индикаторы формы методы и приемы измерения
Метрология
Методы и средства измерений физических величин
Как и чем производят измерения?
Прямые измерения
Косвенные измерения
Прямые измерения более просты и сразу приводят к результату измерения, поэтому они имеют преимущественное распространение в машиностроении.
Однако в ряде случаев прямые измерения не могут быть осуществлены, например, при измерении штангенциркулем расстояния между осями отверстий, при измерениях на КИМ, при измерении валов большого диаметров и др.
Прямые измерения иногда уступают по точности косвенным измерениям, как это имеет место при измерении углов угломерами, погрешности которых в десятки раз превышают погрешности синусных линеек.
Косвенные измерения широко применяют при координатных измерениях, потому что результат измерения всегда получают расчетом по определенным при измерении координатам двух или нескольких точек.
Абсолютный метод измерения
При абсолютном методе весь измеряемый размер определяется непосредственно по показаниям прибора. В настоящее время большинство приборов и инструментов измеряют абсолютным методом – штангенинструмент, микрометры, широкодиапазонные индикаторы и преобразователи, высотомеры, КИМ, угловые энкодеры и др.
Относительный метод измерения
Относительный (сравнительный) метод измерения дает только отклонение размера от установочной меры или образца, по которым прибор был установлен на ноль. Определение размера в этом случае производится алгебраическим суммированием размера установочной меры и показаний прибора при измерении.
Приборы для относительных измерений требуют дополнительной затраты времени для предварительной настройки прибора по установочной мере, что существенно снижает производительность измерений при небольших партиях проверяемых деталей. Снижение производительности становится несущественным, если после настройки прибором производят большое число измерений.
Приборы для относительных измерений в ряде случаев позволяют получить более высокую точность, а при измерении больших партий деталей и более высокую производительность контроля, благодаря удобству отсчета отклонений размера по шкале прибора.
Относительный метод измерения применяется на контрольных приспособлениях и автоматах, в приборах активного контроля.
Комплексный метод измерения
Комплексный метод измерения заключается в сопоставлении действительного контура проверяемого объекта с его предельными контурами, определяемыми величинами и расположением полей допусков отдельных элементов этого объекта.
Комплексный метод измерения обеспечивает проверку накопленных погрешностей взаимосвязанных элементов объекта, ограниченных суммарным допуском. Этот метод измерения является наиболее надежным с точки зрения обеспечения взаимозаменяемости и обычно осуществляется проходными калибрами, сконструированными по принципу подобия.
Примером комплексного метода измерения может служить проверка резьбы гайки проходной резьбовой пробкой.
Дифференцированный метод измерения
Дифференцированный метод измерения сводится к независимой проверке каждого элемента отдельно. Этот метод не может непосредственно гарантировать взаимозаменяемости изделий.
Например, при дифференцированной проверке среднего диаметра, шага и половины угла профиля резьбы необходимо дополнительно подсчитать приведенный средний диаметр резьбы, включающий отклонения перечисленных выше элементов резьбы, и убедиться, что он находится в заданных пределах.
При проверке изделий предельными калибрами обычно сочетаются комплексные и дифференцированные методы измерений.
Каждый из перечисленных выше методов измерения может осуществляться контактным или бесконтактны м способом.
Контактный метод измерения
Контактный метод измерения осуществляется путем непосредственного соприкосновения измерительных поверхностей (наконечников) прибора или инструмента с поверхностью контролируемого объекта.
Бесконтактный метод измерения
Измерительные средства
Измерительные средства, применяемые в металлообрабатывающей промышленности, можно разделить на три основные группы:
Мерами называются средства измерения, служащие для воспроизведения одного или нескольких известных значений данной величины.
Калибрами называются меры, служащие для проверки правильности размеров, форм и взаимного расположения частей изделия.
Калибры долгое время являлись одними из наиболее распространенных измерительных средств, но с повышением точности металлообработки, распространением станков с ЧПУ, появлением индикаторов, электронных приборов и инструментов с цифровым отсчетом и КИМ применение калибров существенно снизилось.
Универсальные инструменты и приборы служат для определения значений измеряемой величины.
Они различаются по конструктивным признакам, по целевому назначению, по степени механизации, пределам измерения, цене деления аналогового или цифрового отсчета и прочим показателям.
Классификация средств измерения
Универсальные измерительные инструменты и приборы классифицируются по конструктивным признакам на:
Индикатор. Рекомендации по составлению перечня индикаторов для наблюдения за технологическими параметрами, точность измерения которых не нормируется
Несмотря на то, что понятие «индикатор» отсутствует в Законе РФ «Об обеспечении единства измерений» и в подзаконных документах, тем не менее оно продолжает сохраняться.
Некоторые отрасли в своих регламентирующих документах продолжают использовать этот термин.
Так в Приложении к приказу Главнокомандующего Военно-Морским Флотом от 15 мая 1997 года № 322 «Перечень средств измерений, подлежащих периодической поверке в Военно-Морском флоте», говорится:
На атомных станциях все средства измерений и измерительные каналы измерительных систем делят на четыре группы с точки зрения их метрологического обслуживания:
— подлежащие обязательной калибровке;
— недоступные для метрологического обслуживания в межповерочный (межкалибровочный) интервал;
— переведенные в разряд индикаторов.
(См. В.М. Шевченко, Особенности метрологического контроля и надзора на атомных станциях, Законодательная и прикладная метрология, № 6, 1997 год, с. 20-21, а также руководящий документ РД 95 10525-2000 «ИНСТРУКЦИЯ по составлению номенклатурных перечней средств измерений, находящихся в эксплуатации на атомных станциях и подлежащих поверке, калибровке, а также переведенных в разряд индикаторов», введенный в действие с 01.07.2000 года).
Таким образом, если предприятиям и организациям по-прежнему удобно использовать понятие «индикатор» вне сфер государственного регулирования, то нет никакого запрета на его применение.
В связи с этим, в качестве отраслевого опыта отнесения технических средств к категории «индикаторов», ниже полностью приведены тексты соответствующих методических указаний различных отраслей:
Лекция 2. Виды и методы измерений
Описание
1. Основные понятия и определения. Виды измерений.
2. Методы измерений.
3. Понятие о точности измерений.
4. Основы обеспечения единства измерений
Оглавление
1. Основные понятия и определения. Виды измерений
Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.
Измерения могут быть классифицированы по метрологическому назначению на три категории:
Ненормированные – измерения при ненормированных метрологических характеристиках.
Технические – измерения при помощи рабочих средств измерений.
Метрологические – измерения при помощи эталонов и образцовых средств измерений.
Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.
Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.
Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.
В дисциплине «Метрология, стандартизация и сертификация» рассматриваются технические измерения.
Можно выделить следующие виды измерений.
1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:
2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.
При прямом измерении искомое значение величины находят непосредственно из опытных данных (например, измерение диаметра штангенциркулем).
При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.
Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).
Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.
3) По условиям, определяющим точность результата измерения, методы делятся на три класса.
Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.
Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.
Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.
4) По способу выражения результатов измерений различают абсолютные и относительные измерения.
Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.
При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).
5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.
Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).
Комплексный метод характеризуется измерением суммарного показателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).
2. Методы измерений
Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Можно выделить следующие методы измерений.
По способу получения значения измеряемых величин различают два основных метода измерений.
Метод непосредственной оценки – метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия.
Метод сравнения с мерой – метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
Разновидности метода сравнения:
При измерении линейных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений.
В зависимости от измерительных средств, используемых в процессе измерения, различают:
3. Понятие о точности измерений
Точность результата измерения – характеристика качества измерения, отражающая близость к нулю погрешности его результата.
Эти погрешности являются следствием многих причин: несовершенства средств измерений, метода измерений, опыта оператора; недостаточной тщательности проведения измерения; воздействия внешних условий и т.д. Для оценки степени приближения результатов измерения к истинному значению измеряемой величины используются методы теории вероятности и математической статистики, что позволяет с определенной достоверностью оценить границы погрешностей, за пределы которых они не выходят. Это дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие измерение результата, погрешности которого не превышают заданных границ с требуемой степенью доверия к результатам измерений (достоверностью).
Класс точности – обобщённая метрологическая характеристика средства измерения.
Класс точности определяется и обозначается по-разному. Наибольшее распространение получили три варианта, каждый представляет собой выраженное в процентах значение относительной погрешности:
– относительно измеренного значения (относительная погрешность),
– относительно максимального значения шкалы (приведённая погрешность),
– относительно участка шкалы (приведённая к участку шкалы погрешность).
Рассмотрим эти три варианта.
Вариант 1. Относительная погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, результат измерения умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В.
Абсолютная погрешность составит: (10,000 В ∙ 0,1 %) / 100 % = 0,010 В. Запись результата: (10,000 ± 0,010) В, с вероятностью 95 % (эта вероятность по умолчанию назначается для технических измерений, исходя из этой вероятности определяется и класс точности). При нормировании по относительной погрешности, значение класса точности заключают в кружок. Как правило, обозначение класса точности размещают в правом нижнем углу на шкале средства измерений.
Вариант 2. Приведённая погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, максимальное значение шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В. Максимальное значение шкалы составляет 20,000 В.
Абсолютная погрешность составит: (20,000 В ∙ 0,1 %) / 100 % = 0,020 В. Запись результата: (10,000 ± 0,020) В, с вероятностью 95 %. При нормировании по приведённой погрешности, значение класса точности не сопровождают никакими знаками.
Вариант 3. Приведённая к участку шкалы погрешность.
Чтобы по классу точности определить значение абсолютной погрешности, размер участка шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Рассмотрим два примера, для случая, когда вся шкала поделена на два участка.
Пример 1. Участок шкалы от 0,000 В до 12,000 В, отмечен галочкой. Вольтметром класса точности 0,1 получено значение 10,000 В.
Абсолютная погрешность составит: (12,000 В ∙ 0,1 %) / 100 % = 0,012 В. Запись результата: (10,000 ± 0,012) В, с вероятностью 95 %.
Пример 2. Участок шкалы от 12,000 В до 20,000 В, также отмечен галочкой. Вольтметром класса точности 0,1 получено значение 15,000 В.
Абсолютная погрешность составит: (8,000 В ∙ 0,1 %) / 100 % = 0,008 В. Запись результата: (15,000 ± 0,008) В, с вероятностью 95 %. При нормировании по приведённой к участку шкалы погрешности, значение класса точности помещают над галочкой. Участки шкалы, относительно которых нормируется погрешность, обозначают галочками.
Варианты классов точности обусловлены отличием конструктивных, системных и схемотехнических решений средств измерений.
Корректная запись результатов
Запись результатов измерений производится по следующим правилам.
1) Погрешность указывается двумя значащими цифрами, если первая равна 1 или 2. Погрешность указывается одной значащей цифрой, если первая равна 3 или более. Все остальные цифры должны быть не значащими.
Значащей цифрой называется любая цифра числа, записанного в виде десятичной дроби, начиная слева с первой отличной от нуля цифры, независимо от того, где она находится – до запятой или после запятой.
2) Результат измерения округляется в соответствии с его погрешностью, т.е. записывается с той же точностью, что и погрешность.
Рассмотрим пример. Результат измерения: 10,645701, погрешность 0,012908.
1) Рассматриваем погрешность. Первая значащая цифра 1, поэтому оставляем две значащие цифры, округляя, записываем: 0,013.
2) Рассматриваем результат измерения. Погрешность записана с точностью до третьего знака после запятой, поэтому в результате также оставим три знака. Округляя, записываем: 10,646.
Корректная запись: 10,646 ± 0,013.
Корректная запись обеспечивает адекватность и сопоставимость результатов различных измерений и является одним из элементов единства измерений. Как правило, отбрасывание избыточных цифр не приводит к дополнительной погрешности, поскольку избыточные цифры обусловлены точностью вычислений, а не точностью измерений.
4. Основы обеспечения единства измерений
Специализация и кооперирование производства в масштабах страны, основанные на принципах взаимозаменяемости, требуют обеспечения и сохранения единства измерений.
Обеспечение единства измерений – деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с правилами, требованиями и нормами, установленными государственными стандартами и другими нормативно-техническими документами в области метрологии.
В 1993 г. был принят Закон Российской Федерации «Об обеспечении единства измерений», который устанавливает правовые основы обеспечения единства измерений в нашей стране. Он состоит из семи разделов: общие положения; единицы величин, средства и методики выполнения измерений; метрологические службы; государственный метрологический контроль и надзор; калибровка и сертификация средств измерений; ответственность за нарушение закона и финансирование работ по обеспечению единства измерений. В Законе дано следующее определение понятия «единство измерения»:
«Единство измерения – состояние измерений, при котором их результаты выражены в узаконенных единицах величин и погрешности измерений не выходят за установленные границы с заданной вероятностью».
Обеспечение единства измерений является задачей метрологических служб.
Метрологическая служба – совокупность субъектов, деятельности и видов работ, направленных на обеспечение единства измерений.
Закон определяет, что Государственная метрологическая служба находится в ведении Госстандарта России и включает: государственные научные метрологические центры; органы Государственной метрологической службы регионов страны, а также городов Москва и Санкт-Петербург.
Индикаторы
Индикаторы – средства измерений (СИ) с ненормируемыми метрологическими характеристиками, используемые для наблюдения за изменением физических величин без оценки их значений в единицах измерения с нормированной точностью. Индикаторы не подлежат поверке или калибровке.
Справка. С 01.071985 по 01.12.2001 год в РФ действовал ГОСТ 8.513-84 «ГСИ. Поверка средств измерений. Организация и порядок проведения». Он установил, что СИ, используемые для наблюдения за изменением величин без оценки их значения не подлежали поверке. На них самих и на их эксплуатационной документации должна была наноситься литера «И». Порядок контроля исправности И устанавливало само предприятие (п.1.14).
После отмены ГОСТ 8.513-84 регулирование вопросов, связанных с И, по-прежнему находится в ведении предприятия (отрасли). Оно устанавливает требования к обозначению, клеймению И, порядок их регистрации, эксплуатации, технического обслуживания и ремонта, в том числе, в стандарте организации – СТО.
На данный момент не существует нормативных документов федерального уровня касательно индикаторов.
В некоторых отраслях для индикаторов сформулированы ведомственные нормативные требования (как, например, в военной промышленности). Если в отрасли нет обязательных требований, то предприятие имеет право внедрить их у себя на добровольной основе.
В общем случае СИ, которые по условиям применения можно отнести к индикаторам, определяются распоряжением (приказом) руководства предприятия. (Этот факт может также быть отражен в СТО). Правильность отнесения СИ к индикаторам может быть проверена в рамках государственного метрологического надзора.
О термине «индикатор» в законодательных документах РФ и НПА
В действующей редакции Федерального закона 102-ФЗ от 26.06.2008 «Об обеспечении единства измерений» нет понятия «индикатор», нет определений «ненормированные СИ», «СИ с ненормируемыми метрологическими характеристиками». Точно также действующие с 01.01.2015 на территории РФ Рекомендации РМГ 29-2013 «ГСИ. Метрология. Основные термины и определения» не включают определения термина «индикатор».
Справка. В РМГ 29-99 (вместо которого введены РМГ 29-2013) в ст. 6.26 в последних редакциях присутствовал термин «индикатор» (Detektor), и он определялся как вещество или техническое средство для установления наличия или превышение уровня порогового значения какой-либо физической величины.
РМГ 29-2013 (ст 6.14) содержит определение «детектора» как технического средства или вещества, которое указывает на наличие определенного свойства объекта измерения при превышении порогового значения соответствующей величиной. (Приведены примеры индикаторов – галогенный течеискатель, лакмусовая бумага. Примечание – в химии для этого понятия часто используют термин индикатор).
Некоторые специалисты объясняют факт отсутствия определений термина «индикаторы» в современных законодательных и нормативно-правовых актах (НПА) тем, что данные устройства не являются объектами государственного регулирования в сфере обеспечения единства измерений (ОЕИ), так как это ненормируемые СИ. Тем не менее вопросы, связанные с устройствами данного типа, периодически всплывают в метрологическом сообществе. Объектами обсуждений становятся ведомственные нормативные документы определяющие порядок отнесения и применения индикаторов.
Ведомственные НПА об индикаторах
Отдельные отраслевые нормативные документы, устанавливающие обязательные требования в сфере обеспечения единства измерений, (даже принятые совсем недавно) по-прежнему содержат определение данного термина и устанавливают для предприятий своего ведомства рекомендуемые или обязательные требования к индикаторам (в зависимости от статуса документа). Приведем несколько примеров таких НПА:
В учебниках по метрологии также присутствуют определения индикатора. Например, Мокров Ю.В. Метрология, стандартизация и сертификация (Учебное пособие – Дубна, 2007).
Что включать в СТО касательно индикаторов?
Термин «индикатор» может применяться по усмотрению вашей организации или предприятия, если он является для вас удобным. Но его использование допустимо лишь вне сферы государственного регулирования ОЕИ.
На примере ОАО «Газпром» (Р Газпром 5.1-2008) определим основные требования к стандартам организации, направленные на индикаторы.
Так ваш СТО может включать следующие разделы:
Порядок перевода СИ в разряд индикаторов и контроль их работоспособности
Перевод СИ в разряд индикаторов происходит на основе приказа руководителя предприятия. Такой приказ означает, что данные устройства и их показания исключаются из процесса принятия решений: ссылка на показания индикаторов, приведшие к травмам персонала, к поломке технического оборудования, к выпуску некачественной или опасной продукции не может быть использована в качестве доказательной базы, т.к. не имеет юридической силы. Поэтому при переводе СИ в индикаторы рекомендуется учитывать возможность влияния такой процедуры на технику безопасности и качество продукции. Этим же приказом может быть установлен график технического обслуживания СИ, переводимых в индикаторы.
Ведомственные руководства Минсвязи по отнесению средств измерений к индикаторным (РД 45.013-98) и Федеральной таможенной службы содержат (в качестве приложений) методику проведения анализа СИ для отнесения их к категории индикаторов.
Перевод средства измерений в индикаторы требует тщательного исследования СИ и их документации, необходимо изучить: назначение, выполняемые функции и устройство СИ; техническое описание СИ; тип показывающего или регистрирующего прибора или устройства; перечень и нормы на контролируемые параметры; вид шкалы, экрана или дисплея.
Средства измерений могут быть отнесены к категории индикаторов в случаях если:
Запрещается к категории индикаторов относить СИ, если хотя бы на одном пределе измерения или для измерения одного из параметров с их помощью выполняется измерение величины с нормируемой точностью.
Процедура перевода СИ в И также регулируется, например, действующими рекомендациями МИ 2233-2000 «ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Основные положения» (разработаны ФГУП «ВНИИМС», который координирует работу по формированию правовой и нормативной основ в области ОЕИ). Данный документ содержит и положения касательно процедуры контроля функционирования индикаторов.
Контроль работоспособности индикаторов. МИ 2233-2000 содержат рекомендации, что СИ, применяемые для индикации наличия напряжения или давления в некоторых состояниях технологического процесса и оборудования могут быть переведены в разряд индикаторов. Контроль работоспособности индикаторов рекомендовано осуществлять одним из способов приведенных в п. 4.4.4. и п. 4.3.:
Проверку индикаторов может проводить осведомленный персонал (часто это работники эксплуатационной службы), уполномоченный приказом руководителя или должностной инструкцией. Главному метрологу рекомендуется курировать данный вопрос.
Если на предприятии не введены в действие СТО касательно индикаторов или в них не включены требования по контролю их работоспособности, то главному метрологу рекомендуется составить инструкции по проверке конкретного вида индикаторов (на основе существующих методик поверки).