если два многоугольника подобны то отношение площадей этих многоугольников

Если два многоугольника подобны то отношение площадей этих многоугольников

ПРОПОРЦИОНАЛЬНОСТЬ ОТРЕЗКОВ. ПОДОБИЕ ФИГУР.

§ 92. ОТНОШЕНИЕ ПЛОЩАДЕЙ ПОДОБНЫХ ФИГУР.

1. Отношение площадей квадратов.

Рассмотрим отношение площадей двух квадратов. Если сторону одного квадрата обозначим через т, а сторону другого — через п, то площади будут соответственно равны
т 2 и п 2 (черт. 379).

если два многоугольника подобны то отношение площадей этих многоугольников

Значит, можно сказать, что отношение площадей двух квадратов равно квадрату отношения их сторон.

На чертеже 379 отношение сторон квадратов равно 3, отношение их площадей равно
3 2 = 9.

2. Отношение площадей двух подобных треугольников.

если два многоугольника подобны то отношение площадей этих многоугольников

В этих треугольниках из вершин В и В’ проведём высоты и обозначим их через h и h‘. Площадь первого треугольника будет равна AC•h /2, а площадь второго треугольника A’C’•h’ /2.

Обозначив площадь первого треугольника через S, а площадь второго — через S’ получим: S /S’ = AC•h /A’C’•h’ или S /S’ = AC /A’C’h /h’

Итак, площади подобных треугольников относятся как квадраты сходственных сторон.

Значит, можно сказать, что отношение площадей двух подобных треугольников равно квадрату отношения их сходственных сторон.

3. Отношение площадей подобных многоугольников.

Пусть ABCDE и A’B’C’D’E’ — подобные многоугольники (черт. 381).

если два многоугольника подобны то отношение площадей этих многоугольников

Известно, что /\ AВС если два многоугольника подобны то отношение площадей этих многоугольников/\ A’В’С’; /\ ACD если два многоугольника подобны то отношение площадей этих многоугольников/\ A’C’D’ и /\ ADE если два многоугольника подобны то отношение площадей этих многоугольников/\ A’D’E’ (§90).
Кроме того,

если два многоугольника подобны то отношение площадей этих многоугольников; если два многоугольника подобны то отношение площадей этих многоугольников

Так как вторые отнoшения этих пропорций равны, что вытекает из подобия многоугольников, то если два многоугольника подобны то отношение площадей этих многоугольников

Используя свойство ряда равных отношений получим:

если два многоугольника подобны то отношение площадей этих многоугольников, или если два многоугольника подобны то отношение площадей этих многоугольников

где S и S’ — площади данных подобных многоугольников.

Следовательно, площади подобных многоугольников относятся как квадраты сходственных сторон.

Полученную формулу можно преобразовать к такому виду: S /S’ = ( AВ /A’В’ ) 2

1. Сторона первого квадрата больше стороны второго квадрата в 2 раза (в 5 раз). Во сколько раз площадь первого квадрата больше площади второго квадрата?

2. Сторона первого квадрата составляет 1 /3 (0,1) стороны второго квадрата. Какую часть площадь первого квадрата составляет от площади второго квадрата?

3. Коэффициент подобия в подобных многоугольниках равен 4 ( 1 /5; 0,4; 2,5). Чему равно отношение их площадей?

4. Отношение площадей подобных многоугольников равно 36 (100; 0,09). Чему равно отношение сходственных сторон этих многоугольников?

Источник

Математика

Подобные многоугольники. Подобными называются такие одноименные многоугольники, у которых соответственные углы равны и соответственные стороны пропорциональны.

Соответственными сторонами подобных многоугольников называются стороны, соединяющие равные углы.

Два многоугольника ABCDE и abcde (черт. 167) подобны, если

∠A = ∠a, ∠B = ∠b, ∠C = ∠c, ∠D = ∠d, ∠E = ∠e и
AB/ab = BC/bc = CD/cd = DE/de = EA/ea

если два многоугольника подобны то отношение площадей этих многоугольников

Отношение подобия. Отношение двух соответствующих сторон называется отношением подобия.

Теорема 108. Периметры подобных многоугольников относятся как соответственные стороны.

Дано. Обозначим периметры двух подобных многоугольников (черт. 167) через P и p.

P = AB + BC + CD + DE + EA
p = ab + bc + cd + de + ea

Требуется доказать, что P/p = AB/ab.

