записать десятичные числа в развернутой форме

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Перевод в десятичную систему счисления

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Перевод из двоичной системы в шестнадцатеричную

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада0000000100100011010001010110011110001001101010111100110111101111
Цифра0123456789ABCDEF

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра0123456789ABCDEF
Тетрада0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Как от свёрнутой формы записи десятичного числа перейти к его развёрнутой форме

Как от свёрнутой формы записи десятичного числа перейти к его развёрнутой форме?

Ответ

Рассмотрим десятичное число 14351,1. Его свёрнутая форма записи настолько привычна, что мы не замечаем, как в уме переходим к развёрнутой записи, умножая цифры числа на «веса» разрядов и складывая полученные произведения:

Переход от свернутой формы к развернутой

1. Посмотрите на данное вам число и определите количество его цифр.

Пример:
Напишите 5827 в развернутом виде.

Прочитайте число вслух: пять тысяч восемьсот двадцать семь.

Обратите внимание, что в этом числе есть четыре цифры. В результате развернутая форма будет содержать четыре слагаемых.

2. Перепишите число в виде суммы его цифр, оставив между ними некоторое расстояние, чтобы умножить каждую цифру на некоторую цифру (об этом далее).

Пример:
5827 перепишите так:

3. Цифры числа расположены в определенных позициях, которые соответствуют (справа налево) единицам, десяткам, сотням, тысячам и так далее. Определите название позиции и ее значение для каждой цифры (справа налево).

Пример:
Так как в данном числе четыре цифры, то вам нужно определить названия четырех позиций (справа налево).

7 соответствует единицам (значение = 1 = 10 0 ).
2 соответствует десяткам (значение = 10 = 10 1 ).
8 соответствует сотням (значение = 100 = 10 2 ).
5 соответствует тысячам (значение = 1000 = 10 3 ).

4. Умножьте каждую цифру данного числа на значение соответствующей ей позиции.

Пример:
5 · 10 3 + 8 · 10 2 + 2 · 10 1 + 7 · 10 0

Источник

Записать десятичные числа в развернутой форме

Любой вид информации можно представить в виде чисел. Кодирование информации с помощью чисел осуществляется по определённым правилам. Для понимания этих правил, разберём логику образования любого числа.

| Система счисления – это правила записи чисел с помощью знаков – цифр и операций над ними.

Любое число, в данной системе счисления, образуется путём повторения одинаковых элементов (палочка, камешек, ракушка и т.д.).

Данная система счисления позволяет записывать только натуральные числа и запись «большого» числа получается очень громоздкой.

В дальнейшем, у человечества возникла необходимость производить серьёзные подсчёты. Для этого были придуманы непозиционные системы счисления.

| Непозиционная система счисления – это система счисления, в которой цифра не изменяет своего значения, от изменения позиции в числе.

Египетская система счисления записать десятичные числа в развернутой форме
Кириллическая система счисления записать десятичные числа в развернутой форме
Римская система счисления записать десятичные числа в развернутой форме
| Позиционная система счисления – это система счисления, в которой цифра изменяет своё значения, при изменении позиции в числе.

Вспомним, что любое число в десятичной (арабской) системе счисления можно разложить на разряды. Например, в числе 753 цифра 7 обозначает сотни (700), цифра 5 – десятки (50), цифра 3 – единицы. Таким образом, число можно представить, как:

753 = 7 * 100 + 5 * 10 + 3 * 1
| Алфавит системы счисления – совокупность всех её цифр.

| Основание системы счисления – указывает на количество цифр в данной системе счисления.

Алфавит десятичной системы счисления состоит из цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Следовательно, основанием данной системы счисления является 10.

Тогда, любое число будем записывать по правилу, с указанием основания данной системы счисления:

Число читается, как «семьсот пятьдесят три по основанию десять» или «семьсот пятьдесят три в десятичной системе счисления».

| Разряд – это позиция цифры в числе (нумерация в целых числах производится с права налево, начиная с нуля).

Укажем разряд каждой цифры в числе 753:

записать десятичные числа в развернутой форме

Развёрнутая форма представления чисел

В результате разбиения числа на разряды, любое такое число можно представить в развёрнутой форме.

Формула развёрнутой формы представления чисел:

записать десятичные числа в развернутой форме

q – основание системы счисления;

a – цифра данного числа;

n – число разрядов в числе.

Представим число 75310 в развёрнутой форме.

1) Определим позиции каждой цифры в числе:

записать десятичные числа в развернутой форме

Каждую цифру в числе, умножим в соответствии занимаемой позицией:

записать десятичные числа в развернутой форме

Для упрощения данной записи, представим данное число, как основание 10 в степени n:

Запишем полученный результат.

записать десятичные числа в развернутой форме

Обратите внимание, что степень основания числа совпадает с позицией каждой цифры в числе!

записать десятичные числа в развернутой форме

Перевод числа в десятичную систему счисления

С помощью развёрнутой формы представления чисел можно перевести число из любой системы счисления в десятичную.

записать десятичные числа в развернутой форме

Определение: каждую цифру числа нужно умножить на его основание, возведённое в степень, равную позиции цифры в числе.

Двоичная система счисления

Алфавит системы счисления: 0, 1.

Перевод десятичного числа в двоичную систему счисления методом подбора степеней числа 2

Для перевода двоичных чисел в десятичную систему счисления, используют метод подбора степеней двойки.

Пусть дано десятичное число 2110.

1) Подберём ближайшую наименьшую степень числа 2 к данному числу: 2 4 = 16;

3) Повторить, пока не достигнем нуля.

В результате, мы получим следующие степени:

записать десятичные числа в развернутой форме

Найденные нами степени – это позиции цифры 1 в двоичном числе, а отсутствующие степени – это нули:

записать десятичные числа в развернутой форме

Перевод целого десятичного числа в другую систему счисления методом деления на новое основание

Определение: Для перевода целого десятичного числа в другую систему счисления, необходимо делить данное число на новое основание (той системы счисления, в которую необходимо осуществить перевод). Ответ складывается из остатков от деления.

Переведите число 1310 в двоичную систему счисления.

записать десятичные числа в развернутой форме

Арифметические операции в двоичной системе счисления

Все вычисления в компьютере выполняются в двоичной системе счисления.

Рассмотрим базовые арифметические операции.

записать десятичные числа в развернутой форме
записать десятичные числа в развернутой форме
записать десятичные числа в развернутой форме

Кодирование числовой информации в памяти компьютера

Для представления целого числа без знака в памяти компьютера, необходимо:

1. перевести число в двоичную систему счисления;

2. поместить число в ячейку памяти компьютера;

3. заполнить пустые ячейки незначащими нулями.

Представьте число 5610 в компьютерной форме.

1. переведём число в двоичную систему счисления:

2. число состоит из 6 разрядов и помещается в одну ячейку:

записать десятичные числа в развернутой форме

3. дополним незначащими нулями:

записать десятичные числа в развернутой форме

Диапазон значений целых чисел без знака записать десятичные числа в развернутой форме

Хранение чисел со знаком отличается от беззнаковой формы.

Знак «+» принято обозначать за «0», а знак «–» за «1». Знак записывается в старший бит ячейки. Для хранения таких чисел выделяют 1, 2 или 4 байта.

Для представления целого числа со знаком «+» в памяти компьютера, необходимо:

1. перевести число в двоичную систему счисления;

2. поместить число в ячейку памяти;

3. выделить старший бит ячейки под знак и поставить на это место нуль.

4. заполнить оставшиеся биты незначащими нулями.

Представьте число +29210 в компьютерной форме.

1. переведём число в двоичную систему счисления:

2. число состоит из 9 разрядов и для хранения требует двух ячеек:

записать десятичные числа в развернутой форме

3. число положительное, значит в старший бит необходимо поместить нуль:

записать десятичные числа в развернутой форме

4. заполним оставшиеся биты незначащими нулями:

записать десятичные числа в развернутой форме

Для представления целого числа со знаком «–» в памяти компьютера применяют метод прямого и обратного кода:

1. перевести модуль данного числа в двоичную систему;

2. Прямой код: поместить число в ячейку памяти и дополнить его незначащими нулями;

3. Обратный код: выполнить инверсию (заменить нули на единицы и наоборот);

4. Дополнительный код: увеличить получившееся число на единицу.

Представьте число –8710 в компьютерной форме.

1. переведём модуль числа в двоичную систему счисления:

2. число состоит из 7 разрядов и помещается в одну ячейку. Поместим число в ячейку и дополним незначащими нулями:

записать десятичные числа в развернутой форме

записать десятичные числа в развернутой форме

4. прибавляем к числу единицу:

записать десятичные числа в развернутой форме

Обратите внимание на старший бит. Здесь 1 – это знак числа.

Переводы

1. Выполните перевод чисел из двоичной системы счисления в десятичную систему методом развёрнутой формы представления числа:

а) 11002д) 11000112з) 10011101110002
б) 110002е) 1001011012к) 10010000101112
в) 1010102ж) 1011101102л) 1011101011112
г) 11000112з) 1111112м) 11111112

2. Выполните перевод из десятичной системы счисления в двоичную методом подбора степеней числа 2:

а) 42д) 232з) 400
б) 97е) 286к) 405
в) 111ж) 309л) 528

3. Выполните перевод из десятичной системы счисления в двоичную методом деления на новое основание:

а) 20д) 100з) 568
б) 31е) 102к) 443
в) 49ж) 127л) 500
г) 96з) 269м) 600

Арифметические операции в двоичной СС

4. Выполните сложение чисел:

а) 10012 + 11002д) 1000012 + 110002
б) 10102 + 10102е) 1011102 + 10101002
в) 1110012 + 1101102ж) 10111112 + 10111112
г) 1010102 + 1100112з) 11110112 + 11110012

5. Выполните вычитание чисел:

6. Выполните умножение чисел:

а) 11002 × 1012д) 1011002 × 10112
б) 10102 × 1112е) 1011112 × 11012
в) 110112 × 10112ж) 1011012 × 11112
г) 111102 × 10112з) 1010112 × 11102

7. Найти значение выражения:

Кодирование чисел

8. Представьте целое десятичное число со знаком в памяти компьютера. Сколько ячеек памяти нужно выделить для хранения данного числа?

а) +25д) +204з) +512
б) +64е) +212к) +4096
в) +96ж) +256л) +32256
г) +128з) +302м) +65536

9. Представьте целое десятичное число со знаком в памяти компьютера. Сколько ячеек памяти нужно выделить для хранения данного числа?

10. Дано внутреннее представление целого числа со знаком. Какому десятичному числу оно соответствует?

Источник

Как записать число в развернутой форме информатика

2.5. РАЗВЕРНУТАЯ ФОРМА ЧИСЛА

Развернутая форма записи числа – это запись в виде разрядных слагаемых, записанных с помощью степени соответствующего разряда и основания степени (основание счета).

1. Десятичная система:

Пронумеруем разряды, начиная с младшего:

Теперь запишем выражение:

записать десятичные числа в развернутой форме

2. Двоичная система:

Пронумеруем разряды, начиная с младшего:

записать десятичные числа в развернутой форме

3. Шестнадцатеричная система:

Пронумеруем разряды, начиная с младшего:

записать десятичные числа в развернутой форме

Другие системы счисления записываются аналогично вышеприведенным системам с тем лишь исключением, что основание степени будет соответствовать основанию счета.

В позиционной системе счисления число можно представить в развернутой форме (в виде суммы разрядных слагаемых) и в свернутой форме. Именно такой формой записи чисел мы и пользуемся в повседневной жизни. Иначе свернутую форму записи называют естественной или цифровой.

Десятичное число А10= 4718,63 в развернутой форме будет имеет вид:

Рассмотрим еще примеры записи чисел в развернутом виде

58910 → 500 + 80 + 9 = 5*100 + 8*10 + 9*1 = 5*10 2 +8*10 1 + 9*10 0

записать десятичные числа в развернутой форме10 = 5*10 2 + 8*10 1 + 9*10 0

записать десятичные числа в развернутой форме= 4*10 5 + 8*10 4 + 5*10 3 + 7*10 2 + 6*10 1 + 3*10 0

записать десятичные числа в развернутой форме= 1*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 0*2 0

записать десятичные числа в развернутой форме= 7*8 2 + 6*8 1 + 4*8 0

записать десятичные числа в развернутой форме= 7*16 2 + 6*16 1 + 4*16 0

Задания для самостоятельной работы

Задание 1. Запишите числа в развернутой форме

1)111101026)111101,001211)1110,11216)100011102
2)2174,557)5771,001512)8978451517)514763175
3)64791188)1622,84813)111487818)113874,3348
4)12147109)51200141014)1874,5961019)1554,01410
5)1247,03211610)1578941615)163201,981620)88541216

Перевод чисел в десятичную систему счисления

1. Записать число в развернутом виде

2. Выполнить вычисления как в десятичной системе счисления

записать десятичные числа в развернутой форме→ 1*2 4 + 0*2 3 + 1*2 2 + 0*2 1 + 0*2 0 = 1*16 + 0*8 + 1*4 + 0*2 + 1*1 = 16 + 0 + 4 + 0 + 1 = 2110

записать десятичные числа в развернутой форме→ 3*8 2 + 4*8 1 + 7*8 0 = 3*64 + 4*8 + 7*1 = 192 + 32 + 7 = 23110

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент – человек, постоянно откладывающий неизбежность. 10571 – записать десятичные числа в развернутой форме| 7330 – записать десятичные числа в развернутой формеили читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, программирование, полезный материал и многое другое.

Как от свёрнутой формы записи десятичного числа перейти к его развёрнутой форме?

Ответ

Рассмотрим десятичное число 14351,1. Его свёрнутая форма записи настолько привычна, что мы не замечаем, как в уме переходим к развёрнутой записи, умножая цифры числа на «веса» разрядов и складывая полученные произведения:

Переход от свернутой формы к развернутой

1. Посмотрите на данное вам число и определите количество его цифр.

Пример:
Напишите 5827 в развернутом виде.

Прочитайте число вслух: пять тысяч восемьсот двадцать семь.

Обратите внимание, что в этом числе есть четыре цифры. В результате развернутая форма будет содержать четыре слагаемых.

2. Перепишите число в виде суммы его цифр, оставив между ними некоторое расстояние, чтобы умножить каждую цифру на некоторую цифру (об этом далее).

Пример:
5827 перепишите так:

3. Цифры числа расположены в определенных позициях, которые соответствуют (справа налево) единицам, десяткам, сотням, тысячам и так далее. Определите название позиции и ее значение для каждой цифры (справа налево).

Пример:
Так как в данном числе четыре цифры, то вам нужно определить названия четырех позиций (справа налево).

7 соответствует единицам (значение = 1 = 10 0 ).
2 соответствует десяткам (значение = 10 = 10 1 ).
8 соответствует сотням (значение = 100 = 10 2 ).
5 соответствует тысячам (значение = 1000 = 10 3 ).

4. Умножьте каждую цифру данного числа на значение соответствующей ей позиции.

Пример:
5 · 10 3 + 8 · 10 2 + 2 · 10 1 + 7 · 10 0

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *