Что такое логарифм простыми словами
Что такое логарифм простыми словами
Что такое Логарифм
Определение логарифма
Логарифм — это математическая функция, основанная на свойствах возведения в степень.
Значение логарифма соответствует показателю степени данной базы, равному положительному числу “b” в базе “a”, что также должна быть положительной и отличаться от 1.
Чтобы лучше понять концепцию логарифма, необходимо посмотреть на формулу логарифмического уравнения:
“a” = основание, которое должно быть больше нуля (a > 0) и отличаться от единицы (a ≠ 1).
“b” = логарифмируемое число, где b должно быть больше нуля (b > 0).
В этом уравнении мы хотим найти, в какую степень (х) нужно возвести a, чтобы получилось b, т. е. aˣ = b.
, потому что 
Формулы и свойства логарифмов
Некоторые из основных правил логарифма:
Формулы перехода к новому основанию:
Решение логарифмов — примеры
Пример 1
Пример 2
ОДЗ логарифма
Как определить Область Допустимых Значений логарифма:
Для определения ОДЗ логарифма мы обращаем внимание только на то, что стоит в скобках, и указываем, что вся эта часть больше ноля.
График логарифмической функции
Примерно таким образом может выглядеть график логарифмической функции (одна из линий на рисунке):
Свойства логарифмической функции :
Логарифм Непера или натуральный логарифм
Состоит из логарифма, основанного на иррациональном числе, которое называется «число Эйлера», пишется как «e» и приблизительно равно 2,718281. Является обратной функцией к экспоненциальной функции.
Название логарифма («логарифм Непера») произошло от имени его изобретателя — математика Джона Непера.
Десятичный логарифм
Это наиболее распространённая модель математических вычислений, особенно в так называемых логарифмических шкалах (или логарифмическом масштабе). Например: шкала pH, шкала Рихтера интенсивности землетрясений, шкала частоты звука — нотная шкала, и другие. И характеризуется тем, что основание (её логарифма) равно 10.
Десятичный логарифм может быть представлен без указания его основания.
История логарифма
Первоначально концепция логарифма была создана шотландским математиком Джоном Непером (1550–1617) в 17-м веке, с целью упрощения сложных тригонометрических расчётов.
Английский математик Генри Бриггс (1561–1630) также внёс свой вклад в исследования логарифма и считается одним из ответственных за улучшение десятичного логарифма и за создание его современной версии.
Этимологически слово «логарифм» образовано объединением двух греческих терминов: λόγος — «основание» и ἀριθμός — «число».
Что такое логарифм? Зачем нужны логарифмы?
Логарифмы — традиционная головная боль для многих учеников старших классов. Особенно — уравнения и неравенства с логарифмами. Не любят старшеклассники логарифмы почему-то. И поэтому боятся. И совершенно зря.) Ибо сам по себе логарифм — это очень и очень простое понятие. Не верите? Убедитесь сами! В сегодняшнем уроке.
Итак, поехали знакомиться.)
Для начала решим в уме вот такое очень простенькое уравнение:
Это простейшее показательное уравнение. Оно так называется из-за того, что неизвестное икс находится в показателе степени. Даже если вы не в курсе, как решаются показательные уравнения, просто в уме подберите икс так, чтобы равенство выполнилось. Ну же?! Ну, конечно же, х = 2. Два в квадрате — это четыре.)
А теперь я изменю в нём всего одно число. Вот такое уравнение теперь решим:
И снова пробуем подобрать икс…
Что, никак не подбирается? Два в квадрате — это четыре. Два в кубе — это уже восемь. А у нас — пятёрка. Мимо проскочили… Что делать? Только не говорите мне, что нету такого икса! Не поверю.)
Согласитесь, что это как-то несправедливо: с четвёркой уравнение решается в уме, а с пятёркой — уже не решается никак. Математика не приемлет такой дискриминации! Для неё все числа — равноправные партнёры.)
На данном этапе мы можем лишь грубо прикинуть, что икс — какое-то дробное число между двойкой (2 2 = 4) и тройкой (2 3 = 8). Можем даже немного повозиться с калькулятором и приближённо подобрать, найти это число. Но такая возня каждый раз… Согласен, как-то грустно…
Математика решает данную проблему очень просто и элегантно — введением понятия логарифма.
Итак, что же такое логарифм? Вернёмся к нашему загадочному уравнению:
Осмысливаем задачу: нам надо найти некое число х, в которое надо возвести 2, чтобы получить 5. Понятна эта фраза? Если нет, перечитайте ещё раз. И ещё… Пока не осознаете. Ибо это очень важно!
Вот и назовём это загадочное число х логарифмом пятёрки по основанию два! В математической форме эти слова выглядят так:
А произносится эта запись вот так: «Икс равен логарифму пяти по основанию два.»
Ну, вот, собственно, и всё! Мы решили ужасное на вид показательное уравнение!
И всё! Это правильный и совершенно полноценный ответ!
Может быть, вас смущает, что вместо конкретного числа я пишу какие-то непонятные буковки и значки?
Ну что ж, ладно, уговорили… Специально для вас:
x = log25 = 2,321928095…
Имейте в виду, что число это никогда не кончается. Да-да! Иррациональное оно…
Вот вам и ответ на вопрос, для чего нужны логарифмы. Логарифмы нам нужны, в первую очередь, для решения показательных уравнений! Таких, которые без логарифмов и не решаются вовсе…
Например, решая показательное уравнение
про логарифмы можно не вспоминать. Сразу ясно, что х = 2.
А вот, решая уравнение, скажем, такое
вы приближённо получите вот такой лохматый ответ:
Зато через логарифм даётся абсолютно точный ответ:
И все дела.) Вот поэтому и пишут логарифмы вместо некрасивых иррациональных чисел. Кому нужен числовой ответ — посчитает на калькуляторе или хотя бы в Excel.) А раньше, когда калькуляторов и компьютеров не было и в помине, существовали специальные таблицы логарифмов. Объёмные и увесистые. Так же, как и таблицы Брадиса для синусов и косинусов. И даже инструмент такой был — логарифмическая линейка. Которая позволяла с хорошей точностью вычислять массу полезных вещей. И не только логарифмы.)
Ну вот. Теперь, незаметно для себя, мы научились решать все показательные уравнения такого зверского типа.
И тут не вопрос:
Это всё верные ответы! Ну как? Заманчиво, правда?
А теперь вдумаемся в смысл самой операции нахождения логарифма.
Как мы знаем, на каждое действие математики стараются найти противодействие (т.е. обратное действие). Для сложения это вычитание, для умножения это деление. А какое обратное действие есть для возведения в степень?
Давайте посмотрим. Какие у нас основные действующие фигуры при возведении в степень? Вот они:
b — собственно сама степень.
А теперь подумаем: если нам известна степень (b) и известен показатель этой самой степени (n), а найти надо основание (a), то что мы обычно делаем? Правильно! Извлекаем корень n-й степени! Вот так:
А теперь посмотрим на другую ситуацию: нам снова известна степень (b), но на этот раз вместо показателя n нам известно основание (a), а найти как раз надо этот самый показатель (n). Что делать будем?
Вот тут-то на помощь и приходят логарифмы! Прямо так и пишут:
«Эн» (n) — это число, в которое надо возвести «a», чтобы получить «b». Вот и всё. Вот и весь смысл логарифма. Операция нахождения логарифма — это всего лишь поиск показателя степени по известным степени и основанию.
Простейшие примеры с логарифмами.
А теперь новость не очень хорошая. Если логарифм считается ровно, то его надо считать, да.
Скажем, если где-то в уравнении вы получили
то такой ответ никто не оценит. Надо логарифм посчитать и записать:
А как мы поняли, что log39=2? Переводим равенство с математического языка на русский: логарифм девяти по основанию три — это число, в которое надо возвести три, чтобы получить девять. И в какое же число надо возвести тройку, чтобы получить девятку? Ну, конечно! В квадрат надо возвести. То есть, в двойку.)
А чему равен, скажем, log5125? А в какой степени пятёрка даёт нам 125? В третьей, разумеется (т.е. в кубе)!
Стало быть, log5125 = 3.
В какую степень надо возвести 7, чтобы получить 7? В первую!
Вот вам и ответ: log77 = 1
А вот такой пример как вам?
И в какую же степень надо возвести тройку, чтобы получить единицу? Неужели не догадались? А вы вспомните свойства степеней .) Да! В нулевую! Вот и пишем:
Уловили принцип? Тогда тренируемся:
Ответы (в беспорядке): 1; 3; 5; 0; 4.
Что? Забыли, в какой степени 3 даёт 243? Что ж, ничего не поделаешь: степени популярных чисел надо узнавать. В лицо! Ну, и таблица умножения — надёжный спутник и помощник. И не только в логарифмах.)
Ну вот, совсем простенькие примеры порешали, а теперь шагаем на ступеньку выше. Вспоминаем отрицательные и дробные показатели.)
Решаем вот такой пример:
Мда… И в какую же степень надо возвести четвёрку, чтобы получить 0,25? Так с ходу и не скажешь. Если работать только с натуральными показателями. Но степени в математике, как известно, бывают не только натуральными. Самое время подключить наши знания об отрицательных показателях и вспомнить, что
Стало быть, можно смело записать:
В какую такую степень надо возвести четвёрку, чтобы получить двойку? Для ответа на этот вопрос придётся подключать наши знания о корнях. И вспомнить, что двойка — это корень квадратный из четырёх:
А корень квадратный математика позволяет представить в виде степени! С показателем 1/2. Так и пишем:
Поэтому наш логарифм будет равен:
Ну что, поздравляю! Вот мы с вами и познакомились с логарифмами. На самом примитивном начальном уровне.) И вы сами лично убедились, что они вовсе не так страшны, как, возможно, вам казалось раньше. Но у логарифмов, как и у любых других математических понятий, есть свои свойства и свои особые фишки. О том и о другом (о свойствах и о фишках) — в следующем уроке.
Логарифм (понятие).
Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени, в которую надо возвести число a, чтобы получить число b (логарифм существует только у положительных чисел).
Из данной формулировки вытекает, что вычисление x= logα b, равнозначно решению уравнения a x =b.
Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).
На данном этапе целесообразно рассмотреть образцы логарифмов log72, ln√5, lg0.0001.
А записи lg(-3), log-33.2, log-1-4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число, во второй – отрицательное число в основании, а в третьей – и отрицательное число под знаком логарифма и единица в основании.
Условия определения логарифма.
Возьмем условие a≠1. Поскольку единица в любой степени равна единице, то равенство x=logα b может существовать лишь при b=1, но при этом log1 1 будет любым действительным числом. Для исключения этой неоднозначности и берется a≠1.
Докажем необходимость условия a>0. При a=0 по формулировке логарифма может существовать только при b=0. И соответственно тогда log00 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0. А при a 0.
И последнее условие b>0 вытекает из неравенства a>0, поскольку x=logα b, а значение степени с положительным основанием a всегда положительно.
Особенности логарифмов.
Логарифмы характеризуются отличительными особенностями, которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.
Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.
Алгебра
Логарифмы
План урока:
Понятие логарифма
Великий ученый Пьер-Симон Лаплас говорил, что изобретение логарифмов продлило жизнь астрономов вдвое, ведь с их помощью астрономические расчеты, которые ранее занимали несколько месяцев, стало возможно выполнять за считанные дни. Что же представляют собой логарифмы и как они так сильно упрощают вычисления? Для ответа на этот вопрос сначала следует вспомнить показательные уравнения.
Рассмотрим простейшее показательное уравнение 2 х = 4. Так как 2 2 =4, то, очевидно, оно имеет единственный корень, равный 2. Найти его можно не только аналитически, но и графически:
Далее посмотрим на уравнение 2 х = 8. Так как восьмерка – это двойка в кубе (2 3 = 8), то единственным корнем ур-ния будет число 3. Также проиллюстрируем это с помощью графика:
Однако если мы попытаемся решить уравнение 2 х = 6, то мы столкнемся с проблемами. Представить шестерку как какую-то степень двойки не получается. Графический метод показывает, что у этого ур-ния есть единственный корень, который лежит между числами 2 и 3, но точно определить его значение не получается:
Можно доказать (мы не будем этого делать), что искомый нами корень невозможно выразить с помощью дробей и даже корней n-ой степени. Поэтому возникает необходимость ввести какое-то новое обозначение, чтобы записывать корни таких уравнений. Математики придумали для такого числа обозначение log2 6, которое читается как «логарифм шести по основанию два».
Рассмотрим теперь более общий случай. Пусть есть некоторое ур-ние
Если число b положительно, то уравнение имеет корень, и при том единственный. Для его обозначения используется запись logab. Покажем, как графически показать значение величины logab. Для этого надо построить показательную функцию у = а х и горизонтальную линию у = b. Они пересекутся в единственной точке (если b положительно). Абсцисса (координата х) этой точки и будет равна logab:
Дадим строгое определение логарифма:
Задание. Какое число является решением показательного уравнения
Задача. Слиток радиоактивного изотопа, чей период полураспада (его обозначают буквой Т) составляет 10 минут, имеет начальную массу (m0), равную 1 кг. Через сколько минут его вес уменьшится до 300 грамм (0,3 кг)? Масса радиоактивного изотопа изменяется по закону
m(t) = m0•2 – t/ T
Решение. Подставим исходные данные в формулу, и получим уравнение с неизвестной величиной t:
Получили простейшее показательное уравнение, однако его левую часть (число 0,3) нельзя представить как степень двойки. Однако с помощью определения логарифма мы можем записать, что
Умножаем ур-ние на (– 10) и получаем:
С помощью калькулятора или компьютера можно узнать, что
Тогда искомое нами время примерно равно
t = – 10 log2 0,3 ≈ – 10•(– 1,737) ≈ 17,37 минут ≈ 17 минут 22 секунды
Ответ: – 10 log2 0,3 минут ≈ 17 минут 22 секунды.
Из задачи видно, что с логарифмы используются и при решении некоторых практических задач.
Иногда бывает удобнее использовать иное определение, которое по своей сути почти не отличается от первого:
Вычислим для примера несколько простейших логарифмов:
Ограничения, связанные с логарифмом
Заметим, что сам логарифм может оказаться любым вещественным числом, ведь мы умеем возводить числа и в отрицательные, и в дробные, и даже в иррациональные степени. Однако для логарифма logab некоторые ограничения накладываются на значение числа а (оно называется основанием логарифма) и на значение числа b (будем называть его аргументом логарифма).
Напомним, что при определении показательной функции у = а х было введено ограничение, согласно которому основание степени (число а) должно быть строго положительным числом и при этом НЕ может равняться единице. Из-за этого и основание логарифма должно также соответствовать этому ограничению. Основание логарифма и основание показательной функции даже специально обозначают одной буквой а, чтобы связь этих двух понятий была очевидней.
Также напомним, что показательное уравнение а х = b имеет решение только при положительных значениях b. Это решение и представляет собой logab. Если же число b отрицательно, то корня у уравнения нет, а значит и вычислить logab невозможно. Поэтому аргумент логарифма не может быть отрицательным.
Сформулируем эти ограничения в виде одного правила:
Ранее мы уже сталкивались с тремя случаями, когда выражения не имеют смысла. Во-первых, это происходит при делении на ноль (или нахождении нуля в знаменателе дроби, что, по сути, одно и то же). Во-вторых, выражения бессмысленны, если под корнем четной степени находится отрицательное число. В-третьих, не имеют смысла выражения, в которых отрицательные числа возводятся в дробную степень, ведь возведение в дробную степень можно заменить извлечением корня
а отрицательное число не должно оказываться под знаком корня
Сейчас мы узнали четвертый подобный случай, связанный с понятием логарифма. Больше в рамках школьного не будут рассматриваться никакие другие ситуации, в которых выражение может потерять смысл.
Основные свойства логарифмов
Любое число, возведенной в первую степень, равно самому себе. То есть справедливо равенство
Из него, пользуясь определением логарифма, получаем первое важное его свойство: logаa = 1.
Продемонстрируем использование этого правила:
Любое число при возведении в нулевую степень равно единице:
Из этого следует второе важное правило: логарифм единицы по любому основанию равен нулю:
Покажем несколько примеров использования этого тривиального правила:
Для получения третьего свойства логарифма запишем очевидно справедливое равенство:
Пользуясь определением логарифма, мы можем записать, что logaa c = c.
Продемонстрируем, как работает это свойство логарифмов:
Это правило можно применить для вычисления некоторых простейших логарифмов:
Логарифм logab, согласно одному из своих определений, это та степень, в которую нужно возвести а, чтобы получилось b. Это определение можно представить в виде формулы:
Данное равенство называют основным логарифмическим тождеством.
В силу этого тождества справедливы следующие равенства:
Функция логарифма
Арифметическое действие, в ходе которого находят логарифм какого-либо числа, называется логарифмированием. Это действие является обратным по отношению к возведению в степень. Проиллюстрируем это табличкой, в которой слева будет показана операция возведения в степень, а справа – логарифмирование:
В свою очередь это означает, что графики этих двух функций должны быть симметричны относительно прямой, задаваемой уравнением у = х.
Напомним, что на вид показательной функции у = а х влияет значение основания степени а. Если оно больше единицы, то функция оказывается возрастающей. Тогда и обратная ей логарифмическая функция также окажется возрастающей. Для примера построим графики у = 2 х и у = log2x.
Полученный график логарифмической функции называют логарифмической кривой, однако понятно, что она представляет собой всё ту же экспоненту, которую отобразили симметрично относительно оси Ох.
График у = log2x можно и построить иначе, по точкам, просто вычислив ее значение в нескольких «удобных» для вычисления точках:
Видно, что в обоих случаях получился один и тот же график. Похожим будет и график любой функции у =logax, если число а будет больше единицы.
Ситуация меняется в том случае, когда а х будет убывающей. Тогда убывающим окажется и логарифмическая функция. Для примера построим график ф-ции = 0,5 х и график обратной ей функции у = log0,5x:
Возможно, вы заметили, что графики у = log2x и у = log0,5xчем-то похожи друг на друга. И действительно, если построить их на одной плоскости, то мы увидим, что они симметричны относительно оси Ох:
Причиной такой симметрии является то, что их основания, числа 2 и 0,5, являются обратными числами, то есть при перемножении дают единицу (2•0,5 = 1).
Аналогично такой же симметрией будут обладать любые две логарифмические кривые с обратными основаниями. Это свойство логарифмов мы докажем чуть позднее.
Далее построим ещё несколько графиков, чтобы лучше понять свойства логарифмических функции:
Анализируя полученные графики, мы можем заметить следующие свойства функции логарифма:
Область определения логарифмической функции – это множество всех положительных чисел, то есть промежуток (0; + ∞). Действительно, выражение logаb имеет смысл только тогда, когда число b> 0.
Областью значения логарифмической функции является множество всех действительных чисел, то есть промежуток(– ∞; + ∞).
Логарифмическая функция является строго монотонной. При этом при основании а > 1 она возрастает, а при основании 0
График каждой логарифмической функции проходит через точку (1; 0). Это связано с тем, что для любого основания справедливо равенство loga 1 = 0.
Три основных вида логарифмов
Математика изучает логарифмы с любыми положительными основаниями. Однако на практике наиболее распространены три их вида.
Первым из них является десятичный логарифм, основание которого равно 10. Дело в том, что его помощью до изобретения калькуляторов и компьютеров можно было быстро и с высокой точностью перемножать большие числа, используя такой прибор, как логарифмическая линейка. История понятия логарифма начиналась в XVI-XVII веках и была связана именно с необходимостью выполнения сложных арифметических действий с большими числами. Для обозначения десятичных логарифмов используют специальный символ lg, то есть
Сегодня из-за развития электроники десятичные логарифмы используются значительно реже по сравнению с 50-60 г. XX века. Но, так как почти вся вычислительная техника построена на использовании двоичной системы счета, возросла значимость двоичного логарифма log2b. Для его обозначения не используются никакие специальные символы, однако в работах, посвященным информатике и оценке сложности алгоритмов, он используется особенно часто.
Наконец, самым важным является натуральный логарифм. Это логарифм, основанием которого является число e, примерно равное 2,71828… Для его обозначения используют символ ln, то есть
Свойства натурального логарифма, которые отличают его от других логарифмов, будут изучены нами позднее, в 11 классе. Заметим лишь, что многие физические формулы содержат именно натуральный логарифм.
Преобразования логарифмических выражений
Для работы с логарифмическими выражениями надо знать несколько основных свойств логарифмов. Первое из них помогает вычислять логарифм произведения.
Для доказательства этого правила введем обозначения. Пусть
Тогда нам надо доказать, что z = x + у. По определению логарифма мы можем записать что
Теперь подставим (1) и (2) в (3):
что и мы и пытались доказать.
Убедимся в справедливости этого правила на простейшем примере. Очевидно, что
log2 4 = 2, ведь 2 2 = 4
log2 8 = 3, ведь 2 3 = 8
log2 32 = 5, ведь 2 5 = 32
С одной стороны, так как
С другой стороны, число 32 можно представить как произведение 4•8, то есть
С учетом этого получаем, что
Покажем несколько примеров использования только что доказанного правила:
Отдельно отметить, что правило сложения логарифмов действует и в том случае, когда складываются не два, а большее количество логарифмов:
Второе правило используют для определения логарифма от степени какого-либо числа.
Грубо говоря, показатель степени можно перенести и записать перед знаком логарифма. Сначала для наглядности приведем доказательство только для случая, когда r– целая степень. Тогда число b r можно представить как произведение r множителей, равных b. Однако логарифм такого произведения можно заменить на сумму r логарифмов:
Однако более строгое доказательство должно рассматривать и случай, когда r – это отрицательное или даже дробное число. Поэтому, как и в ситуации с доказательством первого правила, введем переменные. Пусть
Получается, что нам доказать, что у = r•x. Из определения логарифма следуют следующие формулы:
Подставляя первую формулу во вторую, получаем:
И снова, если у двух равных степеней равны основания, то и показатели обязательно будут равными:
Это равенство мы и пытались доказать.
Продемонстрируем, как работает это свойство логарифмов:
Правило работает и в обратную сторону:
Задание. Чему равна дробь
Третье правило помогает вычислять логарифм от частного или дроби.
Для доказательства этого свойства логарифмов воспользуемся уже доказанными нами двумя правилами. Но предварительно напомним, что произвольное число с в степени (– 1) представляет собой дробь 1/с:
Тогда доказательство будет записываться в две строчки:
С помощью полученной формулы возможно выполнить следующие преобразования:
Заметим, что все полученные формулы справедливы только в том случае, когда под знаком логарифма стоят исключительно положительные числа. Например, вполне допустимо преобразование
но ошибочной будет такая запись:
ведь в левой части стоит выражение, имеющее смысл, а в правой – выражение, смысла не имеющее.
Но что делать в случае, если необходимо упростить выражение с переменными, которые могут принимать как положительные, так и отрицательные значения? Получается, что запись
не является корректной. Действительно, если и х, и у являются отрицательными числами, то их произведение ху положительно. Но тогда получается, что при некоторых значениях переменных левая часть равенства имеет смысл, а правая – нет. Это значит, что оно не является тождеством.
Здесь может помочь использование модуля числа. Запись
уже будет корректной при любых допустимых значениях х и у. Если же хоть одна из переменных будет равна нулю, то обе части равенства одновременно потеряют смысл. Таким образом, данное равенство можно считать тождеством.
Аналогично и формулу разности логарифмов можно представить в более общем случае, при котором допускаются отрицательные значения переменных:
Можно ли записать равенство logaх 2 = 2logaх, если допускается, что х может быть и отрицательным? Нет, нельзя, ведь при отрицательных х выражение левая часть равенства будет иметь смысл, а правая нет. Однако использование модуля поможет и в этом случае. Можно написать, что
Аналогичным образом можно упростить и любые другие логарифмы, аргументы которых возведены в четную степень:
Ещё раз уточним, что эти правила используются при упрощении выражений с переменными, если те могут принимать отрицательные значения. Если же известно, что числа b и c положительны, то лучше использовать формулы, не содержащие модулей.
Переход к новому основанию алгоритма
До этого мы рассматривали преобразования, в ходе которых не менялось основание логарифма. Однако иногда возникает необходимость сложить или вычесть логарифмы с различными основаниями. Пусть надо вычислить значение выражения
Так как основания двух логарифмов различны, то мы не можем использовать выведенную нами формулу разности логарифмов. Однако можно попытаться привести один из логарифмов к новому основанию. Для такой операции существует специальная формула.
Докажем это утверждение. Для этого введем новые переменные:
Тогда по определению логарифма можно записать равенства
Отсюда следует, что zx = у, или х = y/z. Теперь заменим х, у и z на логарифмы и получим то самое тождество, которые необходимо доказать:
Вернемся к примеру
Теперь мы можем произвести эти вычисления, но для этого сначала приведем log259 к основанию 5:
Теперь можно вычислить, чему равна искомая разность:
Формула перехода к новому основанию позволяет иначе взглянуть на графики логарифмических функций. Пусть дана функция у =log4x. Попытаемся привести ее к показателю 2:
Выходит, что график у = log4x можно получить из графика у = log2x его сжатием в 2 раза. Убедимся в этом, построив оба графика в одной плоскости:
Заметим, что и более общем случае графики функций у = logax и у = logbx могут быть получены друг из друга растяжением или сжатием в некоторое число раз. Действительно, формулу перехода к новому основанию можно переписать в таком виде:
Теперь подставим вместо числа b переменную х и получим соотношение, связывающее любые две логарифмические функции:
В данном случае logсx и logax – это логарифмические функции, а logca – некоторое число. В результате можно заключить, что график функции у = logсx может быть получен из графика logax его растяжением в logca раз.
Попытаемся привести логарифм logab к обратному основанию, то есть к основанию 1/а:
Итак, logab = – log1/аb. Именно из-за этого графики логарифмов с обратными основаниями (например, 2 и 0,5) симметричны относительно оси Ох:
Покажем примеры использования этой формулы:
А что будет, если мы попробуем logab привести к основанию b? Сделаем это:
Получили ещё одну замечательную логарифмическую формулу.
Её работу иллюстрируют следующие примеры:
Ещё одна логарифмическая формула позволяет возводить основание логарифма и его аргумент в одинаковую степень:
Докажем это тождество в «обратном порядке», то есть из правой части выведем левую. Для этого просто перейдем к основанию а:
Проиллюстрируем, как это свойство можно применять на практике:
Использование логарифма для вычислений
Напомним, что десятичный логарифм обозначают символом lg, поэтому перепишем это равенство в более привычном виде:
Степень из-под знака логарифма можно вынести:
Значение числа lg 7 можно узнать с помощью калькулятора, в древности же использовали специальные таблицы, в которых были указаны десятичные логарифмы всех чисел от 1 до 10 (с маленьким шагом, равным, например, 0,001). Так или иначе, можно узнать, что
Получили число, записанное в стандартном виде. При этом наши расчеты были относительно простыми, если сравнить их с необходимостью умножить число 7 само на себя 500 раз. Аналогично и многие другие сложные операции выполняются значительно быстрее, если используются логарифмы. Поэтому долгое время знание теории логарифмов было необходимо для выполнения сложных инженерных расчетов. Но сегодня развитие компьютерной техники позволило избавиться от необходимости использования логарифмических линеек и таблиц.
Логарифмическая функция в природе и науке
Логарифм – это не просто инструмент для выполнения сложных операций. Например, в теории вероятностей существуют логарифмическое и логнормальное (от слов «логарифм» и «нормальное») распределение случайных величин, которые используются в генетике и физике. Так, размеры астероидов в Солнечной системе описываются логарифмическим распределением, а размеры градин во время града – логнормальным.
В компьютерной технике многие величин можно вычислить с использованием логарифмов. Например, ясно, что чем больше телефонных номеров находится в базе данных, тем дольше компьютер будет искать требуемый необходимый номер в ней. Зависимость времени поиска от количества номеров в базе данных описывается логарифмической функцией.
Огромное значение логарифмы имеют в астрономии. Так, яркость звезд на небе характеризуется таким параметром, как «видимая звездная величина». Однако в физике для оценки яркости света используют величину «освещенность», измеряемую в люксах. Зависимость между освещенностью звезд и их видимой величиной также является логарифмической.
Используются логарифмы и в термодинамике для вычисления такой характеристики систем, как энтропия. При расчете количества топлива, необходимого ракете для набора определенной скорости, используется формула Циолковского, содержащая натуральный логарифм:
В биологии давно замечено, что зависимость человеческих ощущений от силы воздействующих на них факторов окружающей среды носит логарифмический характер. В связи с этим для измерения громкости звуков используется специальная шкала децибелов, которая является логарифмической.
В строении ряда организмов можно обнаружить логарифмические кривые. Классическим примером является форма некоторых ракушек.
ЛОГАРИФМ
ЛОГАРИФМ, число, применение которого позволяет упростить многие сложные операции арифметики. Использование в вычислениях вместо чисел их логарифмов позволяет заменить умножение более простой операцией сложения, деление – вычитанием, возведение в степень – умножением и извлечение корней – делением.
Общее описание.
Логарифмом данного числа называется показатель степени, в которую нужно возвести другое число, называемое основанием логарифма, чтобы получить данное число. Например, логарифм числа 100 по основанию 10 равен 2. Иначе говоря, 10 нужно возвести в квадрат, чтобы получить число 100 (10 2 = 100). Если n – заданное число, b – основание и l – логарифм, то b l = n. Число n также называется антилогарифмом по основанию b числа l. Например, антилогарифм 2 по основанию 10 равен 100. Сказанное можно записать в виде соотношений logb n = l и antilogb l = n.
Основные свойства логарифмов:
Любое положительное число, кроме единицы, может служить основанием логарифмов, но, к сожалению, оказывается, что если b и n – рациональные числа, то в редких случаях найдется такое рациональное число l, что b l = n. Однако можно определить иррациональное число l, например, такое, что 10 l = 2; это иррациональное число l можно с любой требуемой точностью приблизить рациональными числами. Оказывается, что в приведенном примере l примерно равно 0,3010, и это приближенное значение логарифма по основанию 10 числа 2 можно найти в четырехзначных таблицах десятичных логарифмов. Логарифмы по основанию 10 (или десятичные логарифмы) столь часто используются при вычислениях, что их называют обычными логарифмами и записывают в виде log2 = 0,3010 или lg2 = 0,3010, опуская явное указание основания логарифма. Логарифмы по основанию e, трансцендентному числу, приближенно равному 2,71828, называются натуральными логарифмами. Они встречаются преимущественно в работах по математическому анализу и его приложениям к различным наукам. Натуральные логарифмы также записывают, не указывая явно основание, но используя специальное обозначение ln: например, ln2 = 0,6931, т.к. e 0,6931 = 2. См. также ЧИСЛО e.
Пользование таблицами обычных логарифмов.
Натуральные логарифмы.
С помощью таблиц десятичных и натуральных логарифмов можно составить таблицы логарифмов по любому основанию, отличному от 10 и e. Если logb a = x, то b x = a, и, следовательно, logc b x = logc a или xlogc b = logc a, или x = logc a/logc b = logb a. Следовательно, с помощью этой формулы обращения из таблицы логарифмов по основанию c можно построить таблицы логарифмов по любому другому основанию b. Множитель 1/logc b называется модулем перехода от основания c к основанию b. Ничто не мешает, например, пользуясь формулой обращения, или перехода от одной системы логарифмов к другой, найти натуральные логарифмы по таблице обычных логарифмов или совершить обратный переход. Например, log105,432 = loge 5,432/loge 10 = 1,6923/2,3026 = 1,6923ґ0,4343 = 0,7350. Число 0,4343, на которое нужно умножить натуральный логарифм данного числа, чтобы получить обычный логарифм, является модулем перехода к системе обычных логарифмов.
Специальные таблицы.
Первоначально логарифмы были изобретены для того, чтобы, пользуясь их свойствами logab = loga + logb и loga/b = loga – logb, превращать произведения в суммы, а частные в разности. Иначе говоря, если loga и logb известны, то с помощью сложения и вычитания мы легко можем найти логарифм произведения и частного. В астрономии, однако, часто по заданным значениям loga и logb требуется найти log(a + b) или log(a – b). Разумеется, можно было бы сначала по таблицам логарифмов найти a и b, затем выполнить указанное сложение или вычитание и, снова обратившись к таблицам, найти требуемые логарифмы, но такая процедура потребовала бы трехкратного обращения к таблицам. З.Леонелли в 1802 опубликовал таблицы т.н. гауссовых логарифмов – логарифмов сложения сумм и разностей – позволявшие ограничиться одним обращением к таблицам.
В 1624 И.Кеплером были предложены таблицы пропорциональных логарифмов, т.е. логарифмов чисел a/x, где a – некоторая положительная постоянная величина. Эти таблицы используются преимущественно астрономами и навигаторами.
Пропорциональные логарифмы при a = 1 называются кологарифмами и применяются в вычислениях, когда приходится иметь дело с произведениями и частными. Кологарифм числа n равен логарифму обратного числа; т.е. cologn = log1/n = – logn. Если log2 = 0,3010, то colog2 = – 0,3010 = 0,6990 – 1. Преимущество использования кологарифмов состоит в том, что при вычислении значения логарифма выражений вида pq/r тройная сумма положительных десятичных долей logp + logq + cologr находится легче, чем смешанная сумма и разность logp + logq – logr.
История.
Принцип, лежащий в основе любой системы логарифмов, известен очень давно и может быть прослежен в глубь истории вплоть до древневавилонской математики (около 2000 до н.э.). В те времена интерполяция между табличными значениями целых положительных степеней целых чисел использовалась для вычисления сложных процентов. Гораздо позже Архимед (287–212 до н.э.) воспользовался степенями числа 10 8 для нахождения верхнего предела числа песчинок, необходимого для того, чтобы целиком заполнить известную в те времена Вселенную. Архимед обратил внимание на свойство показателей степеней, лежащее в основе эффективности логарифмов: произведение степеней соответствует сумме показателей степеней. В конце Средних веков и начале Нового времени математики все чаще стали обращаться к соотношению между геометрической и арифметической прогрессиями. М.Штифель в своем сочинении Арифметика целых чисел (1544) привел таблицу положительных и отрицательных степеней числа 2:
Штифель заметил, что сумма двух чисел в первой строке (строке показателей степени) равна показателю степени двойки, отвечающему произведению двух соответствующих чисел в нижней строке (строке степеней). В связи с этой таблицей Штифель сформулировал четыре правила, эквивалентных четырем современным правилам операций над показателями степеней или четырем правилам действий над логарифмами: сумма в верхней строке соответствует произведению в нижней строке; вычитание в верхней строке соответствует делению в нижней строке; умножение в верхней строке соответствует возведению в степень в нижней строке; деление в верхней строке соответствует извлечению корня в нижней строке.
По-видимому, правила, аналогичные правилам Штифеля, привели Дж.Нейпера к формальному введению первой системы логарифмов в сочинении Описание удивительной таблицы логарифмов, опубликованном в 1614. Но мысли Непера были заняты проблемой превращения произведений в суммы еще с тех пор, как более чем за десять лет до выхода своего сочинения Непер получил из Дании известие о том, что в обсерватории Тихо Браге его ассистенты располагают методом, позволяющим превращать произведения в суммы. Метод, о котором говорилось в полученном Непером сообщении, был основан на использовании тригонометрических формул типа
В системе Нейпера логарифм числа 10 7 был принят за нуль, и по мере уменьшения чисел логарифмы возрастали. Когда Г.Бриггс (1561–1631) навестил Непера, оба согласились, что было бы удобнее использовать в качестве основания число 10 и считать логарифм единицы равным нулю. Тогда с увеличением чисел их логарифмы возрастали бы. Таким образом мы получили современную систему десятичных логарифмов, таблицу которых Бриггс опубликовал в своем сочинении Логарифмическая арифметика (1620). Логарифмы по основанию e, хотя и не совсем те, которые были введены Нейпером, часто называют нейперовыми. Термины «характеристика» и «мантисса» были предложены Бриггсом.
Первые логарифмы в силу исторических причин использовали приближения к числам 1/e и e. Несколько позднее идею натуральных логарифмов стали связывать с изучением площадей под гиперболой xy = 1 (рис. 1). В 17 в. было показано, что площадь, ограниченная этой кривой, осью x и ординатами x = 1 и x = a (на рис. 1 эта область покрыта более жирными и редкими точками) возрастает в арифметической прогрессии, когда a возрастает в геометрической прогрессии. Именно такая зависимость возникает в правилах действий над экспонентами и логарифмами. Это дало основание называть нейперовы логарифмы «гиперболическими логарифмами».
Логарифмическая функция.
Альтернативное определение логарифмической функции дает функциональный анализ. Если f (x) – непрерывная функция действительного числа x, обладающая следующими тремя свойствами: f (1) = 0, f (b) = 1, f (uv) = f (u) + f (v), то f (x) определяется как логарифм числа x по основанию b. Это определение обладает рядом преимуществ перед определением, приведенным в начале этой статьи.
Приложения.
Логарифмы
Определение логарифма
Понятие логарифма и основного логарифмичесгого тождества
Понятие логарифма и основного логарифмическое тождества состоят в тесной зависимости, т.к. определение логарифма в математической записи и является основным логарифмическим тождеством.
Основное логарифмическое тождество вытекает из определения логарифма:
Логарифмом называют показатель степени n, при возведении в которую числа а получают число b.
Показательное уравнение a^n=b при a > 0, a ne 1 не имеет решений при неположительном b и имеет единственный корень при положительном b. Этот корень называется логарифмом числа b по основанию а и записывают:
Основное логарифмическое тождество
4 log2 7 =2 2 log2 7 = (2 log2 7 ) 2 = 7 2 = 49
2 1 + log2 7 = 2 · 2 log2 7 = 2 · 7 = 14
Что такое логарифм и как его посчитать
Логарифм имеет следующий вид:
где a – это основание логарифма,
b – это аргумент логарифма
Чтобы узнать значение логарифма приравняем его к X. и преобразовываем в
и преобразовываем в Запомните, что именно основание (оно выделено красным) возводится в степень.
Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!
Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:А в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:
Еще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.
Два очевидных следствия определения логарифма
log a 1 = 0 ( a > 0, a ≠ 1 )
Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень – единицу.
Логарифм. Свойства логарифма (корень логарифма, смена основания).
Использование свойств логарифмов при решении логарифмических уравнений и неравенств
Для того, чтобы не ошибаться при решении логарифмических уравнений и неравенств, свойства логарифмов, перечисленные в предыдущем разделе, следует применять внимательно и аккуратно.
Например, если при решении уравнения или неравенства требуется преобразовать выражение
то вместо формулы
следует применять формулу
поскольку в противном случае можно потерять корни.
По той же причине при преобразовании выражений
loga ( f (x) g (x)) и
следует использовать формулы:
Степень можно выносить за знак логарифма
И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:
log a ( f ( x ) 2 = 2 log a f ( x )
Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть – только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.
Логарифмы со специальным обозначением
Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.
Виды логарифмов
loga b – логарифм числа b по основанию a ( a > 0, a ≠ 1, b > 0)
lg b – десятичный логарифм (логарифм по основанию 10, a = 10).
Сумма логарифмов. Разница логарифмов
Логарифмы с одинаковыми основаниями можно складывать:
Логарифмы с одинаковыми основаниями можно вычитать:
Мы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!
Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!
Вынесение показателя степени из логарифма
Вынесение показателя степени из логарифма:
Переход к новому основанию
Когда мы разбирали формулы суммы и разности логарифмов, то обращали внимание на то, что основания логарифмов должны быть при этом одинаковыми. А что же делать, если основания логарифмов разные? Воспользоваться свойством перехода к новому основанию.
Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.
Разберем на примере.
Необходимо найти значение такого выраженияДля начала преобразуем каждый логарифм с помощью свойства вынесения показателя степени из логарифма:
Теперь применим переход к новому основанию для второго логарифма: Подставим полученные результаты в исходное выражение:
Десятичные и натуральные логарифмы
Десятичным логарифмом числа x называется логарифм по основанию 10. Десятичные логарифмы используются довольно часто, поэтому для них введено специальное обозначение: log10x = lg x. Все перечисленные выше формулы сохраняют актуальность для десятичных логарифмов. Например,
lg ( x y ) = lg x + lg y ( x > 0, y > 0 )
Натуральным логарифмом числа x (обозначение lnx) называется логарифм х по основанию e. Число e – иррациональное, приближенно равно 2,71. Например, ln e = 1. Пользуясь формулой (8), можно любой логарифм свести к десятичным или натуральным логарифмам:
log a b = lg b lg a = ln b ln a ( a > 0, a ≠ 1, b > 0 )
Вычисление логарифма равносильно решению показательного уравнения
при условии a > 0, a ≠ 1; b > 0, где
при условии a > 0, a ≠ 1; b > 0, где
Найти логарифм: log 4 8
Обозначим log4 8 через x :
Перейдем к показательному уравнению:
Сведем показательное уравнение к основе 2 и решим его:
Найти x если : log x 125 = 3 2
За определением логарифма имеем:
( x 3/2 ) 2/3 = 125 2/3
x = (5 3 ) 2/3 = 5 3·2/3 = 5 2 = 25
Формулировки и доказательства свойств
Покажем примеры использования свойства логарифма произведения: log5(2·3)=log52+log53 и .
Приведем пример использования этого свойства логарифма: .
Вот пример использования этого свойства: .
Покажем пару примеров применения этого свойства логарифмов: и
.
Также часто используется формула , которая удобна при нахождении значений логарифмов. Для подтверждения своих слов покажем, как с ее помощью вычисляется значение логарифма вида
. Имеем
. Для доказательства формулы
достаточно воспользоваться формулой перехода к новому основанию логарифма a :
.
Осталось доказать свойства сравнения логарифмов.
Область допустимых значений (ОДЗ) логарифма
Теперь поговорим об ограничениях (ОДЗ – область допустимых значений переменных).
Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:
Поэтому и отрицательные основания проще выбросить, чем возиться с ними.
Ну а поскольку основание a у нас бывает только положительное, то в какую бы степень мы его ни возводили, всегда получим число строго положительное. Значит, аргумент должен быть положительным. Например, не существует, так как ни в какой степени не будет отрицательным числом (и даже нулем, поэтому тоже не существует).
В задачах с логарифмами первым делом нужно записать ОДЗ. Приведу пример:
Но если сразу взять и записать оба этих числа в ответе, можно получить 0 баллов за задачу. Почему? Давайте подумаем, что будет, если подставить эти корни в начальное уравнение?
– это явно неверно, так как основание не может быть отрицательным, то есть корень – «сторонний».
Чтобы избежать таких неприятных подвохов, нужно записать ОДЗ еще до начала решения уравнения:
10 примеров логарифмов с решением
1. Найти значение выражения 2. Найти значение выражения
3. Найти значение выражения
3. Найти значение выражения 4. Найти значение выражения
5. Найти значение выражения
5. Найти значение выражения 6. Найти значение выражения
Сначала найдем значение
Сначала найдем значение Для этого приравняем его к Х:
Тогда изначальное выражение принимает вид:
7. Найти значение выражения
7. Найти значение выражения Преобразуем наше выражение:
Теперь воспользуемся свойством вынесения показателя степени из логарифма и получим:
8. Найти значение выражения
8. Найти значение выражения Так как основания логарифмов одинаковые, воспользуемся свойством разности логарифмов:
9. Найти значение выражения
9. Найти значение выражения Так как основания логарифмов разные, применять свойство суммы логарифмов нельзя. Поэтому решаем каждый логарифм по отдельности:
Подставляем полученные значения в исходное выражение:
10. Найти значение выражения Обращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:
Обращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:
Надеюсь, теперь вы разобрались, что такое логарифм.
Формулы и свойства логарифмов
Определение логарифма
Логарифм — это математическая функция, основанная на свойствах возведения в степень.
Основываясь на математических формулах логарифмов, можно вычислить постоянную константу, которая в корреляции со всеми математическими константами окажет влияние на конечный результат логарифма числа. В месте с тем, этот результат приведет к трансформации объектов, равных пропорции необходимых логарифмов в пересчете на множители обратных функций.
С первого взгляда это сложно понять, но если увеличить коэффициент логарифма на равный ему множитель, то получится свойство логарифма применимое к школьной программе старших классов, а также для учащихся высших учебных заведений.
Категорическое решение логарифмов, основываясь на из свойствах, ставит в пропорцию их виды. Таким образом, формулы логарифмов соотносятся к самим логарифмам, как необходимая часть их самих.
Виды логарифмов
Для определения основания логарифма необходимо сначала определить его вид и, исходя из полученных результатов, по формуле и таблице сравнить корректность полученных значений. Это и будет основанием логарифма.
Чтобы решить логарифм необходимо понять, что a в степени x будет равно b, т.е. в какую степень x необходимо возвести основание логарифма a, чтобы получить значение b.
Примеры логарифмов:
В данных примерах можно увидель сложные и простые логарифмы, решение которых показывает, что всякий тождественный логарифм находится в пропорции его основания, за исключением вводных данных.
Конечно, основание логарифма пропорционально его значению, что приводит к равенству обратного значения. Это также необходимо учесть при рассмотрении равенства, кроме случаев, когда логарифм переностися с левой части равенства в правую.
log 2 8 = 3 (логарифм 8 по основанию 2 ), так как 2 3 = 8
log 7 49 = 2 (логарифм 49 по основанию 7 ), так как 7 2 = 49
Десятичный логарифм
Десятичный логарифм — логарифм по основанию 10.
Десятичный логарифм может быть не только как равенство степеней, но и показывать их различия. Наиболее хорошо это видно при разложении логарифма на члены в качестве констант a и b.
Конечным результатом решения десятичного логарифма является его сходство с натуральным логарифмом.
Примеры десятичных логарифмов:
lg 100 = 2 — десятичный логарифм обозначается именно так (lg), это десятичный логарифм ста;
Натуральный логарифм
При решении натурального логарифма его основа будет схожей с десятичным логарифмом за исключением того, что вместо числа 10 будет использоваться постоянная константа e.
Ещё одной особенностью натурального логарифма будет его неравенство по отношению к обратной функции.
Но стоит не приравнивать такое основание логарифма к прямой константе из-за большой разности при выборе метода подсчета логарифма.
Формулы и свойства логарифмов
Именно это свойство логарифмов позволяет вычислять точные значения в отличае от других методов вычисления.
Неточность других методов вычисления основывается на неверной корреляции остаточного члена логарифмического равенства.
Наряду с этим каждое из свойств является индивидуальным, равно как каждый из его членов. Всё это позволяет сделать вывод, что благодаря формулам, выведенным математиком, вычисления становятся простыми в рамках неравенств.
Основное логарифмическое тождество
Логарифм единицы
Вычисления такого логарифма применяются в балистике при расчете траектории движения объекта, находящегося в непосредственной близости от Земли. Это обусловлено наиболее точным значением ускорением свободного падения, равным 9,81. А при удалении от поверности Земли это значение изменяется, уменьшается пропорционально расстоянию удаления от поверхности.
Логарифм числа, равного основанию
Логарифмическая единица. Если аргумент и основание логарифма одинаковы, то значение логарифма будет равно единице.
Логарифм числа, обратного основанию
Логарифм произведения двух положительных чисел
Сумма логарифмов. При умножении логарифмируемых чисел, можно сделать из них сумму 2-х логарифмов, у которых будут одинаковые основания.
Логарифм частного
Логарифм частного. При делении чисел мы получаем разность двух логарифмов с одинаковым основанием.
Логарифм степени положительного числа
Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа.
Логарифм корня числа
Логарифм корня равен частному от деления логарифма подкоренного числа на показатель корня.
Основание логарифма в степени
Формула перехода к новому основанию
log a x = log b x log b a
log a x = 1 log x a
Производная логарифма
Производная логарифмической функции по основанию равна единице, деленной на произведение подлогарифмической функции на натуральный логарифм основания.
При расчёте производной логарифма необходимо учитывать ложный коэффициент производной, при котором нарастает его гиперболическая составляющая. Это и есть главное условие корректного нахождения производной логарифма. В то же время, нельзя упускать второстепенные составляющие при расчёте. К ним относятся расчеты с применением общей суммы логарифмов, а также пропорциональная составляющая двух вычисляемых логарифмов. Такой подход можно применить не только для вычисления производной натурального логарифма, но и при расчете производной десятичного логарифма при возведении в степень x по основанию a.
График логарифмов
Таким образом можно увидеть изменения логарифма по основанию от 0 до 10. Промежуточным результатом является логарифм по основанию e, которое приблизительно равно 2.72.
Так трафик логарифма по основанию 0 имеет форму прямой линии, а графики десятичного логарифма и натурального логарифма имею гиперболическую форму.
Логарифм и его свойства
Ничего не понятно! Будем разбираться на простых примерах.
Это показательное уравнение. Интуитивно понятно, что неизвестная переменная х равна 2, т.к. 2 2 = 4.
Модернизируем уравнение: 2 х = 5.
И поэтому для таких вот случаев ленивые математики придумали определение логарифма. В общем, корнем этого уравнения будет являться х = log25 (читается: логарифм числа 5 по основанию 2).
Естественно, что у логарифма есть ограничения, числа a и b должны быть положительными и а не должно быть равно 1 (Если пораскинуть мозгами, станет понятно почему).
Пришло время красиво записать полное определение логарифма на математическом языке, с помощью которого ты сможешь решать простейшие показательные уравнения (наподобие тех, что были выше).
Мы рассмотрели самый приятный вид логарифма. Есть еще два вида, десятичный и натуральный.
Такие логарифмы пишутся немного по-другому:
Основные свойства логарифмов.
Прототипы заданий из ЕГЭ по математике (ФИПИ). Базовый и профильный уровни.
Найдите корень уравнения
Для решения этого уравнения используем определение логарифма. Продублирую его еще раз:
Наша задача основание логарифма 3 возвести в третью степень и приравнять выражению в скобках. Уравнение примет вид:
Решаем обычное линейное уравнение:
Найдите корень уравнения
Снова получаем обычное линейное уравнение:
Найдите значение выражения
Воспользуемся 8-м свойством: изменим основание первого логарифма на удобное нам. А еще представим 4 как 2 в квадрате.
Теперь преобразуем второй логарифм, используя свойство 4.
Одинаковые логарифмы сокращаются.
Найдите значение выражения
Представим основание нижнего логарифма как 8 2 и по свойству 5 вынесем показатель степени вперед.
Логарифмы сокращаются, остается разделить 1 на ½.
Найдите значение выражения
У логарифмов одинаковые основания, значит сработает свойство 2.
В какую степени надо возвести число 7, чтобы получилось 49? Правильно, 2.
Найдите значение выражения
Найдите значение выражения
Представим десятичные дроби в виде обыкновенных и сократим их.
Поменяем основание у первого логарифма, используя свойство 8.
Представим дробь 5/4 как 4/5 в минус первой степени.
Логарифм
Полезное
Смотреть что такое «Логарифм» в других словарях:
ЛОГАРИФМ — (греч., от logos отношение, и arithmos число). Число арифметической прогрессии, соответствующее числу геометрической прогрессии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛОГАРИФМ греч., от logos, отношение,… … Словарь иностранных слов русского языка
ЛОГАРИФМ — (от греческого logos отношение и arithmos число) числа N по основанию a (O … Современная энциклопедия
ЛОГАРИФМ — ЛОГАРИФМ, вспомогательный прием (формула) для произведения вычислений, выведенный в 1614 г. Джоном НЕПЕРОМ и разработанный впоследствии английским математиком Генри Бриггсом (1561 1631). Логарифмом числа ( ) является показатель степени (х), в… … Научно-технический энциклопедический словарь
Логарифм — (от греческого logos отношение и arithmos число) числа N по основанию a (O … Иллюстрированный энциклопедический словарь
ЛОГАРИФМ — (logarithm) Степень, в которую надо возвести какое либо служащее основанием число, большее 1, чтобы получить какое либо определенное положительное число. Если х является логарифмом с основанием у от z, то z=уx. Логарифмы имеют такое свойство, что … Экономический словарь
ЛОГАРИФМ — ЛОГАРИФМ, логарифма, муж. (от греч. logos слово и arithmos число) (мат.). Показатель степени, в которую надо возвести число, называемое основанием, чтобы получить данное число. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ЛОГАРИФМ — ЛОГАРИФМ, а, муж. В математике: показатель степени, в к рую надо возвести число, называемое основанием, чтобы получить данное число. Таблица логарифмов. | прил. логарифмический, ая, ое. Логарифмическая линейка (счётный инструмент). Толковый… … Толковый словарь Ожегова
ЛОГАРИФМ — муж., мат. Если под рядом чисел геометрической прогрессии (лествицы) выставить ряд отвечающих им чисел арифметической прогрессии, то каждое из последних будет логарифмом дружки своей, в первом порядке; сим способом умножение обращают в сложение,… … Толковый словарь Даля
логарифм
Полезное
Смотреть что такое «логарифм» в других словарях:
ЛОГАРИФМ — (греч., от logos отношение, и arithmos число). Число арифметической прогрессии, соответствующее числу геометрической прогрессии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛОГАРИФМ греч., от logos, отношение,… … Словарь иностранных слов русского языка
ЛОГАРИФМ — (от греческого logos отношение и arithmos число) числа N по основанию a (O … Современная энциклопедия
ЛОГАРИФМ — ЛОГАРИФМ, вспомогательный прием (формула) для произведения вычислений, выведенный в 1614 г. Джоном НЕПЕРОМ и разработанный впоследствии английским математиком Генри Бриггсом (1561 1631). Логарифмом числа ( ) является показатель степени (х), в… … Научно-технический энциклопедический словарь
Логарифм — (от греческого logos отношение и arithmos число) числа N по основанию a (O … Иллюстрированный энциклопедический словарь
ЛОГАРИФМ — (logarithm) Степень, в которую надо возвести какое либо служащее основанием число, большее 1, чтобы получить какое либо определенное положительное число. Если х является логарифмом с основанием у от z, то z=уx. Логарифмы имеют такое свойство, что … Экономический словарь
ЛОГАРИФМ — ЛОГАРИФМ, логарифма, муж. (от греч. logos слово и arithmos число) (мат.). Показатель степени, в которую надо возвести число, называемое основанием, чтобы получить данное число. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ЛОГАРИФМ — ЛОГАРИФМ, а, муж. В математике: показатель степени, в к рую надо возвести число, называемое основанием, чтобы получить данное число. Таблица логарифмов. | прил. логарифмический, ая, ое. Логарифмическая линейка (счётный инструмент). Толковый… … Толковый словарь Ожегова
ЛОГАРИФМ — муж., мат. Если под рядом чисел геометрической прогрессии (лествицы) выставить ряд отвечающих им чисел арифметической прогрессии, то каждое из последних будет логарифмом дружки своей, в первом порядке; сим способом умножение обращают в сложение,… … Толковый словарь Даля
Логарифмы
Логарифм данного числа — это показатель степени, в которую нужно возвести основание, чтобы получить данное число.
О равенстве a x = N можно сказать, что x — это логарифм числа N по основанию a (где a > 0 и a ≠ 1).
Слово логарифм сокращённо обозначается log, основание же, при котором указывается логарифм данного числа, обозначается в виде нижнего индекса с правой стороны log.
Если мы знаем, что логарифм числа N при основании a равен числу x, то есть:
то это равенство можно написать без знака логарифма
где a — основание степени, x — показатель степени, N — степень.
выражают одну и ту же зависимость между числами a, x и N: если дано одно из равенств, значит можно написать и второе. Эту же зависимость между числами a, x и N можно выразить ещё одним равенством:
Отрицательные числа и нуль ни при каком основании a (a > 0 и a ≠ 1) логарифмов не имеют.
Основное логарифмическое тождество
Степень, показателем которой является логарифм числа N при таком же основании, как и основание степени, равна числу N.
Возьмём логарифм числа N при основании a равный числу q
Подставив в последнее равенство вместо числа q равное ему выражение logaN, получим
Выражение a logaN = N называется основным логарифмическим тождеством.
Свойства логарифмов
Рассмотрены свойства логарифмов для оснований, которые больше нуля и не равны единице:
Логарифм единицы равен нулю.
так как нулевая степень любого числа (за исключением нуля) равна 1:
Логарифм числа равного основанию равен единице.
так как первая степень любого числа равна этому же числу без степени:
Логарифм произведения равен сумме логарифмов сомножителей.
Логарифм частного равен разности логарифмов делимого и делителя (или логарифм дроби равен логарифму числителя минус логарифм знаменателя).
Логарифм степени равен произведению показателя степени на логарифм основания этой степени.
Логарифм, у которого в основании стоит степень, равен частному от деления логарифма при этом же основании без степени на показатель степени основания.
Логарифм корня равен частному от деления логарифма подкоренного числа на показатель корня.
Из формулы логарифма корня и формулы логарифма, у которого в основании стоит степень, можно сделать вывод, что логарифм корня равен логарифму данного числа с основанием в степени, равной показателю корня.
Свойства логарифмов степени и корня можно объединить ещё в одно:
Любой логарифм можно представить в виде отношения двух логарифмов, взятых по одному и тому же произвольному основанию.
logbN = | logaN | , |
logab |
где N > 0. Данная формула называется формулой перехода к новому основанию.
Произведение взаимно обратных логарифмов равно единице.
Взаимно обратные логарифмы — это пара логарифмов, у которых основание и выражение под знаком логарифма поменялись местами.
Величина логарифма не изменится, если возвести число, стоящее под знаком логарифма, и одновременно основание логарифма в какую-либо степень.
Для чего нужны логарифмы?
Слово «логарифм» многие бывшие ученики общеобразовательных учреждений помнят со школьных уроков математики. Эта тема некоторым из них казалась сложной и непонятной. Не все из них действительно поняли, что такое логарифмы и для чего они нужны. Попробуем разобраться в этом вместе с вами.
Конечно, в математике есть определение этого слова, но оно не всем может показаться понятным. Логарифмирование – это действие, которое обратно возведению в степень. Неподготовленному человеку трудно понять, что означают эти слова, и какая от всего этого польза.
Что же это такое и как с этим можно работать?
Допустим, нужно найти х в уравнении 5 х = 12. В этом случае х будет равен числу, в которое надо возвести 5, чтобы получилось 12. Используя логарифм, этот пример будет звучать так: х равен логарифму 12 по основанию 5. А выгладит уравнение так: х = log512. Если произвести вычисление на калькуляторе или компьютере, то получается иррациональное число. Чтобы было легче работать с такими числами, и создали такую математическую конструкцию, как логарифм.
Говоря простым языком, они нужны для упрощения трудных вычислений. Логарифмы обладают важными свойствами, благодаря которым умножение можно заменить простым сложением, а извлечение корня и его возведение в степень можно преобразовать в умножение и в деление.
Применение свойств логарифмов в жизнедеятельности человека
Если логарифмы имеют одинаковое основание, то их сумма равна логарифму произведения, а разность – частного. И получается, что при математических действиях со сложными иррациональными числами, результатом становятся привычные всем натуральные числа. Если основания логарифма разные, то их можно преобразовать по формулам перехода к новому основанию.
Для упрощения подобных вычислений были созданы логарифмические таблицы. С их помощью можно было легко умножать числа, складывая их логарифмы. Более 300 лет такие таблицы расширялись и уточнялись многими математиками. С появлением возможности электронных вычислений, пользоваться логарифмами стало ещё проще. Таблицы теперь используют только в узкоспециализированных сферах.
Свойства логарифмов на практике пригодятся многим людям, занятым на производстве и в научных сферах, в которых необходимы трудоёмкие вычисления. С их помощью можно сравнивать величины, значительно отличающиеся друг от друга. Если вы нарисуете обычный график, на котором отмечены значения 10, 100 и 100 000, то маленькие значения будут практически около ноля. Но логарифмическая линейка позволяет сделать изображение таких чисел более наглядным. С помощью подобных схем часто проводится анализ сравнения шумов, что бывает полезным во многих сферах.
Где можно получить больше информации о свойствах логарифмов?
Пропустили занятие в школе, готовитесь к ЕГЭ или просто интересуетесь математикой? Тогда вам может пригодиться видеоурок на тему «Свойства логарифмов. Логарифм степени», который можно найти, перейдя по ссылке http://interneturok.ru/algebra/11-klass/pokazatelnaya-i-logarifmicheskaya-funktsii/svoystva-logarifmov-logarifm-stepeni.
В рамках занятия преподаватель не только расскажет о формуле логарифма степени, но и докажет её и напомнит некоторые важные свойства логарифмов. Также можно узнать, как использовать свойства логарифма при решении распространенных примеров. Видеоурок дополнен иллюстрированным текстовым конспектом, в котором также можно найти необходимую информацию.
Что такое логарифм простыми словами
Изучение темы «Логарифмы» начинается с определения:
Логарифмом положительного числа b по основанию a, где a > 0, a ≠ 1, называется показатель степени, в которую надо возвести число a, чтобы получить число b.
Обычно, такая первая встреча с логарифмами не вызывает у учеников особой радости и энтузиазма, логарифм невольно ассоциируется с чем-то трудным. Многие ворчат: «Ну, кому понадобились эти логарифмы?».
Я тоже задумался над этим и решил узнать мнения людей, окончивших школу, по этому вопросу. Результаты меня озадачили: из 20 опрошенных 15 (75%) считают, что логарифмы не нужно изучать. Так может быть они действительно не нужны? Меня очень заинтересовала эта проблема.
Предмет исследования – частные вопросы создания и применения логарифмов.
Проблема: логарифмы – прихоть математиков или жизненная необходимость?
Гипотеза: логарифмы нужны современному человеку.
Существует связь между звездами, шумом, музыкой, природой и логарифмами.
Цель работы – доказать необходимость изучения логарифмов.
Для достижения своей цели, я выдвинул следующие задачи:
найти, собрать и проанализировать материал по истории возникновения логарифмов;
проанализировать, где в природе встречаются логарифмы;
проанализировать, в каких сферах жизнедеятельности человека применяются логарифмы;
сделать соответствующие выводы по исследовательской работе.
При проведении исследования были использованы следующие методы исследования:
анализ существующей литературы по рассматриваемой проблеме (метод научного анализа).
обобщение и синтез точек зрения, представленных в литературе (метод научного синтеза и обобщения).
моделирование на основе полученных данных авторского видения в раскрытии поставленной проблемы (метод моделирования).
2. Основная часть
2.1. История возникновения и развития логарифмов
Изобретение логарифмов, сократив
работу астронома, продлило ему жизнь.
Испокон веков люди пытались упростить вычисления: составляли таблицы, вводили приближенные формулы, облегчающие расчеты, пытались заменить сложные операции умножения и деления более простыми – сложением и вычитанием.
Логарифмы также были созданы в 16 веке как средство для упрощения вычислений. В их основе лежит очень простая идея, знакомство с которой приписывается еще Архимеду.
Рассмотрим две прогрессии, арифметическую и геометрическую при b1 = 2, q = 2
1 2 3 4 5 6 7 8 9 10 (*)
2 4 8 16 32 64 128 256 512 1024
Но это еще не все. С помощью указанных двух строк (*) действие возведения в степень заменяется умножением, а извлечение корня – делением.
Идея Архимеда получила развитие не сразу. Пока математикам было достаточно уже имевшихся средств вычислений, они проходили мимо этого удивительного свойства прогрессий. Но в эпоху Возрождения ситуация изменилась. Крупнейшие европейские державы стремились к владычеству на море. Для дальних плаваний, для определения положения морских судов по звездам и по солнцу необходимо было всё более развивать астрономию, а значит, и тригонометрию. И, в частности, понадобились более совершенные тригонометрические таблицы. В связи с нарастающими запросами практики продолжали совершенствоваться астрономические инструменты, увеличивалась точность наблюдений, исследовались планетные движения. Обработка полученных данных требовала колоссальных расчетов, и, следовательно, стали необходимы новые средства упрощения вычислений. Такими средствами в 15 – 16 веках явились в первую очередь логарифмы и десятичные дроби.
Рассмотрим, как развивалась дальше идея логарифмов.
Прежде всего, теоретическая подготовка учения о логарифмах тесно связана с развитием понятия степени. Степень с отрицательным показателем встречается уже в трактате «Арифметика» древнегреческого математика Диофанта (ок. 3 в.) из Александрии. Им, а возможно и его предшественниками, были введены особые обозначения для некоторых положительных и отрицательных степеней. С течением времени символика совершенствовалась, и эта идея получила дальнейшее развитие. Так, много позже, французский врач и математик Никола Шюке (ок. 1445 – 1500) в своем трактате «Наука о числе» более полно рассмотрел нулевые и отрицательные показатели степени. Ещё раньше, в 14 веке, епископ города Лизье в Нормандии Николай Орем (ок. 1323 – 1382), исходя из соображений о возможности вставлять в арифметическом ряду между натуральными числами дробные, высказал мысль о том, как надо выражать в рядах (*) соответствующие величины геометрического ряда. Таким образом, он пришел к степеням с дробным показателем.
Особое внимание сопоставлению арифметического и геометрического рядов уделял Михаэль Штифель (1487 – 1567). Подобно Шюке и Орему Штифель пришел к мысли о дробных показателях. Кроме того, сопоставляя ряд натуральных чисел, начинающихся единицей, он отмечал, что соответствующий единице показатель есть нуль, т.е. что a 0 = 1. Числам верхнего ряда Штифель дал употребительное и поныне название «показателей» (exponent).
Но, кто же стал автором первых таблиц логарифмов, позволяющих свести более сложные действия к более простым?
В истории науки иногда наступают моменты, когда необходимость некоторого открытия осознается многими, а его основная идея как бы витает в воздухе. В таких случаях к открытию приходят не один, а сразу несколько ученых. Так случилось и в истории логарифмов. Однако создатели первых логарифмических таблиц подходили к изобретению нового удобного средства для упрощения вычислений по-разному. Те соображения, которые мы выдвинули чуть раньше, пытаясь предугадать, каким путем пойдет создатель логарифмов, пожалуй, больше всего подходят к Бюрги.
Таблицы Иоста Бюрги были ещё очень несовершенны, правила работы с ними достаточно трудоемки, а многие результаты приходилось находить с помощью дополнительных приближенных приемов вычислений.
Бюрги очень медлил с опубликованием своих таблиц. Они вышли в свет лишь в 1620 году под названием «Таблицы арифметической и геометрической прогрессий, вместе с основательным наставлением, как их нужно понимать и с пользой применять во всяческих вычислениях». Но значительного распространения эти таблицы не получили, так как к моменту опубликования таблиц Бюрги ученому миру уже семь лет были известны другие таблицы, которые составил шотландский барон Джон Непер (1550 – 1617).
Интересно, что наряду с вышеуказанными таблицами существовали ещё одни таблицы, которыми можно было пользоваться как средством для упрощения вычислений. Однако их автор не заметил этого, подразумевая совсем иное назначение своих таблиц. Речь идет о таблицах процентов шотландского ученого и инженера Симона Стевина (1548 – 1620).
Итак, можно заметить, что в один смысловой блок собираются такие понятия, как арифметическая и геометрическая прогрессии, степень, проценты, формула сложных процентов и логарифмы.
2.2. Применение логарифмов для познания окружающего мира
Если в 16 веке логарифмы появились как средство для упрощения вычислений, то нужны ли они сегодня, когда вычислительная техника достаточно развита, чтобы справляться с самыми сложными расчетами? Вопрос правомерен. Ведь не изучают же в современной школе такие старые средства для упрощения вычислений, как простейшие счетные приборы, не изучаются древние алгоритмы умножения и деления чисел, извлечения квадратных и кубических корней и прочее. Так зачем изучают логарифмы сегодня? Попробуем ответить на этот интересный вопрос.
Во-первых, логарифмы и сегодня позволяют упрощать вычисления.
Во-вторых, испокон веков целью математической науки было помочь людям узнать больше об окружающем мире, познать его закономерности и тайны.
Ряд явлений природы помогает описать логарифмическая зависимость. Иначе говоря, математики, пытаясь составить математическую модель того или иного явления, достаточно часто обращаются именно к логарифмической функции.
Одним из наиболее наглядных примеров такого обращения является логарифмическая спираль. (см. Приложение 1.) Спираль в одну сторону развертывается до бесконечности, а вокруг полюса, напротив, закручивается, стремясь к нему, но не достигая.
a ) Логарифмическая спираль в природе.
Так почему в качестве примера логарифмической зависимости в природе выбирают именно логарифмическую спираль?
Немецкий биолог Румблер в 1910 году выдвинул теорию постоянного краевого угла при построении раковин улиток. Он исходил из того, что материал, из которого строятся раковины, вначале должен быть жидким, и в жидком состоянии попадает на край уже существующей части раковины где, естественно, всегда образуется постоянный краевой угол. Под этим углом жидкость затвердевает, и снова начинается та же игра. Раковина улитки представляет собой логарифмическую спираль.
Но не только раковины многих моллюсков, улиток, а даже рога таких млекопитающих, как архары (горные козлы), закручены по логарифмической спирали (см. Приложение 3.)
Можно сказать, что эта спираль является математическим символом соотношения формы и роста. Великий немецкий поэт Иоганн-Вольфганг Гёте считал её даже математическим символом жизни и духовного развития.
По логарифмической спирали очерчены не только раковины, но и в подсолнухе семечки (см. Приложение 4) расположены по дугам, близким к логарифмической спирали и т. д. Один из наиболее распространённых пауков – эпейра, сплетает нити паутины вокруг центра по логарифмическим спиралям (см. Приложение 5).
b ) Звёзды, шум и логарифмы.
Известно, что астрономы распределяют звезды по степеням видимой яркости на светила первой величины, второй величины, третьей и т.д. Последовательные звездные величины воспринимаются глазом как члены арифметической прогрессии. Но физическая яркость их изменяется по иному закону: объективные яркости составляют геометрическую прогрессию со знаменателем 2,5. Получается, что «величина» звезды представляет собой не что иное, как логарифм её физической яркости. Оценивая видимую яркость звёзд, астроном оперирует с таблицей логарифмов по основанию 2,5.
Рассмотрим несколько примеров. Тихий шелест листьев оценивается в 1 бел, громкая разговорная речь – в 6,5 бел, рычание льва – в 8,7 бела. Отсюда следует, что по силе звука разговорная речь превышает шелест листьев в раз; львиное рычание сильнее громкой разговорной речи в раз.
Случайность ли то, что и при оценке видимой яркости светил и при измерении громкости шума мы имеем дело с логарифмической зависимостью между величиной ощущения и порождающего его раздражения? Нет, и то, и другое – следствие общего закона (называемого «психофизическим законом Фехнера»), гласящего: величина ощущения пропорциональна логарифму величины раздражения. Как видим, логарифмы вторгаются и в область психологии.
c ) Логарифмическая спираль в технике.
Логарифмическая спираль знаменита не только тем, что её образы достаточно широко встречаются в природе, но и своими удивительными свойствами.
В технике часто применяют вращающиеся ножи. Сила, с которой они давят на разрезаемый материал, зависит от угла резания, т.е. угла между лезвием ножа и направлением скорости вращения. Для постоянства давления нужно, чтобы угол резания сохранял постоянное значение, а это будет в том случае, если лезвия ножей очерчены по дуге логарифмической спирали (см. Приложение 7).Величина угла резания зависит от обрабатываемого материала.
В гидротехнике по логарифмической спирали изгибают трубу, подводящую поток воды к лопастям турбины (см. Приложение 7). Благодаря такой форме трубы потери энергии на изменение и направление течения в трубе оказываются минимальными и напор воды используется с максимальной производительностью.
Пропорциональность длины дуги спирали радиус-вектору используют при проектировании зубчатых колёс с переменным передаточным числом. И через середину и конец каждой стороны проводят дуги одинаковых логарифмических спиралей (см. Приложение 7) с полюсами в центрах квадратов, причем одна спираль закручивается по часовой стрелке, а другая – против часовой стрелки. Тогда при вращении этих квадратов дуги спиралей будут катиться одна по другой без скольжения. Передаточное же число, т.е. отношение угловых скоростей этих колёс, будет непрерывно меняться, достигая в течение одного оборота колеса четыре раза максимального значения и четыре раза минимального.
d) Логарифмы и музыка.
«Даже изящные искусства питаются ею.
Разве музыкальная гамма не есть
Набор передовых логарифмов?»
Из «Оды экспоненте»
И действительно, так называемые ступени темперированной хроматической гаммы (12-звуковой) частот звуковых колебаний представляют собой логарифмы. Только основание этих логарифмов равно 2 (а не 10, как принято в других случаях).
Логарифмируя эту формулу, получаем
lg = lg n + m lg 2 + + p ( lg 2)/12,
lg = lg n + (m + p/12)lg2.
Принимая частоту самого низкого “до” за единицу (n = 1) и приводя все логарифмы к основанию 2. имеем
e ) Логарифмы в разных отраслях науки
Логарифмы – это математическое понятие, которое применяется во всех отраслях науки: химии, биологии, физике, механике, информатике, электротехнике, географии и многих других.
Статистика постоянно использует понятие среднего. Средняя численность населения, средний уровень инфляции, средняя заработная плата и т.д. Для нахождения средних величин существует коэффициент усреднения он равен ln=2.
Сведения, собранные мною в данной работе, — это далеко не всё, что можно рассказать о логарифмах. В заключении обратимся еще раз к основной идее. Мы, обучаясь в школе, не просто впитываем некоторый набор информации. Мы усваиваем научные данные об окружающем мире, о его устройстве и законах. В этот период складывается картина мира, и чем полнее и объективнее она будет, тем лучше мы будем понимать и оценивать окружающую нас жизнь, тем более полноценными людьми будем себя ощущать. Поэтому стоит изучать вопросы, без которых картина мира будет неполноценной. С моей точки зрения, изобретение логарифмов по возможности можно смело поставить рядом с другими, более древним великим изобретением индусов – нашей десятичной системы счисления.
Результаты моего исследования следующие:
В ходе проведения исследовательской работы я нашел подтверждение словам Галилео Галилея «Великая книга природы написана математическими символами»;
Многие природные явления не могли быть изучены без понятия логарифма;
Логарифмы используются для описания природных явлений астрономами, физиками, биологами;
Понятие логарифма широко применяется человеком во многих науках.
Логарифм является инструментом для вычисления радиоактивного распада, изменения количества людей в стране, зависимости скорости ракеты от ее массы, коэффициента звукоизоляции.
Выяснил, что, играя по клавишам современного рояля, музыкант играет, собственно говоря, на логарифмах.
Материалы исследования имеют практическую значимость и могут быть использованы для дальнейшего изучения данной, столь увлекательной, на мой взгляд, темы.
Гипотеза моего исследования, что логарифмы нужны современному человеку, действительно подтвердилась.
Я постарался проследить, как в ходе истории возникала необходимость введения и изучения логарифмов, усиливалась их значимость. Показал применение логарифмов в современном мире. Тем самым, я смог доказать, насколько важно изучать логарифмы для познания окружающего мира.
Алимов Ш.А. Алгебра и начала анализа.- М.:Просвещение,2016.
Большая электронная энциклопедия «Кирилл и Мефодий»: 2004
Виленкин Н.Я. Алгебра и математический анализ.- М.:Мнемозина,2017.
Колмогоров А.Н. Алгебра и начала анализа.- М.:Просвещение,2016.
Лиман М.М. Школьникам о математике и математиках.- М.:Просвещение,1981.
Самсонов П.И. «Математика»:«Полный курс логарифмов. Естественнонаучный профиль». «Школьная пресса», М.2005
Энциклопедия для детей. Т. 11. Математика. – М.: Аванта+, 1998.
Приложение 1. Логарифмическая спираль.
Приложение 2. Раковины многих моллюсков, улиток закручены по логарифмической спирали.
Приложение 3. Рога таких млекопитающих, как архары (горные козлы), закручены по логарифмической спирали.
Приложение 4. В подсолнухе семечки расположены по дугам, близким к логарифмической спирали.
Приложение 5. Паук – эпейр сплетает нити паутины вокруг центра по логарифмическим спиралям.
Приложение 6. По логарифмическим спиралям также закручены и многие галактики, в частности Галактика, которой принадлежит Солнечная система.
Приложение 7. Лезвия вращающихся ножей очерчены по дуге логарифмической спирали. В гидротехнике по логарифмической спирали изгибают трубу, подводящую поток воды к лопастям турбины.
Старт в науке
Учредителями Конкурса являются Международная ассоциация учёных, преподавателей и специалистов – Российская Академия Естествознания, редакция научного журнала «Международный школьный научный вестник», редакция журнала «Старт в науке».