Доказательство. Из самого определения подобия двух многоугольников ABCDE и abcde (черт. 167) вытекают равенства:

AB/ab = BC/bc = CD/cd = DE/de = EA/ea

На основании той теоремы, что сумма предыдущих относится к сумме последующих как предыдущий член относится к последующему, имеет место равенство:

(AB + BC + CD + DE + EA) / (ab + bc + cd + de + ca) = AB/ab

откуда P/p = AB/ab (ЧТД).

Теорема 109. Подобные многоугольники разбиваются диагоналями на треугольники подобные и одинаково расположенные.

Дано. Разобьем подобные многоугольники ABCDE и abcde диагоналями AC, AD, ac, ad на одинаково расположенные треугольники (черт. 168).

Требуется доказать, что

если два многоугольника подобны то отношение площадей этих многоугольников

Доказательство. Из подобия многоугольников следует, что углы равны и стороны пропорциональны.

∠A = ∠a, ∠B = ∠b, ∠C = ∠c, ∠D = ∠d, ∠E = ∠e и
AB/ab = BC/bc = CD/cd = DE/de = EA/ea

1) Треугольники ABC и abc подобны, ибо

2) Точно также треугольники ACD и acd подобны, ибо

∠ γ = ∠ γ’ и
AC/ac = CD/cd

3) Наконец треугольники ADE и ade подобны, ибо

Из этой теоремы вытекает следствие. В подобных многоугольниках стороны пропорциональны диагоналям.

Теорема 110 (обратная 109). Два многоугольника, состоящие из одинаково расположенных подобных треугольников, подобны.

Требуется доказать, что многоугольники ABCDE и abcde подобны.

Доказательство. Из подобия треугольников ABC и abc следует, что углы

B = b, α = α’, β = β’ и
AB/ab = BC/bc = AC/ac (1)

Из подобия треугольников ACD и acd следует, что углы

γ = γ’, δ = δ’ и
AC/ac = CD/cd = AD/ad (2)

Из подобия треугольников ADE и ade следует, что

η = η’, λ = λ’, E = e и
AD/ad = AE/ae = DE/de (3)

Из равенства для углов выходит, что

B = b
A = α + δ + η = α’ + δ’ + η’ = a
E = e
D = ε + λ = ε’ + λ’ = d
C = β + γ = β’ + γ’ = c

Из сравнения равенств (1), (2) и (3) вытекает, что

AB/ab = BC/bc = CD/cd = DE/de = AE/ae

следовательно многоугольники ABCDE и abcde подобны (ЧТД).

Источник

Многоугольники

если два многоугольника подобны то отношение площадей этих многоугольников

Часть плоскости, ограниченная замкнутой ломаной линией, называется многоугольником.

Отрезки этой ломаной линии называются сторонами многоугольника. АВ, ВС, CD, DE, ЕА (рис. 1) — стороны многоугольника ABCDE. Сумма всех сторон многоугольника называется его периметром.

Многоугольник называется выпуклым, если он расположен по одну сторону от любой своей стороны, неограниченно продолженной за обе вершины.

Многоугольник MNPKO (рис. 1) не будет выпуклым, так как он расположен не по одну сторону прямой КР.

если два многоугольника подобны то отношение площадей этих многоугольников

Мы будем рассматривать только выпуклые многоугольники.

Углы, составленные двумя соседними сторонами многоугольника, называются его внутренними углами, а вершины их — вершинами многоугольника.

Отрезок прямой, соединяющий две несоседние вершины многоугольника, называется диагональю многоугольника.

АС, AD — диагонали многоугольника (рис. 2).

Углы, смежные с внутренними углами многоугольника, называются внешними углами многоугольника (рис. 3).

В зависимости от числа углов (сторон) многоугольник называется треугольником, четырёхугольником, пятиугольником и т. д.

Два многоугольника называются равными, если их можно совместить наложением.

Вписанные и описанные многоугольники

Если все вершины многоугольника лежат на окружности, то многоугольник называется вписанным в окружность, а окружность — описанной около многоугольника (рис).

если два многоугольника подобны то отношение площадей этих многоугольников

Если все стороны многоугольника являются касательными к окружности, то многоугольник называется описанным около окружности, а окружность называется вписанной в многоугольник (рис).

Подобие многоугольников

Два одноимённых многоугольника называются подобными, если углы одного из них соответственно равны углам другого, а сходственные стороны многоугольников пропорциональны.

Одноимёнными называются многоугольники, имеющие одинаковое число сторон (углов).

Сходственными называются стороны подобных многоугольников, соединяющие вершины соответственно равных углов (рис).

если два многоугольника подобны то отношение площадей этих многоугольников

Так, например, чтобы многоугольник ABCDE был подобен многоугольнику A’B’C’D’E’, необходимо, чтобы: ∠A = ∠A’ ∠B = ∠B’ ∠С = ∠С’ ∠D = ∠D’ ∠Е = ∠Е’ и, кроме того, AB /A’B’ = BC /B’C’ = CD /C’D’ = DE /D’E’ = EA /E’A’.

Отношение периметров подобных многоугольников

Сначала рассмотрим свойство ряда равных отношений. Пусть имеем, например, отношения: 2 /1 = 4 /2 = 6 /3 = 8 /4 =2.

Найдем сумму предыдущих членов этих отношений, затем — сумму их последующих членов и найдём отношение полученных сумм, получим:

То же самое мы получим, если возьмём ряд каких-нибудь других отношений, например: 2 /3 = 4 /6 = 6 /9 = 8 /12 = 10 /15= 2 /3 Найдем сумму предыдущих членов этих отношений и сумму последующих, а затем найдём отношение этих сумм, получим:

В том и другом случае сумма предыдущих членов ряда равных отношений относится к сумме последующих членов этого же ряда, как предыдущий член любого из этих отношений относится к своему последующему.

Мы вывели это свойство, рассмотрев ряд числовых примеров. Оно может быть выведено строго и в общем виде.

Теперь рассмотрим отношение периметров подобных многоугольников.

Пусть многоугольник ABCDE подобен многоугольнику A’B’C’D’E’ (рис).

если два многоугольника подобны то отношение площадей этих многоугольников

Из подобия этих многоугольников следует, что

На основании выведенного нами свойства ряда равных отношений можем написать:

если два многоугольника подобны то отношение площадей этих многоугольников

Следовательно, периметры подобных многоугольников относятся как их сходственные стороны.

Отношение площадей подобных многоугольников

Пусть ABCDE и A’B’C’D’E’ — подобные многоугольники (рис).

если два многоугольника подобны то отношение площадей этих многоугольников

если два многоугольника подобны то отношение площадей этих многоугольников; если два многоугольника подобны то отношение площадей этих многоугольников

Так как вторые отношения этих пропорций равны, что вытекает из подобия многоугольников, то если два многоугольника подобны то отношение площадей этих многоугольников

Используя свойство ряда равных отношений получим:

если два многоугольника подобны то отношение площадей этих многоугольников, или если два многоугольника подобны то отношение площадей этих многоугольников

где S и S’ — площади данных подобных многоугольников.

Следовательно, площади подобных многоугольников относятся как квадраты сходственных сторон.

Полученную формулу можно преобразовать к такому виду: S /S’ = ( AВ /A’В’ ) 2

Площадь произвольного многоугольника

Пусть требуется вычислить площадь произвольного четырёхугольника АВDС (рис).

если два многоугольника подобны то отношение площадей этих многоугольников

Проведём в нём диагональ, например АD. Получим два треугольника АВD и АСD, площади которых вычислять умеем. Затем находим сумму площадей этих треугольников. Полученная сумма и будет выражать площадь данного четырёхугольника.

Если нужно вычислить площадь пятиугольника, то поступаем таким же образом: из одной какой-нибудь вершины проводим диагонали. Получим три треугольника, площади которых можем вычислить. Значит, можем найти и площадь данного пятиугольника. Так же поступаем при вычислении площади любого многоугольника.

Площадь проекции многоугольника

Напомним, что углом между прямой и плоскостью называется угол между данной прямой и ее проекцией на плоскость (рис.).

если два многоугольника подобны то отношение площадей этих многоугольников

Теорема. Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла, образованного плоскостью многоугольника и плоскостью проекции.

Каждый многоугольник можно разбить на треугольники, сумма площадей которых равна площади многоугольника. Поэтому теорему достаточно доказать для треугольника.

Пусть ΔАВС проектируется на плоскость р. Рассмотрим два случая:

а) одна из сторон ΔАВС параллельна плоскости р;

б) ни одна из сторон ΔАВС не параллельна р.

Рассмотрим первый случай: пусть [АВ] || р.

если два многоугольника подобны то отношение площадей этих многоугольников

По свойству проекции имеем ΔАВС1 (cong) ΔА’В’С’, и поэтому

Проведем [CD1] ⊥ [AB] и отрезок D1C1. Тогда [D1C1] ⊥ [AB], a \( \overbrace\) = φ есть величина угла между плоскостью ΔАВС и плоскостью р1. Поэтому

и, следовательно, SΔ A’B’C’ = SΔ ABC cos φ.

