена для упрощения решения задачи по определению напряженности поля.

закон гаусса в дифференциальной форме

Здесь гауссову поверхность S оптимально задать как цилиндр некой длины, замкнутый с обоих концов. Ось цилиндра является перпендикуляром к заряженной плоскости; в свою очередь, торцы цилиндра находятся на одинаковом расстоянии от нее. В соответствии с симметрией поле равномерно заряженной плоскости должно везде иметь направление по нормали. Применим теорему Гаусса и получим:

Здесь σ является поверхностной плотностью заряда или зарядом, приходящимся на единицу площади.

Выражение, которое мы получили для электрического поля однородно заряженной плоскости, возможно использовать и для плоских заряженных площадок конечного размера: здесь расстояние от точки, в которой мы определяем напряженность поля, до заряженной площадки должно быть значимо меньше размеров площадки.

Источник

Закон гаусса в дифференциальной форме

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля закон гаусса в дифференциальной формечерез произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

закон гаусса в дифференциальной форме

Окружим теперь точечный заряд произвольной замкнутой поверхностью и рассмотрим вспомогательную сферу радиуса (рис. 1.3.3).

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Этот результат не зависит от радиуса заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

Источник

Расчет теоремы Остроградского-Гаусса для полей в диэлектрике

Теорема Остроградского-Гаусса: история открытия

Теорема Остроградского-Гаусса или теорема о дивергенции — один из основополагающих законов электродинамики, устанавливающий связь между электрическими зарядами и электрическим полем.

В отличие от закона Кулона теорема Остроградского-Гаусса позволяет выразить свойства электростатического поля в более общей форме.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В этом заключается суть теоремы Остроградского-Гаусса. Ее можно сформулировать как совокупный поток напряженного электрического поля, проходящий через плоскость, окружающую заряд, пропорционален величине заряда.

Теорема активно используется в электродинамике, а для более сложных полевых теорий, существуют ее обобщения и аналоги.

Теорема была выведена двумя учеными независимо друг от друга. Российский математик Михаил Остроградский в 1828 году вывел теорему, применимую для векторного поля любой природы, а то время как его немецкий коллега Карл Гаусс, увлекшись изучением магнетизма и электрических полей, представил миру свою теорему применительно к электростатическому полю.

Михаил Остроградский доказал теорему электростатики через уравнение дифференциальной формы, в то время как Карл Гаусс в 1839 году получил аналогичный результат в интегральной форме.

Физический смысл формулы

Физический смысл формулы сводится к тому, что поток электрической индукции ( \(D\) ) через любую замкнутую поверхность \(S\) пропорционален суммарному заряду, заключенному внутри этой поверхности ( \(q\) ).

Вывод формулы в интегральной форме

закон гаусса в дифференциальной форме

\(\phi_E=\int_SE_ndS=\int_s\overrightarrow Ed\overrightarrow S\)

закон гаусса в дифференциальной форме

Проекция \(\overrightarrow E\) на направление внешней нормали одинакова на каждой точке поверхности \(S_1\) и вычисляется по формуле:

В таким случае поток через \(S_1\) можно узнать, применив формулу:

Пример

Формула для нескольких зарядов будет записываться следующим образом:

Вывод формулы в дифференциальной форме

Дифференциальная форма теоремы используется для расчета электростатического поля в случае произвольного пространственного распределения зарядов. В этой форме отражена связь между объемной плотностью заряда \(\rho\) и изменением \(\overrightarrow E\) вокруг этой точки пространства.

Используем теорему Остроградского-Гаусса, в соответствии с которой поток вектора \(\overrightarrow A\) через любую замкнутую поверхность равняется интегралу от его дивергенции по объему, охваченному этой поверхностью:

Пример

Этим же способом определяется дивергенция любого векторного поля.

Применение формулы

Формула используется для того, чтобы преобразовать объемный интеграл в интеграл по замкнутой поверхности и наоборот.

закон гаусса в дифференциальной форме

Применение теоремы

Для расчета электростатического поля

Теорема Остроградского-Гаусса применяется для расчета электростатического поля для тех задач, где поле имеет специальную симметрию. Например, плоскую, цилиндрическую или сферическую. В данном случае на эффективность применения теоремы влияют симметрия и конфигурация поля, которые должны соответствовать двум условиям:

Если исходные данные не соответствуют условиям, то при решении задачи необходимо использовать другие методы.

Для плоскости

Рассмотрим применение теоремы для равномерно заряженной плоскости.

Задача

закон гаусса в дифференциальной форме

Так как напряженность поля равна на любых расстояниях от плоскости, в вычисления не нужно включать длину цилиндра. Если плоскость заряжена, то направление векторов изменяется на противоположное.

Для сферической поверхности

Задача

закон гаусса в дифференциальной форме

В диэлектрике

Диэлектрики влияют на электрического поле. Это влияние выражается в ответном действии поляризационных зарядов, которые возникают в поле. Исходя из этого теорему Остроградского-Гаусса для тел в вакууме можно видоизменить, прибавив к свободным зарядам поляризационные, и тогда эту теорему можно применять в диэлектрической среде.

Теорема будет выглядеть так: \(\oint_s\overrightarrow Dd\overrightarrow S=\sum_^Nq_i=Q(2)\)

Для расчета магнитного поля

Выделим элементарную бесконечно малую площадку \(dS\) в магнитном поле. Предположим, что она настолько маленькая и плоская, что вектор B можно признать одинаковым по величине и направлению в каждой точке магнитного поля, независимо от того однородно оно или нет.

закон гаусса в дифференциальной форме

Определение потока магнитной индукции через произвольную поверхность звучит как сумма потоков через элементарные площадки, на которые разбита эта поверхность, и выражается в виде интеграла по этой поверхности:

закон гаусса в дифференциальной форме

Области применения теоремы

Ценность теоремы Остроградского-Гаусса состоит в формулировке общих свойств электрического поля. Она — один из основных постулатов теории электричества. Поэтому широко применяется в общей и учебной физике и таких ее областях как электромагнетизм, электростатика и механика, с ее помощью решают задачи и изучают векторные (в том числе электромагнитные) поля.

Кроме этого теорема применяется в электродинамике, гидродинамике и математическом анализе.

Источник

Теорема Гаусса в присутствии диэлектриков

Влияние диэлектриков на электрическое поле сводится к ответному действию возникающих в поле поляризационных зарядов. Теорема Остроградского-Гауса для тел в вакууме электростатического поля может быть трансформирована с помощью добавления к свободным зарядам поляризационных для получения теоремы с диэлектриками. В этом случае она запишется как:

Теорема Остроградского-Гаусса

Поток вектора D → через замкнутую поверхность может быть определен только с помощью свободных зарядов. В вакууме векторы D → и E → совпадающие.

Дифференциальная форма теоремы Гаусса выражения ∮ S D → · d S → = ∑ i = 1 N q i = Q изображается как:

Теорема Остроградского-Гаусса вида ∮ S D → · d S → = ∑ i = 1 N q i = Q и d i v D → = ρ справедлива только в электростатике и выполняется для переменных полей. Ее относят к составной части системы уравнений Максвелла.

Теорема Остроградского-Гаусса в дифференциальной форме

Напомним формулу вектора электрической индукции:

Произведем подстановку формулы D → = ε 0 E → + P → в d i v D → = ρ :

При использовании теоремы Остроградского-Гаусса дифференциального вида, получим:

Для вектора напряженности вышеуказанная формула примет вид в присутствии диэлектрика:

Теорема Остроградского-Гаусса для диэлектриков

Решение

Заряд, находящийся внутри сферы, ищем из формулы:

В результате запишем:

закон гаусса в дифференциальной форме

Предположим, что имеется воображаемая сфера, в центре которой находится точечный заряд. Будет ли изменяться поток вектора напряженности через эту поверхность, если: 1 ) все пространство будет заполнено однородным и изотопным диэлектриком, 2 ) произвести замену сферической поверхности на кубическую?

Решение

Учитывая теорему Остроградского-Гаусса, формула потока вектора напряженности через поверхность сферы в пространстве без диэлектрика примет вид:

Источник

Лекция 4

Ранее была установлена связь между характеристикой электрического поля – напряженностью и его источниками, т.е. зарядами в виде определения напряженности. Существует еще одна связь между ними, которая может оказать существенную помощь при решении симметричных задач – теорема Гаусса. Заметим, что она входит в качестве постулата в систему уравнений Максвелла.

1.Общие замечания о векторном поле

В физике достаточно часто приходится изучать векторные поля (поле скорости жидкости, электромагнитное поле), теория которых достаточно хорошо разработана в математике.

Поле называют векторным, если каждой точке пространства поставлено в соответствии три числа, т.е. вектор.

Векторные поля существенно сложнее скалярных. Вектор поля можно показать с помощью силовых линий. Могут существовать точки, в которых эти линии начинаются и заканчиваются, такие точки называются источниками и стоками. Для электрического поля – это положительный и отрицательный заряд. Где линии гуще – поле сильнее.

Интегральной характеристикой векторного поля является поток вектора поля через какую-то либо поверхность. Дифференциальной или локальной характеристикой векторного поля является дивергенция. Вся терминология пришла из гидродинамики.

2.Понятие потока

Пусть имеется какое-либо векторное поле закон гаусса в дифференциальной формеи некоторая поверхность S. На этой поверхности мы выберем маленькую площадку dS, покажем нормаль к этой точке закон гаусса в дифференциальной форме.

закон гаусса в дифференциальной форме

закон гаусса в дифференциальной форме

Потоком закон гаусса в дифференциальной формевектора закон гаусса в дифференциальной формечерез произвольную поверхность площади S называется поверхностный интеграл следующего вида:

или используется ещё обозначение закон гаусса в дифференциальной форме,где закон гаусса в дифференциальной форме– произведение нормали на площадь.

Если поверхность замкнута, то поток через замкнутую поверхность обозначается, как

закон гаусса в дифференциальной форме,

где закон гаусса в дифференциальной форме– интеграл по замкнутой поверхности.

закон гаусса в дифференциальной форме

Поток – это объёмная или интегральная характеристика векторного поля.

Возьмем точку M в пространстве. Окружим ее замкнутой поверхностью S и вычислим поток через замкнутую поверхность. Затем поверхность будем стягивать к точке. Понятно, что поток начинает уменьшаться, однако отношение потока к объему, охваченному этой поверхностью, будет конечной величиной – это отношение и называется дивергенцией.

закон гаусса в дифференциальной форме

Дивергенцией векторного поля в точке пространства называется следующий интеграл.

закон гаусса в дифференциальной форме, div – дивергенция.

Очевидно, если div>0, то в точке пространства находится источник поля; если div r; j; z),

закон гаусса в дифференциальной форме

c)Сферическая (r, j, q ).

закон гаусса в дифференциальной форме

4.Теорема Остроградского – Гаусса

Данная теорема связывает поверхностный и объемный интеграл.

закон гаусса в дифференциальной форме

5.Теорема Гаусса в физике

закон гаусса в дифференциальной форме
закон гаусса в дифференциальной форме

Это теорема Гаусса в интегральной форме.

Оказывается, что данное выражение справедливо для любого распределения зарядов.

закон гаусса в дифференциальной форме

Поток напряженности электрического поля через произвольную замкнутую поверхность определяется зарядом внутри этой поверхности.

Отсюда следует теорема Гаусса в дифференциальной форме:

закон гаусса в дифференциальной форме

6.Поле бесконечной плоскости

закон гаусса в дифференциальной форме

Будем считать, что заряд существует и на одной поверхности.

> закон гаусса в дифференциальной форме

Очевидно, что поле не зависит от расстояния, т.е. однородно. Если выберем 0 на плоскости и обозначим ось x, то

закон гаусса в дифференциальной форме
закон гаусса в дифференциальной форме
закон гаусса в дифференциальной форме

На самой плоскости нормальная составляющая напряженности испытывает разрыв и терпит скачок.

7.Поле двух разноименно заряженных плоскостей

закон гаусса в дифференциальной форме
закон гаусса в дифференциальной форме
закон гаусса в дифференциальной форме

8.Поле шара

закон гаусса в дифференциальной форме
закон гаусса в дифференциальной форме
закон гаусса в дифференциальной форме

Очевидно, что поле шара вне шара, поле сферы вне сферы и поле точечного заряда совпадают.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

закон гаусса в дифференциальной форме