Перейдем к рассмотрению второго случая. Проведем плоскость р1 || р через ту вершину ΔАВС, расстояние от которой до плоскости р наименьшее (пусть это будет вершина А).

Спроектируем ΔАВС на плоскости р1 и р (рис.); пусть его проекциями будут соответственно ΔАВ1С1 и ΔА’В’С’.

если два многоугольника подобны то отношение площадей этих многоугольников

SΔ A’B’C’ = SΔAB 1 C 1 = SΔADC 1 — SΔADB 1 = ( SΔADC — SΔADB) cos φ = SΔ ABC cos φ

Источник

Подобие фигур

Подобие фигур — это две геометрические фигуры или два геометрических тела называются подобными, если одно представляет собой уменьшенную модель другого.

Содержание:

Понятие подобия фигур

В окружающем мире часто встречаются предметы, одинаковые по форме, но различные по размерам: мыльный пузырь и футбольный мяч, небольшая модель ледокола и сам корабль, карты, фотоснимки различных размеров одного и того же здания. В геометрии такие фигуры называют подобными.

Существуют фигуры, которые всегда подобны друг другу, например, круги, квадраты, кубы.

Для обозначения подобия фигур употребляется знак если два многоугольника подобны то отношение площадей этих многоугольников. На рисунке 2.434 изображены подобные фигуры если два многоугольника подобны то отношение площадей этих многоугольников. Запись если два многоугольника подобны то отношение площадей этих многоугольниковчитается: фигура если два многоугольника подобны то отношение площадей этих многоугольниковподобна фигуре если два многоугольника подобны то отношение площадей этих многоугольников

Для подобных фигур вводится понятие — коэффициент подобия, он обозначается k; k всегда больше нуля. Коэффициент подобия показывает, в каком отношении находятся соответствующие расстояния между точками фигур. На рисунке 2.434 коэффициент подобия можно определить, найдя отношения сторон квадратиков изображенной сетки.

если два многоугольника подобны то отношение площадей этих многоугольников

Подобие фигур широко используется при разработке планов построек зданий или при изображении на картах городов или других участков земной поверхности. Всякий план или карта является подобным изображением реального объекта или участка земной поверхности, т. е. фигурой, подобной реальному объекту. При этом план или карта может изображать реальный объект в разном масштабе.

Определение. Масштаб — это коэффициент подобия соответствующих фигур.

Подобие треугольников

На рисунке 2.435 изображены два чертежных прямоугольных треугольника с острыми углами в 60° и 30°. Стороны второго треугольника по сравнению с первым уменьшены в два раза: если два многоугольника подобны то отношение площадей этих многоугольниковУ этих треугольников углы попарно равны. Стороны, лежащие против разных углов, пропорциональны: если два многоугольника подобны то отношение площадей этих многоугольниковТакие треугольники называют подобными. Стороны, лежащие против равных углов, называют сходственными.

если два многоугольника подобны то отношение площадей этих многоугольников

Определение. Подобными называют треугольники, у которых углы попарно равны, а сходственные стороны пропорциональны.

Подобие треугольников записывается так: если два многоугольника подобны то отношение площадей этих многоугольниковОтношение сходственных сторон подобных треугольников называется коэффициентом подобия. В случае, изображенном на рисунке 2.435, коэффициентом подобия треугольников если два многоугольника подобны то отношение площадей этих многоугольниковбудет число 2. Если же взять отношения если два многоугольника подобны то отношение площадей этих многоугольников, коэффициент подобия будет равен если два многоугольника подобны то отношение площадей этих многоугольников.

Подобные треугольники могут быть произвольно расположены как на плоскости, так и в пространстве.

Если фигуры равны, то они подобны с коэффициентом подобия, равным 1. Если фигуры подобны, то они не обязательно равны.

Теорема 1. (Лемма о подобии треугольников). Прямая, пересекающая две стороны треугольника и проведенная параллельно третьей стороне, отсекает треугольник, подобный данному.

Для выявления подобия треугольников существуют признаки подобия треугольников.

Теорема 2. (Первый признак — по двум равным углам.) Два треугольника подобны, если два угла одного треугольника соответственно равны двум углам другого.

Следствия из этой теоремы.

1. Равносторонние треугольники подобны.

2. Равнобедренные треугольники подобны, если они имеют по равному углу при вершине или при основании.

3. Два прямоугольных треугольника подобны, если они имеют по равному острому углу.

4. Равнобедренные прямоугольные треугольники подобны.

Теорема 3. (Второй признак — по пропорциональности двух сторон и равенству углов между ними.) Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, лежащие между ними, равны.

Следствие. Прямоугольные треугольники подобны, если катеты одного из них пропорциональны катетам другого.

Теорема 4. (Третий признак — по пропорциональности трех сторон.) Два треугольника подобны, если три стороны одного треугольника пропорциональны трем сторонам другого треугольника.

Теорема 5. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Подобие многоугольников

Определение. Если стороны одного многоугольника пропорциональны сторонам другого многоугольника и соответственные углы этих многоугольников равны, то такие многоугольники подобны.

Для многоугольников с числом сторон больше трех признак подобия, аналогичный третьему признаку подобия треугольников, будет неверен. Например, квадрат и ромб, отличный от квадрата, не будут подобны, хотя их стороны пропорциональны (рис. 2.437). Недостаточно для подобия двух прямоугольников и равенства их соответствующих углов. Например, квадрат не подобен четырехугольнику, не все стороны которого равны (рис. 2.438).

если два многоугольника подобны то отношение площадей этих многоугольниковесли два многоугольника подобны то отношение площадей этих многоугольников

Теорема 6. Отношение периметров подобных многоугольников равно отношению их сходственных сторон (коэффициенту подобия).

Теорема 7. Отношение площадей подобных многоугольников равно квадрату коэффициента подобия.

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:

Источник

Математика

если два многоугольника подобны то отношение площадей этих многоугольников

252. Понятие о подобии треугольников распространяется и на многоугольники. Пусть дан многоугольник ABCDE (чер. 245); выполним построение аналогичное п. 206. Построим диагонали AC и AD и, выбрав какую-либо точку K на стороне AB между точками A и B или вне отрезка AB, построим KL || BC до пересечения с диагональю AC, затем LM || CD до пересечения с AD и, наконец, MN || DE до пересечения с AE. Тогда получится многоугольник AKLMN, который связан с ABCD следующими зависимостями:

1) Углы одного многоугольника равны попарно углам другого: угол A у них общий, ∠K = ∠B (как соответственные), ∠KLM = ∠BCD, ибо ∠KLA = ∠BCA и ∠ALM = ∠ACD и т. д.

2) Сходственные стороны этих многоугольников пропорциональны, т. е. отношение одной пары сходственных сторон равно отношению другой пары, равно отношению третьей пары и т. д.

«Сходственные» стороны здесь надо понимать несколько иначе, чем для треугольников: здесь считаем сходственными сторонами те, которые заключены между равными углами, например, BC и KL.

Справедливость указанной пропорциональности видна следующим образом:

∆ABC, следовательно, AK/AB = KL/BC = AL/AC
∆ALM

∆ACD, следовательно, AL/AC = LM/CD = AM/AD
∆AMN

∆ADE, следовательно, AM/AD = MN/DE = AN/AE

Мы видим, что среди первых трех равных отношений и среди вторых трех равных отношений имеется одно одинаковое AL/AC; также и последние три отношения связываются с предыдущими отношением AM/AD. Поэтому, пропуская отношения диагоналей, получим:

AK/AB = KL/BC = LM/CD = MN/DE = AN/AE

Все это остается, как легко видеть, справедливым и для многоугольника с большим, чем у нас, числом сторон.

Мы, следовательно, умеем строить многоугольник, подобный данному. Мы построили AKLMN

Мы видим еще, что в многоугольниках ABCDE и AKLMN построены диагонали из их соответственных вершин,причем получилось два ряда подобных треугольников: ∆AKL

∆ADE — треугольники эти одинаково расположены в обоих многоугольниках.

Возникает вопрос, останется ли в силе последнее свойство, если мы построим многоугольник, подобный данному, каким-либо еще способом, не тем, которым мы пользовались здесь.

253. Пусть как-либо построен многоугольник A’B’C’D’E’ подобный многоугольнику ABCDE (чер. 246), т. е. так, что

∠A’ = ∠A, ∠B’ = ∠B, ∠C’ = ∠C, ∠D’ = ∠D, ∠E’ = ∠E (1)

A’B’/AB = B’C’/BC = C’D’/CD = D’E’/DE = E’A’/EA (2)

если два многоугольника подобны то отношение площадей этих многоугольников

Вопрос конца предыдущего п. равносилен другому: можно ли привести эти два многоугольника в положение, чтобы, например, точка A’ совпала с A, а остальные вершины были бы расположены попарно на прямых, идущих из этой общей точки, и чтобы сходственные стороны их или были параллельны, или сторона одного многоугольника расположилась бы на стороне другого.

Решим этот вопрос. Для этого отложим на стороне AB от точки A отрезок AK = A’B’ и, пользуясь предыдущим п., построим многоугольник AKLMN

Остается выяснить, может ли многоугольник A’B’C’D’E’ совпасть при наложении с AKLMN.

Мы имеем: AK/AB = KL/BC = LM/CD = MN/DE = NA/EA.

Сравнивая эти равенства с равенствами (2) и принимая во внимание, что AK = A’B’, легко получаем KL = B’C’, LM = C’D’ и т. д., т. е. все стороны многоугольников A’B’C’D’E’ и AKLMN попарно равны. Наложим многоугольник A’B’C’D’E’ на AKLMN так, чтобы A’ попала в A и сторона A’B’ совпала бы с AK (мы ведь строили AK = A’B’); тогда, в силу равенства углов B’ и K, сторона B’C’ пойдет по KL, в силу равенства сторон KL и B’C’, точка C’ попадет в L и т. д.

Итак, A’B’C’D’E’ совпадает с AKLMN, а следовательно, если построим диагонали A’C’ и A’D’, получим ряд треугольников, подобных и одинаково расположенных с ∆ABC, ∆ACD и т. д.

Поэтому заключаем: Если построить в подобных многоугольниках диагонали из соответственных вершин, то получим 2 ряда подобных и одинаково расположенных треугольников.

Легко увидать справедливость и обратного заключения: если, ∆A’B’C’

∆ADE, то многоугольник A’B’C’D’E’

многоугольнику ABCDE. Тогда ∆A’B’C’ = ∆AKL, ∆A’C’D’ = ∆ALM и ∆A’D’E’ = ∆AMN, откуда следует равенство многоугольников A’B’C’D’E’ и AKLMN и, следовательно, подобие A’B’C’D’E’ и ABCDE.

254. То положение (две соответственных вершины сливаются в одной точке, остальные вершины попарно лежат на прямых, проходящих чрез эту точку, а сходственные стороны параллельны), в которое нам удалось привести два подобных многоугольника, является частным случаем другого более общего положения двух подобных многоугольников.

если два многоугольника подобны то отношение площадей этих многоугольников

ABCD (чер. 247). Возьмем какую-либо точку S и соединим ее со всеми вершинами A, B, C и D первого многоугольника. Постараемся построить многоугольник, равный многоугольнику KLMN, так, чтобы его вершины лежали на прямых SA, SB, SC и SD и стороны были бы параллельны сторонам многоугольника ABCD.

Для этого отложим на стороне AB отрезок AP = KL (полагаем, что KL и AB сходственные стороны) и построим PB’ || AS (на чертеже точка P и прямая PB’ не даны). Чрез точку B’, где SB пересекается с PB’, построим B’A’ || AB. Тогда A’B’ = AP = KL, затем построим B’C’ || BC, чрез точку C’, где B’C’ пересекается с SC, проведем C’D’ || CD и точку D’, где C’D’ пересекается с SD, соединим с A’. Получим многоугольник A’B’C’D’, который, как это сейчас увидим, подобен многоугольнику ABCD.

Так как A’B’ || AB, то ∆SA’B’

SA’/SA = A’B’/AB = SB’/SB (1)

Так как B’C’ || BC, то ∆SB’C’

SB’/SB = B’C’/BC = SC’/SC (2)

Так как C’D’ || CD, то ∆SC’D’

SC’/SC = C’D’/CD = SD’/SD (3)

Отсюда можно вывести, что SA’/SA = SD’/SD, а следовательно ∆SA’D’

SD’/SD = D’A’/DA = SA’/SA (4)

Из равенств отношений (1), (2), (3) и (4) легко получаем:

A’B’/AB = B’C’/BC = C’D’/CD = D’A’/DA (5)

Кроме того, ∠A’ = ∠A, ∠B’ = ∠B и т. д., как углы с параллельными сторонами. Следовательно, A’B’C’D’

KL/AB = LM/BC = MN/CD = NK/DA.

Сравнивая эти равные отношения с равенствами (5) и имея в виду, что A’B’ = KL, находим: B’C’ = LM, C’D’ = MN, D’A’ = NK. Теперь легко, как это делали выше, увидать, что KLMN при наложении совместится с A’B’C’D’. Следовательно, нам удалось поместить данные подобные многоугольники в такое положение, что их вершины расположены попарно на прямых, проходящих чрез точку S и их сходственные стороны параллельны, к чему мы и стремились.

Заметим еще, что соответственные вершины в наших многоугольниках следуют друг за другом в одном направлении (см. стрелки около многоугольников ABCD, KLMN и A’B’C’D’) — по часовой стрелке.

Если бы вершины одного многоугольника, соответствующие последовательным вершинам другого, шли друг за другом в направлении, обратном тому, как они расположены в другом, то удалось бы поместить наши многоугольники так, чтобы соответствующие вершины располагались по разные стороны от точки S (см. чер. 248).

если два многоугольника подобны то отношение площадей этих многоугольников

В дальнейшем мы распространим это понятие на отношение всяких двух отрезков изображения и оригинала, сходственных между собою.

Из равенства (1), (2), (3) и (4) предыдущего п., имеем:

SA’/SA = SB’/SB = SC’/SC = SD’/SD = A’B’/AB = k,

т. е. отношение расстояний от центра подобия соответственных вершин изображения и оригинала = коэффициенту подобия.

Соединив точку E, например, с B и точку E’ с B’ (B и B’ суть тоже соответственные точки), получим два соответствующих друг другу отрезка BE и B’E’.

Легко увидать, что ∆SBE

1) B’E’ || BE и 2) B’E’/BE = SB’/SB = k

256. Построим для какой-либо фигуры, одна точка которой есть A (чер. 249), ее изображения, принимая две произвольных точки S1 и S2 за внешние центры подобия и числа k1 и k2 за коэффициенты подобия. Пусть в первом изображении точке A соответствует точка A’ и во втором изображении этой же точке соответствует точка A».

если два многоугольника подобны то отношение площадей этих многоугольников

Присоединим еще к данной фигуре какую-либо точку B, лежащую на прямой S1S2; тогда этой точке B соответствуют в первом изображении точка B’ и во втором точка B», причем точки B’ и B» должны лежать на той же прямой S1S2 и прямые AB, A’B’ и A»B» должны быть параллельны и одинаково направлены.

Соединим точки A’ и A», найдем точку пересечения S3 прямых A»A’ и S2S1. Тогда из подобия треугольников S3A’B’ и S2A»B» находим:

Соединив точки A’ и A», найдем точку пересечения S3 прямых A»A’ и S2S1. Тогда из подобия треугольников S3A’B’ и S2A»B» находим:

т. е. точка S2 должна делить отрезок B’B» внешним образом в отношении, равном данному числу k1/k2. Мы знаем (п. 217), что существует только одна точка, которая делит данный отрезок B’B» в данном отношении внешним образом. Если мы возьмем какую-либо еще точку C данной фигуры и построим ее изображения C’ и C», то, соединив точки C’ и C» и взяв точку пересечения, назовем ее опять S3, прямой C’C» с прямой S1S2, получим, что ∆S3B’C’

∆S3B»C» (B»C» || BC и B’C’ || BC, следовательно, B»C» || B’C’), откуда опять найдем, что S3B’/S3B» = k1/k2, т. е. новая точка S3 совпадает с прежнею. Следовательно, S3 есть центр подобия фигур (A’B’C’. ) и (A»B»C». ) и притом внешний, ибо направления, в котором следуют друг за другом соответствующие точки в обеих фигурах, одинаковы. Из этого заключаем, что фигуры (A’B’C’. ) и (A»B»C». ) также имеют внешний центр подобия и он расположен на одной прямой с центрами S1 и S2.

если два многоугольника подобны то отношение площадей этих многоугольников

Если взять оба центра подобия внутренними (например, S2 и S3 на чер. 250), то легко увидать, что третий центр подобия окажется внешним. Итак, вообще:

Если три фигуры попарно подобно расположены, то три центра подобия расположены на одной прямой, причем или все три они внешние, или два из них внутренних, а один внешний.

257. Отношение периметров и площадей подобных многоугольников.
Пусть имеем два подобных многоугольника ABCDEF и A’B’C’D’E’F’ (чер. 251). Назовем коэффициент подобия чрез k.

если два многоугольника подобны то отношение площадей этих многоугольников

A’B’/AB = k, B’C’/BC = k и т. д.,

A’B’ = k · AB, B’C’ = k · BC, C’D’ = k · CD, …

Сложив эти равенства по частям и вынеся множитель k во второй части за скобку, получим:

A’B’ + B’C’ + C’D’ + … = k(AB + BC + CD + …),

(A’B’ + B’C’ + C’D’ …) / (AB + BC + CD + …) = k = A’B’/AB,

т. е. отношение периметров подобных треугольников равно отношению сходственных сторон (или равно коэффициенту подобия).

Выберем две соответственных вершины, напр., A и A’, и построим проходящие чрез них диагонали. Тогда мы знаем: 1) (из п. 253) ∆ABC

∆A’C’D’ и т. д. 2) (из п. 212). Отношение площадей подобных треугольников равно квадрату отношения их сходственных сторон, следовательно,

пл. ∆A’B’C’ / пл. ∆ABC = (A’B’/AB) 2 = k 2 ; пл. ∆A’C’D’ / пл. ∆ACD = (C’D’/CD) 2 = k 2 и т. д.,

Сложив эти равенства по частям и вынеся общего множителя k 2 во второй части за скобку получим:

пл. ∆A’B’C’ + пл. ∆A’C’D’ + ∆A’D’E’ + … = k 2 (пл. ∆ABC + пл. ∆ACD + пл. ∆ADE + …),

т. е. отношение площадей подобных многоугольников равно квадрату отношения их сходственных сторон (или равно квадрату коэффициента подобия).

258. Два правильных одноименных многоугольника всегда подобны. В самом деле, углы у одноименных многоугольников одинаковы (п. 248), а так как все стороны каждого равны между собою, то, очевидно, отношение любой стороны одного к любой стороне другого есть число постоянное.

если два многоугольника подобны то отношение площадей этих многоугольников

Если в круг впишем какой-либо правильный многоугольник (чер. 252) и чрез середины дуг, стягиваемых его сторонами, построим касательные к кругу, то получим правильный одноименный многоугольник, описанный около этого круга. Не трудно выяснить (предоставляем это желающим), что полученные два правильные многоугольника подобно расположены, и центр круга служит их внешним центром подобия, – внешним потому, что каждая пара соответствующих точек (напр., A и A’) расположена в одном направлении от центра (если многоугольник имеет четное число сторон, то центр круга можно считать и внутренним центром подобия, надо лишь считать, что, например, точке A соответствует точка A»).

259. Упражнения.

1. Стороны одного пятиугольника равны соответственно 12, 14, 10, 8 и 16 дм. Найти стороны другого пятиугольника, подобного первому, если его периметр = 80 дм.

2. Сумма площадей двух подобных многоугольников равна 250 кв. дм., а отношение двух сходственных сторон = ¾. Вычислить площадь каждого из них.

3. Показать, что если в круг вписан правильный многоугольник с нечетным числом сторон и в его вершинах построены касательные к кругу, то получится описанный многоугольник, подобно расположенный с вписанным, – центр круга служит их внутренним центром подобия.

4. Дан треугольник; построить другой треугольник, подобно расположенный с первым так, чтобы центр тяжести первого служил внутренним центом подобия и чтобы коэффициент подобия = ½. Выяснить при помощи этого, как расположены точки высот, центр тяжести и центр описанного круга данного треугольника.

5. В данный треугольник вписан квадрат.

если два многоугольника подобны то отношение площадей этих многоугольников

Пусть ABC данный треугольник (чер. 253) и DEFK искомый квадрат. Построим еще квадрат MNPQ, чтобы одна сторона MQ лежала на стороне AC треугольника и точка N на стороне AB. Легко видеть, что квадрат MNPQ подобно расположен с искомым квадратом DEFK и внешним их центром подобия является точка A; следовательно, точка F лежит на прямой AP. После нахождения точки F искомый квадрат легко построить.

6. Дан угол и точка внутри его. Найти на одной стороне угла точку, равноудаленную от данной точки и от другой стороны.

Задача решается тем же приемом.

7. Построить треугольник по его высотам.

Легко получить, называя стороны треугольника чрез a, b и c и соответствующие высоты чрез ha, hb и hc, следующую зависимость:

Легко построить отрезок x = (hbha)/hc (x/ha = hb/hc — построение 4-го пропорционального), после чего построим треугольник со сторонами hb, ha и x. Этот треугольник подобен искомому, так как a : h : c = hb : ha : x; остается построить треугольник подобный только что построенному так, чтобы одна его высота была равна данной.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *