Интеграл что это
Интеграл что это
Сегодня вы поймёте, что такое интеграл в математике
(и в программировании)
Недавно мы разобрали, что такое знаки Σ и П в математике — это операции, которые, по сути, похожи на циклы в программировании. В одном случае мы складывали много чисел по определённому принципу, а в другом — умножали.
Сегодня посмотрим на интеграл ∫ — что это такое и какой цикл можно сделать из него.
Но сначала: что такое функция
Интегралы в математике всегда связаны с функциями, поэтому сначала поговорим про них.
Функцию можно представить как «коробку с математикой». У тебя есть какая-то масса математических операций, ты их «запаковываешь» в функцию. Теперь ты можешь эту массу операций вызывать в своих математических выражениях одним действием.
У функции есть один или несколько аргументов — это те числа, к которым нужно применить массу математических операций. Можно представим, что мы засунули это число в коробку с математикой, потрясли и получили на выходе другое число.
Если посчитать f(x) для одного числа, получится другое число. Если посчитать f(x) от 100 чисел, получится 100 других чисел. А если непрерывно считать f(x) для бесконечного количества чисел, то получится бесконечное количество других чисел.
Что такое интеграл
Итак, у нас есть некая функция, у неё есть числа на входе и числа на выходе. Эти пары чисел можно использовать для построения графика функции.
Теперь берём этот график функции и проводим две линии, которые ограничивают график. Получается фигура, которая сверху зависит от нашей функции, а с остальных сторон ограничена прямыми линиями и осью:
А теперь то, ради чего всё это затевалось:
✅ Площадь этой фигуры и есть интеграл функции f(x) = sin(x) + cos(x) на отрезке от a до b
В нашем случае мы считаем интеграл от нуля до числа пи — 3,1415926.
Это называется определённый интеграл. Определённый — это когда у нас определены начало и конец фигуры — в математике это называют пределами интегрирования. Записывается этот интеграл так:
В математике есть ещё неопределённые интегралы, у которых нет пределов интегрирования. Ими мы заниматься не будем, потому что ответом к неопределённому интегралу будет не конкретное число, а формула.
Зачем нужны интегралы в народном хозяйстве
Вы удивитесь, но в первую очередь интегралы нужны, чтобы находить площади и объёмы. В буквальном смысле: вот фигура, вот её описание в виде функции, проинтегрировали — узнали площадь. Будете, например, заливать бетоном красивую кривую дорожку — узнаете, сколько вам нужно бетона.
Интегралы нужны в математике и физике, это один из инструментов вычислений.
Если вы астрофизик, интеграл поможет вам рассчитать какие-нибудь свойства звёзд с течением времени. А математики говорят, что в интегралах не нужно искать практический смысл; их нужно любить, как мать, и почитать, как отца.
Как посчитать интеграл (то есть найти площадь)
Если бы у нас был прямоугольник, то всё просто: перемножаем высоту на ширину. Если бы была трапеция, тоже ещё как-то что-то можно. Но сверху у нас кривая, поэтому так сделать не получится. Решение придумали такое:
Минус такого подхода в том, что, как бы мы ни старались, прямоугольники не могут повторить все изгибы, и появится погрешность. С другой стороны, чем тоньше будут эти прямоугольники, тем точнее будет ответ. Получается, что наша задача — нарезать фигуру как можно тоньше.
Теперь задача становится намного проще: мы просто считаем площадь каждого прямоугольника и складываем их вместе. В таком виде задачу уже можно решить простым алгоритмом.
Пишем код
Раз нам нужно разбить интервал на много частей а потом с каждой из них сделать одно и то же, то это точно задача для цикла. Для этого нам понадобится шаг цикла — какой ширины будут наши прямоугольники, чтобы бы могли их одинаково перебирать.
Чтобы посчитать шаг, находим расстояние между конечной и начальной точкой и делим на желаемое количество прямоугольников (это будет нашей точностью интегрирования).
Общая логика работы будет такая:
На картинке — все исходные данные, а ниже — код, который считает интеграл. Смотрите на картинку и читайте комментарии: так будет ещё проще разобраться в коде:
Что дальше
Теперь этот код можно изменить так, чтобы он считал интеграл в любых пределах у любой функции. С точки зрения математики это не самый точный результат, но всё зависит от того, сколько точных знаков после запятой нам нужно.
В следующей серии продолжим разбираться со страшной математикой. Если есть пожелания для разбора — напишите в комментариях.
Интегралы для чайников: как решать, правила вычисления, объяснение
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Изучаем понятие « интеграл »
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x).
Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
Бари Алибасов и группа
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
Свойства определенного интеграла
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Интуитивное объяснение интеграла. Часть I — от умножения натуральных чисел до Ньютона и Лейбница
0. Предисловие
Математика представляет собой универсальный, мощный и элегантный раздел знания. По-сути её предмет и значение невозможно разделить с наиболее фундаментальными разделами философии — логикой, онтологией и теорией познания. Именно поэтому она касается прямо или косвенно всех аспектов любого прикладного или теоретического знания.
Отличительными особенностями её являются:
использование особой знаковой системы (цифры, буквы разных алфавитов, языковые правила и т.д.),
логическая строгость (понятия, определения, суждения, правила вывода задаются в явном и точном виде),
последовательность (не поймёшь пункт 3, если не понял пункты 1 и 2),
высокая плотность информации на единицу текста (часто смысла в тексте гораздо больше, чем в текстах иного содержания).
Легко показать, что любой интеллектуально развитый человек регулярно использует те же мыслительные конструкции, что и математика. Когда мы говорим давайте рассмотрим десять каких-либо операций (алгоритм) вроде кулинарного рецепта или простейшей программы или рассмотрим какой-либо частный случай явления, определим его свойства, отношения с другими явлениями, изучим структуру — мы прибегаем к универсальным способам мышления, которые характерны для любого знания и в том числе математического.
Эта статья никогда бы не появилась на свет, если бы учебная литература была бы настолько совершенна, что могла бы легко объяснить, что такое интеграл. Перечитав десятки книг и статей я с уверенностью могу сказать, что ни одна из них не объясняет все нюансы этого вопроса так и таким образом, чтобы среднему, неискушённому человеку было всё абсолютно ясно.
Многие источники не удовлетворительны по следующим причинам:
Говорят о какой-то площади под кривой при том, что читатель ни сном, ни духом не задумывался о площади, тем более под кривой и какой-то связи этой площади с универсальной идеей суммирования переменных величин
Без интуитивного подведения читателя через сложение и умножение чисел, основательного разъяснения связи …. сразу бросаются к определению интеграла через предел римановской суммы
Забывают рассказать об историческом процессе развития математики (зачем ввели интеграл, какие открытия этому предшествовали, что подвело к этому, как считали интегральные суммы до этого, как Ньютон и Лейбниц считали интегралы и т.д.)
Не считают нужным или не хотят привести пару тройку простых примеров интегрирования из прикладных наук
Сыпят доказательствами утверждений, которые новичку покажутся неуместными или второстепенными
Забывают напомнить выводы, обозначения и утверждения, использованные или доказанные ранее
Пропускают те или иные алгебраические преобразования, которые «очевидны» автору, но могут запутать новичка
Автору надоело чувствовать неясность и он решил взять дело в свои руки — расписать все аспекты так, чтобы было всё предельно ясно и понятно.
1. Предпосылки возникновения интегрирования
Интеграл и интегрирование являются неотъемлемыми и последовательными элементами исследования величин и функций. Интегрирование теснейшим образом связано с важнейшими способами анализа и исследования числовых функций — средними, предельными, бесконечно малыми, бесконечно большими величинами, пределами, дифференциалами, производными и т.д. А потому, без осознания и исследования этих понятий невозможно и формирование понятия интеграла.
Исторически и логически они развивались и развиваются слитно и нераздельно.
Как известно осознание самостоятельной значимости и полноценное развитие математики начались в Древней Греции. Постепенное накопление прикладных знаний о различного рода вычислительных, логических и геометрических задачах неизбежно привело к формированию теоретических начал и абстрактных представлений о существе многих математических идей.
Корпус прикладных и теоретических знаний накапливался и формировался шаг за шагом за счёт осмысления логического устройства мышления, применения арифметических операций, составления и решения алгебраических уравнений, построения и изучения свойств плоских и объёмных геометрических фигур.
2. Геометрический и аналитико-алгебраический смысл интегрирования
Согласно дошедшим до нас источникам, именно отыскание квадратуры является первой формой постановки задачи интегрирования. Задача явно сформулирована и решена в трудах Евдокса Книдского (сформулировал метод исчерпывания, позднее развитый в XVI веке в метод неделимых), Евклида и Архимеда. Древнегреческих математиков интересовали задачи отыскания площади круга, поверхности сферы, сегмента параболы, а также объёма шара, цилиндра, пирамиды, конуса, тетраэдра и ряда других геометрических фигур.
Под проведением квадратуры понималось построение с помощью циркуля и линейки квадрата, равновеликого заданной фигуре (то есть имеющего такую же площадь) или прямое вычисление соответствующей площади. Вероятно связи геометрии и анализа если и обнаруживались, то интуитивно и неявно. Во всяком случае координатный метод и понятия дифференциального исчисления точно не были известны, хотя и почти что точно были так или иначе интуитивно восприняты и неявно затронуты.
Что касается второго типа задач. Интегралы часто описываются как площадь под кривой. Это описание сбивает с толку. Точно также, как если сказать, что умножение — это нахождение площади прямоугольника. Именно понимание сущности умножения применительно к различного рода частным случаям позволяет понять аналитико-алгебраическую суть интегрирования.
Понимание и использование простейших случаев умножения, к примеру, умножения натуральных чисел, было известно с древнейших времён.
Однако, за всеми частными случаями умножения находится определённая общность. Вот как можно описать умножение чисел из различных числовых множеств:
В случае с натуральными числами. К примеру, умножим число 3 на число 4, то есть 3 × 4. Умножение — это повторяющееся сложение, то есть произведение чисел получим сложив число три четыре раза или наоборот сложив число четыре три раза [3].
В случае с вещественными числами.
Возьмём одно рациональное число — дробь, а другое целое. К примеру, умножим 3,5 на 2, то есть — 3,5 × 2. Умножение — это повторяющееся сложение, произведение получим сложив число три целых и пять десятых два раза. Также, получить произведение можно путём сложения произведений вначале целой части числа 3,5 то есть 3 на 2, а затем дробной то есть 0,5 на 2. Для целой части — сложим число три два раза, а для дробной части — возьмём единицу разделим на десять, затем возьмём пять частей от деления то есть пять десятых и сложим два раза.
Возьмём два рациональных числа — две дроби и получим произведение. К примеру, умножим 3,5 на 2,1 то есть — 3,5 × 2,1, произведение получим сложив произведение 3,5 на 2 и 3,5 на 0,1 [4]. Словесно это будет выглядеть следующим образом, для первого произведения — сложим число три целых пять десятых два раза, для второго — разделим число три целых пять десятых на десять частей и возьмём одну часть то есть одну десятую.
В случае с комплексными числами (3 × 3i), умножение выступает вращением и масштабированием.
Мы ходим вокруг да около «применения» одного числа к другому, и действия, которые мы применяем (повторное суммирование, масштабирование, зеркальное отображение или вращение), могут быть разными. Интегрирование — это всего лишь еще один шаг в этом направлении.
Когда мы умножаем числа мы повторяем сложение, где в каждом слагаемом знаем какие находятся операнды, а именно — повторяющиеся числа.
К примеру, если мы хотим вычислить пройденный путь телом, движущимся с одинаковой скоростью в каждый момент времени, то мы просто перемножим скорость на время (значение функции скорости одинаково, а геометрически грубо говоря одинаково во всем прямоугольнике).
Но изменяющаяся скорость требует совмещения скорости и времени по частям (момент за моментом, секунда за секундой). В каждый момент скорость может быть разной.
Вот как это выглядит в большой перспективе:
Обычное умножение (прямоугольник): берем расстояние, на которое мы продвинулись за секунду, предполагая, что эта величина была постоянной во все последующие секунды движения, и «масштабируем ее».
Интегрирование (по частям): рассматриваем время как ряд мгновений, в каждое из которых скорость разная. Суммируем расстояния, пройденные в каждое из мгновений (секунд, миллисекунд и т. д.).
То есть, интегральную сумму (значение интеграла, определённый интеграл) можно определить, как максимально точную сумму значений искомой переменной величины
при её изменении в промежутке от до
где
а
.
Точность достигается в пределе, то есть при всё большем уменьшении размера промежутков между значениями или, что тоже самое, при всё большом увеличении числа отрезков (числа —
обозначающего индекс-номер последнего отрезка)
Несомненно греческих и более поздних мыслителей интересовали задачи на отыскание суммарного значения переменных величин. Вероятно их устраивало простое суммирование значений переменной величины, приближённые вычисления. Если мы возьмём приращение переменной равное единице, то интеграл приближённо будет равен сумме значений функции в рассматриваемом промежутке.
В дальнейшем, начиная с XVI века (работы Галилея, Кеплера, Кавальери и других о методе неделимых) понимание интегрирования постепенно совершенствовалось и развивалось пока не достигло формализации у Бернхарда Римана в середине XIX века и дальнейшего обобщения.
3. Интуитивные способы отыскания значения интеграла
Умножить совокупное приращение переменной на значение функции и получить площадь прямоугольника, который добавит значительный излишек, либо срежет значительную часть в зависимости от того какое значение функции мы выберем. Вручную мы можем подобрать такое значение функции, что при умножении её на приращение переменной мы получим довольно точное значение площади (определённого интеграла в промежутке). Для этого нам потребуется провести линию так, чтобы площадь излишка примерно равнялась срезанной площади. Однако, это не даст нам универсального метода отыскания значения искомой величины.
2. Сложить произведения приращения переменной на значение функции в соответствующих точках, получив тем самым сумму площадей прямоугольников, внешне напоминающих лестницу (ступеньки). В самом простом случае приращение равно единице. На этом методе и основано формальное определение определённого интеграла, данное Б. Риманом. О нём мы поговорим ниже.
3. Воспользоваться иными так называемыми численными способами отыскания значения интегральной суммы (интеграла).
4. Отыскание значения интеграла через отыскание первообразной
Однако есть более изящный и универсальный способ вычисления интегральной суммы, который был открыт Исааком Ньютоном и Готфридом Лейбницом. Этот способ устанавливает фундаментальную связь дифференцирования (производной) и интегрирования (первообразной).
Чтобы рассмотреть суть открытия, необходимо последовательно прийти к ряду идей и рассуждений.
Пусть имеется некоторая функция от числовой переменной — Обозначим её
[5].
Следует отметить несколько обстоятельств относительно рассматриваемой функции:
Функция является числовой, то есть область определения и область значений являются числовыми — принимают числовые значения (более точно — вещественные значения).
Функция непрерывна и принимает значения в каждой точке с соответствующим значением переменной (к примеру, в точкесуществует значение функции
, а в точке
значение
Функция может иметь любое выражение. Мы можем иметь набор значений функции в соответствующих точках в виде таблицы (функция задана таблично). Или функция может быть явно задана в виде аналитического выражения (к примеру, в случае с функцией от одной вещественной переменной — , и т.д.).
Функция может описывать зависимость величины любой природы — физической, биологической, экономической и т.д.
Для наглядности изобразим график рассматриваемой функции в виде произвольной кривой.
Пусть мы хотим отыскать всю или часть совокупного значения (аналитико-алгебраический смысл интегрирования) или площадь под кривой (геометрический смысл). Выберем промежуток между двумя точками и
и продолжим наши рассуждения.
Искомое значение представляет собой функцию и очевидно, что оно будет зависеть от размера промежутка и того значения изначальной функции, которое она принимает в каждой точке этого промежутка. Также, очевидно, что промежуток значений переменной для изначальной функции и функции площади будет одинаковым [6].
Сказанное выше легко показать и увидеть на графике.
Заметим, что значения функции площади не равны значению изначальной функции при том же значении переменной [7]. Значения площади постоянно возрастает слева-направо, то есть при каждом шаге приращения промежутка суммирования (интегрирования).
Пусть теперь исследуемая функция является функцией скорости движения материальной точки (тела) по некоторой траектории. Тогда, очевидно, по определению производной, что скорость в конкретный момент времени — это первая производная пути (координаты) по времени
Если скорость это производная пути и мы знаем аналитическое выражение её выражающее, то мы можем найти выражение для самого пути то есть для самой функции. Мы можем это сделать через операцию, обратную нахождению производной то есть через отыскание первообразной. Это справедливо, поскольку производная и соответствующее ей семейство первообразных единственны.
Данный вывод можно обобщить на все интегрируемые функции.
Далее, легко понять из простых арифметических и геометрических соображений, что значение интегральной суммы (площади) будет равно разности значений полученной функции (первообразной), взятых в соответствующих точках [8].
То есть если требуется найти интегральную сумму в промежутке от до
, где первое и второе — некоторые произвольные значения переменной, то необходимо вычислить разность
Указанная сумма и есть определённый интеграл, который записывается, как
[2]. Имеется ввиду сумма значений переменной, которая является элементом интегрирования, интегрируемой величиной.
[3]. Не имеет значения каким образом будем вычислять произведение, так как от перестановки множителей произведение не меняется, то есть данная операция обладает свойством коммутативности.
[4]. 3,5 · 2 + 3,5 · 0,1 = 3,5 (2 + 0,1) = 3,5 · 2,1.
[5]. Вместоможет быть любое обозначение, к примеру,
— это не имеет значения. Буква
всего лишь обозначает имя для функции, а скобки отделяют имя от сущностей — обычно числовых переменных над которыми совершаются те или иные операции, дающие в результате значение функции.
[6]. Переменная-аргумент — одна и таже, то есть иными словами значения переменной-аргумента в точках
для
и
одно и тоже. Далее, мы покажем, что
производная
, то есть можно записать
или
.
[7]. То есть . К примеру, пусть функция задана выражением
. Тогда, при
,
, а значение
. Если
. Тогда, при
,
, а значение
.
[8]. Пусть имеется точка, число 7 и 10, чтобы найти величину промежутка между этими значениями надо найти разность то есть 10 — 7 = 3.
Интегралы – что это, как решать, примеры решений и объяснение для чайников
За 4 минуты вы узнаете, что такое интегрирование. Как интеграл связан с производными. Чем отличается определенный интеграл от неопределенного. 5 примеров вычисления интегралов
Почему вы не знаете, как решать интегралы
А для чего нужны интегралы? Попробуйте сами себе ответить на этот вопрос.
Объясняя тему интегралов, учителя перечисляют малополезные школьным умам области применения. Среди них:
Связать все эти процессы не всегда получается, поэтому многие ученики путаются, даже при наличии всех базовых знаний для понимания интеграла.
Главная причина незнания – отсутствие понимания практической значимости интегралов.
Нужна помощь в написании работы?
Интеграл – что это?
Предпосылки. Потребность в интегрировании возникла в Древней Греции. В то время Архимед начал применять для нахождения площади окружности методы, похожие по сути на современные интегральные исчисления. Основным подходом для определения площади неровных фигур тогда был «Метод исчерпывания», который достаточно лёгок для понимания.
Суть метода. В данную фигуру вписывается монотонная последовательность других фигур, а затем вычисляется предел последовательности их площадей. Этот предел и принимался за площадь данной фигуры.
Метод исчерпывания для определения площади круга
В этом методе легко прослеживается идея интегрального исчисления, которая заключается в нахождении предела бесконечной суммы. В дальнейшем эта идея применялась учёными для решения прикладных задач астронавтики, экономики, механики и др.
Современный интеграл. Классическая теория интегрирования была сформулирована в общем виде Ньютоном и Лейбницем. Она опиралась на существовавшие тогда законы дифференциального исчисления. Для её понимания, необходимо иметь некоторые базовые знания, которые помогут математическим языком описать визуальные и интуитивные представления об интегралах.
Объясняем понятие «Интеграл»
Процесс нахождения производной называется дифференцированием, а нахождение первообразной – интегрированием.
Интеграл математическим языком – это первообразная функции (то, что было до производной) + константа «C».
Интеграл простыми словами – это площадь криволинейной фигуры. Неопределенный интеграл – вся площадь. Определенный интеграл – площадь в заданном участке.
Интеграл записывается так:
Каждая подынтегральная функция умножается на компонент «dx». Он показывает, по какой переменной осуществляется интегрирование. «dx» – это приращение аргумента. Вместо X может быть любой другой аргумент, например t (время).
Неопределённый интеграл
Неопределенный интеграл не имеет границ интегрирования.
Для решения неопределённых интегралов достаточно найти первообразную подынтегральной функции и прибавить к ней «C».
Определённый интеграл
В определенном интеграле на знаке интегрирования пишут ограничения «a» и «b». Они указаны на оси X в графике ниже.
Точки A и B на оси X – есть ограничение зоны определения интеграла
Для вычисления определенного интеграла необходимо найти первообразную, подставить в неё значения «a» и «b» и найти разность. В математике это называется формулой Ньютона-Лейбница:
Таблица интегралов для студентов (основные формулы)
Скачайте формулы интегралов, они вам еще пригодятся
Как вычислять интеграл правильно
Существует несколько простейших операций для преобразования интегралов. Вот основные из них:
Вынесение константы из-под знака интеграла
Разложение интеграла суммы на сумму интегралов
Если поменять местами a и b, знак изменится
Можно разбить интеграл на промежутки следующим образом
Это простейшие свойства, на основе которых потом будут формулироваться более сложные теоремы и методы исчисления.
Примеры вычисления интегралов
Решение неопределенного интеграла
Решение определенного интеграла
Базовые понятия для понимания темы
Чтобы вы поняли суть интегрирования и не закрыли страницу от непонимания, мы объясним ряд базовых понятий. Что такое функция, производная, предел и первообразная.
Функция – правило, по которому все элементы из одного множества соотносятся со всеми элементами из другого.
Производная – функция, описывающая скорость изменения другой функции в каждой конкретной точке. Если говорить строгим языком, – это предел отношения приращения функции к приращению аргумента. Он вычисляется вручную, но проще использовать таблицу производных, в которой собрано большинство стандартных функций.
Приращение – количественное изменение функции при некотором изменении аргумента.
Предел – величина, к которой стремиться значение функции, при стремлении аргумента к определённому значению.
Пример предела: допустим при X равном 1, Y будет равно 2. Но что, если X не равен 1, а стремится к 1, то есть никогда её не достигает? В этом случае y никогда не достигнет 2, а будет только стремиться к этой величине. На математическом языке это записывается так: limY(X), при X –> 1 = 2. Читается: предел функции Y(X), при x стремящемся к 1, равен 2.
Как уже было сказано, производная – это функция, описывающая другую функцию. Изначальная функция может быть производной для какой-либо другой функции. Эта другая функция называется первообразной.
Заключение
Найти интегралы не трудно. Если вы не поняли, как это делать, прочитайте статью еще раз. Со второго раза становится понятнее. Запомните! Решение интегралов сводится к простым преобразованиям подынтегральной функции и поиска её в таблице интегралов.
Если текстовое объяснение вам не заходит, посмотрите видео о смысле интеграла и производной:
Интеграл
Полезное
Смотреть что такое «Интеграл» в других словарях:
ИНТЕГРАЛ — (обозначение т ). Математический символ, используемый в ИСЧИСЛЕНИИ, представляющий операцию суммирования. Интеграл функции f(x), записанный как т f(x)dx, может представлять площадь фигуры, ограниченной кривой y=f(x) и осью абсцисс. ИНТЕГРИРОВАНИЕ … Научно-технический энциклопедический словарь
ИНТЕГРАЛ — (integral) Функция, первая производная (first derivative) которой равна другой функции. Если f(х) является первой производной от g(x), то, следовательно, g(x) является интегралом f(х) и, таким образом, h(x)=g(x)+k, где k – произвольно выбранная… … Экономический словарь
интеграл — а, м. intégrale f. <лат. integer целый. Математическое понятие о целой величине как сумме своих бесконечно малых частей. Нахождение интеграла. БАС 1. Найти интеграл уравнения. 1766. Котельников Геодет 175. // Сл. 18. Алферинька недурно… … Исторический словарь галлицизмов русского языка
ИНТЕГРАЛ — муж., мат., лат. конечная, измеримая величина, в отношении к бесконечно малой части ее, к дифференциалу. Интегральное вычисление, искусство отыскивать интеграл по дифференциалу. Интегрировать, вычислять, находить интеграл; интеграция жен.… … Толковый словарь Даля
ИНТЕГРАЛ — (вово лат., от лат. integer ценный). В математике количество, дифференциал которого равен данной величине. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. интеграл (лат. integer целый) лет. 1) неопределенный и. от… … Словарь иностранных слов русского языка
интеграл — первообразная, термин Словарь русских синонимов. интеграл сущ., кол во синонимов: 2 • первообразная (1) • … Словарь синонимов
интеграл — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] интеграл Есть два различных понятия — неопределенный И. и определенный И. Говорят, что функция f(x) имеет … Справочник технического переводчика
ИНТЕГРАЛ — (от латинского integer целый), одно из основных понятий интегрального исчисления … Современная энциклопедия
ИНТЕГРАЛ — (от лат. integer целый) см. Интегральное исчисление … Большой Энциклопедический словарь
ИНТЕГРАЛ — ИНТЕГРАЛ, интеграла, муж. (от лат. integer целый) (мат.). Конечная измеримая величина в отношении к бесконечно малой части ее к диференциалу. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ИНТЕГРАЛ — [тэ ], а, муж. В математике: величина, получающаяся в результате действия, обратного дифференцированию. | прил. интегральный, ая, ое. Интегральное исчисление. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Что такое Интеграл
Интеграл — это математическая концепция, которая может быть двух типов:
Определённый интеграл выражает область под кривой графика неотрицательной функции f между любыми двумя значениями a и b, как показано на этом рисунке:
Интеграл, определённый между a и b, представлен как: f(x) dx
Неопределённый интеграл функции f — это другая функция F, полученная процессом, противоположным дифференцированию.
Дифференцирование в математике — это процесс, который превращает функцию f в другую функцию f’, называемую производной от f.
Например, нужно найти производную функции f(x) = cos x:
f’(x) = (cos x)’ = – sin x
Обозначение интеграла
Знак определённого интеграла:
Знак неопределённого интеграла: ∫
Основные свойства интегралов
Решение интегралов
Первообразная функция
Это функция, у которой производная функция равна исходной.
Функция F(x) является первообразной для производной функции f(x), если выполняется равенство F'(x) = f(x) (в диапазоне I).
Важная деталь, о которой нужно помнить: первообразные функции не являются единственными! В предыдущем примере первообразная функции 3x² равна x³, но x³ + 1 также является первообразной той же функции (3x²), потому что (x³ + 1)’= 3x².
Это означает, что неопределённый интеграл функции f является множеством всех её первообразных функций и представлен так:
где С — произвольная постоянная.
Неопределённый интеграл
Неопределённый интеграл выглядит примерно так ∫ f(x) d(x) и обозначает множество всех первообразных некоторой функции f(x).
Если F — некоторая частная первообразная, то:
где С — произвольная постоянная.
Например, нужно вычислить неопределённый интеграл:
∫ (2x – 1) dx = ∫2x dx – ∫1dx = 2 (x²/2) – x + C = x² – x + C.
Определённый интеграл
Определённый интеграл выглядит примерно так: f(x) d(x).
С помощью определённого интеграла можно вычислить площадь геометрической фигуры, которая находится под кривой. Отрезок [a;b] называется отрезком интегрирования. Вместо a и b подставляются значения X (минимального и максимального). Например, как на этом рисунке:
Решение определённого интеграла (формула Ньютона-Лейбница):
f(x) dx = F(b) – F(a)
Например, нужно вычислить определённый интеграл:
(2 – x – x²) dx
1) Вычислить первообразную функцию
∫ (2 – x – x²) dx = 2x – x²/2 – x³/3 + C
2) Рассчитать верхний и нижний пределы (разницу между максимальным и минимальным значениями):
(2 – x – x²) dx = [2x – x²/2 – x³/3 + C]
= [2(1) – 1²/2 – 1³/3 + C] – [2(-2) – (-2)²/2 – (-2)³/3 + C] = (2 – 1/2 – 1/3) – (-4 –2 + 8/3) = 2 – 1/2 – 1/3 + 4 + 2 – 8/3 = 9/2 = 4,5.
Значит, площадь того, что закрашено на рисунке (под графиком), будет равна 4,5.
Интеграл
Интеграл функции — аналог суммы последовательности. Неформально говоря, (определённый) интеграл является площадью части графика функции (в пределах интегрирования), то есть площадью криволинейной трапеции.
Процесс нахождения интеграла называется интегрированием.
Согласно основной теореме анализа, интегрирование является операцией, обратной дифференцированию, чем помогает решать дифференциальные уравнения.
Существует несколько различных определений операции интегрирования, отличающиеся в технических деталях. Однако все они совместимы, то есть любые два способа интегрирования, если их можно применить к данной функции, дадут один и тот же результат. Наиболее простым является интеграл Римана.
Содержание
Типы интегралов
По области интегрирования
Интегралы, зависящие от параметров
Дифференцирование по параметру
Пусть задан интеграл вида
В таком случае, производная по параметру t будет равна [1]
История
Интеграл в древности
Интегрирование прослеживается ещё в древнем Египте, примерно в 1800 г. до н. э., Московский математический папирус демонстрирует знание формулы объёма усечённой пирамиды. Первым известным методом для расчёта интегралов является метод исчерпывания Евдокса (примерно 370 до н. э.), который пытался найти площади и объёмы, разрывая их на бесконечное множество частей, для которых площадь или объём уже известны. Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближенного расчёта площади круга. Аналогичные методы были разработаны независимо в Китае в 3-м веке н. э. Лю Хуэйем, который использовал их для нахождения площади круга. Этот метод впоследствии использовали Цзу Чунчжи и Цзу Гэн для нахождения объёма шара.
Следующий крупный шаг в исчисление интегралов был сделан в Ираке, в XI веке, математиком Ибн ал-Хайсамом (известным как Alhazen в Европе), в своей работе «Об измерении параболического тела» он приходит к уравнению четвёртой степени. Решая эту проблему, он проводит вычисления, равносильные вычислению определённого интеграла, чтобы найти объём параболоида. Используя математическую индукцию, он смог обобщить свои результаты для интегралов от многочленов до четвёртой степени. Таким образом, он был близок к поиску общей формулы для интегралов от полиномов, но он не касается любых многочленов выше четвёртой степени.
Следующий значительный прогресс в исчислении интегралов появится лишь в XVI веке. В работах Кавальери с его методом неделимых, а также в работах Ферма, были заложены основы современного интегрального исчисления. Дальнейшие шаги были сделаны в начале XVII века Барроу и Торричелли, которые представили первые намеки на связь между интегрированием и дифференцированием.
Обозначение
Ньютон использовал (не везде) в качестве символа интегрирования значок квадрата (перед обозначением функции или вокруг него), но эти обозначения не получили широкого распространения. Современное обозначение неопределённого интеграла было введено Лейбницем в 1675 году. Он образовал интегральный символ из буквы ſ («длинная s») — сокращения слова лат. summa (тогда ſumma, сумма). [2] Современное обозначение определённого интеграла, с указанием пределов интегрирования, были впервые предложены Жаном Батистом Жозефом Фурье в 1819-20 годах.
ИНТЕГРАЛ
— одно из центральных понятий математич. анализа и всей математики, возникновение к-рого связано с двумя задачами: о восстановлении функции по ее производной (напр., с задачей об отыскании закона движения материальной точки вдоль прямой по известной скорости этой точки); о вычислении площади, заключенной между графиком функции f(x)на отрезке и осью абсцисс (к этой же задаче приводит вычисление работы, произведенной силой за промежуток времени
и другие вопросы).
Указанные две задачи приводят к двум видам И.: неопределенному и определенному. Изучение свойств и вычисление этих связанных между собой видов И. составляет задачу интегрального исчисления.
В ходе развития математики и под влиянием потребностей естествознания и техники понятия неопределенного и определенного И. подвергались ряду обобщений и изменений.
Полезное
Смотреть что такое «ИНТЕГРАЛ» в других словарях:
ИНТЕГРАЛ — (обозначение т ). Математический символ, используемый в ИСЧИСЛЕНИИ, представляющий операцию суммирования. Интеграл функции f(x), записанный как т f(x)dx, может представлять площадь фигуры, ограниченной кривой y=f(x) и осью абсцисс. ИНТЕГРИРОВАНИЕ … Научно-технический энциклопедический словарь
ИНТЕГРАЛ — (integral) Функция, первая производная (first derivative) которой равна другой функции. Если f(х) является первой производной от g(x), то, следовательно, g(x) является интегралом f(х) и, таким образом, h(x)=g(x)+k, где k – произвольно выбранная… … Экономический словарь
интеграл — а, м. intégrale f. <лат. integer целый. Математическое понятие о целой величине как сумме своих бесконечно малых частей. Нахождение интеграла. БАС 1. Найти интеграл уравнения. 1766. Котельников Геодет 175. // Сл. 18. Алферинька недурно… … Исторический словарь галлицизмов русского языка
ИНТЕГРАЛ — муж., мат., лат. конечная, измеримая величина, в отношении к бесконечно малой части ее, к дифференциалу. Интегральное вычисление, искусство отыскивать интеграл по дифференциалу. Интегрировать, вычислять, находить интеграл; интеграция жен.… … Толковый словарь Даля
ИНТЕГРАЛ — (вово лат., от лат. integer ценный). В математике количество, дифференциал которого равен данной величине. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. интеграл (лат. integer целый) лет. 1) неопределенный и. от… … Словарь иностранных слов русского языка
интеграл — первообразная, термин Словарь русских синонимов. интеграл сущ., кол во синонимов: 2 • первообразная (1) • … Словарь синонимов
интеграл — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] интеграл Есть два различных понятия — неопределенный И. и определенный И. Говорят, что функция f(x) имеет … Справочник технического переводчика
ИНТЕГРАЛ — (от латинского integer целый), одно из основных понятий интегрального исчисления … Современная энциклопедия
ИНТЕГРАЛ — (от лат. integer целый) см. Интегральное исчисление … Большой Энциклопедический словарь
ИНТЕГРАЛ — ИНТЕГРАЛ, интеграла, муж. (от лат. integer целый) (мат.). Конечная измеримая величина в отношении к бесконечно малой части ее к диференциалу. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ИНТЕГРАЛ — [тэ ], а, муж. В математике: величина, получающаяся в результате действия, обратного дифференцированию. | прил. интегральный, ая, ое. Интегральное исчисление. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Как решать интегралы: примеры решения
Обновлено: 12 Октября 2021
Одно из самых значимых понятий в математике — интеграл. Термин часто можно встретить при решении задач по математике и физике. С помощью интеграла существенно упрощается поиск площади под кривой, пройденного пути объекта, движущегося неравномерно, массы неоднородного тела, функции по производной.
Что такое интеграл — понятие и определение
Интеграл представляет собой аналог суммы для бесконечного числа бесконечно малых слагаемых.
Интеграл является эффективным инструментом для решения задач из математического анализа. Слово «интеграл» происходит от латинского «integer», то есть «целый». Впервые это понятие ввел Иоганн Бернулли.
Разобраться в определении интеграла можно, если рассмотреть понятный график функции:
Исходя из графика, можно сделать вывод, что интегралом является сумма малых частей, которые составляют в целом рассматриваемый объект. Компоненты складываются в какую-то геометрическую фигуру. При сложении этих частей можно определить, какова ее площадь. Таким образом, пояснение для интеграла заключается в следующем: интеграл является площадью какой-то фигуры, расположенной под линией функции.
Данное понятие относится к определенному интегралу. Он определен на отрезке между точками а и b. В верхней части в качестве ограничения выступает некоторый график функции, как представлено на рисунке:
Математическая запись интеграла:
где f(x) является той самой функцией, график которой ограничивает фигуру в верхней части;
a и b представляют собой пределы;
x соответствует направлению, вдоль которого построены столбцы на графике.
Процесс интегрирования является обратным дифференцированию. В том случае, когда требуется определить минимальный промежуток заданной функции, целесообразно взять от нее производную. Это объясняется тем, что производная или дифференциал являются быстрым методом поиска части чего-либо. Можно наглядно определить с помощью рисунка, что минимальная фигура, которая является частью целого, при таком числе составляющих компонентов не повторяет форму кривой функции. Таким образом, требуется уменьшить габариты таких частей, чтобы они максимально точно совпадали с графиком. Площадь наименьшего компонента фигуры будет стремиться к нулевому значению. Точность повышается с уменьшением размеров рассматриваемой части. Площадь геометрической фигуры состоит из суммы таких частей, которые стремятся к нулю. Записать это можно с помощью уравнения:
Подробно полученное выражение можно рассмотреть на графике:
Площадь малой части фигуры определяется так же, как площадь прямоугольника. Значение Y нужно помножить на значение ΔХ. Так как фигура представляет собой совокупность малых частей, то их требуется сложить. Следует учитывать, что каждый компонент фигуры ΔХ стремится к нулевому значению. Поэтому формула, которая представлена выше, включает это условие и позволяет определить результат максимально точно.
Если обозначить количество частей ΔХ, стремящихся к бесконечности, то можно определить, что существует предел интегральной суммы, которая состоит из таких компонентов, стремящихся к нулю и к бесконечности по числу таких частей. Таким образом, правая граница фигуры, изображенной на графике, является пределом. В этом выражается геометрический смысл определенного интеграла.
Физический смысл интеграла состоит в том, что это сумма бесконечно малых величин на бесконечно большом интервале. Исходя из этого, можно определить любую величину, которая изменяется, согласно функции. К примеру, рассчитать общий путь по закону изменения скорости. Необходимость в интеграле возникла, когда потребовалось рассчитать площади каких-либо фигур и объем любых тел, выбранных произвольно.
В том случае, когда расчеты подразумевают наличие постоянной характеристики, к примеру, скорости, найти путь можно с помощью произведения этой постоянной скорости и времени. Этот же момент можно проверить при вычислении интеграла от такой функции и записи уравнения прямой. Но скорость в процессе движения может меняться. Данное изменение можно представить в виде зависимости. Тогда следует вписать граничные условия, например, в случае пути — это время, в интеграл скорости по времени. Полученное выражение будет равно площади трапеции, которая расположена под функцией скорости, что является физическим смыслом определенного интеграла.
Свойства, которыми обладает определенный интеграл:
Термин «неопределенный интеграл» применим в ситуациях, когда требует найти площадь криволинейной трапеции, путь в соответствии с известной скоростью тела, которое движется неравномерно, и для решения других подобных задач.
Свойства, которыми характеризуется неопределенный интеграл:
Таблица интегралов для студентов
Такие формулы позволяют упростить решение многих задач. Основные интегралы:
Как вычислить интеграл для чайников?
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл… Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Изучаем понятие «интеграл»
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x). Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции.
Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры.
Это и есть определенный интеграл, который записывается так:
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
Свойства определенного интеграла
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в х.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Интегралы – что это, как решать, примеры решений и объяснение для чайников
За 4 минуты вы узнаете, что такое интегрирование. Как интеграл связан с производными. Чем отличается определенный интеграл от неопределенного. 5 примеров вычисления интегралов
Почему вы не знаете, как решать интегралы
А для чего нужны интегралы? Попробуйте сами себе ответить на этот вопрос. Объясняя тему интегралов, учителя перечисляют малополезные школьным умам области применения. Среди них:
Связать все эти процессы не всегда получается, поэтому многие ученики путаются, даже при наличии всех базовых знаний для понимания интеграла.
Главная причина незнания – отсутствие понимания практической значимости интегралов.
Интеграл – что это?
Предпосылки. Потребность в интегрировании возникла в Древней Греции. В то время Архимед начал применять для нахождения площади окружности методы, похожие по сути на современные интегральные исчисления. Основным подходом для определения площади неровных фигур тогда был «Метод исчерпывания», который достаточно лёгок для понимания.
Суть метода. В данную фигуру вписывается монотонная последовательность других фигур, а затем вычисляется предел последовательности их площадей. Этот предел и принимался за площадь данной фигуры.
В этом методе легко прослеживается идея интегрального исчисления, которая заключается в нахождении предела бесконечной суммы. В дальнейшем эта идея применялась учёными для решения прикладных задач астронавтики, экономики, механики и др.
Современный интеграл. Классическая теория интегрирования была сформулирована в общем виде Ньютоном и Лейбницем. Она опиралась на существовавшие тогда законы дифференциального исчисления. Для её понимания, необходимо иметь некоторые базовые знания, которые помогут математическим языком описать визуальные и интуитивные представления об интегралах.
Объясняем понятие «Интеграл»
Процесс нахождения производной называется дифференцированием, а нахождение первообразной – интегрированием. Интеграл математическим языком – это первообразная функции (то, что было до производной) + константа «C».
Интеграл простыми словами – это площадь криволинейной фигуры. Неопределенный интеграл – вся площадь. Определенный интеграл – площадь в заданном участке.
Интеграл записывается так:
Каждая подынтегральная функция умножается на компонент «dx». Он показывает, по какой переменной осуществляется интегрирование. «dx» – это приращение аргумента. Вместо X может быть любой другой аргумент, например t (время).
Неопределённый интеграл
Определённый интеграл
В определенном интеграле на знаке интегрирования пишут ограничения «a» и «b». Они указаны на оси X в графике ниже.
Для вычисления определенного интеграла необходимо найти первообразную, подставить в неё значения «a» и «b» и найти разность. В математике это называется формулой Ньютона-Лейбница:
Таблица интегралов для студентов (основные формулы)
Как вычислять интеграл правильно
Существует несколько простейших операций для преобразования интегралов. Вот основные из них:
Вынесение константы из-под знака интеграла
Разложение интеграла суммы на сумму интегралов
Если поменять местами a и b, знак изменится
Можно разбить интеграл на промежутки следующим образом
Это простейшие свойства, на основе которых потом будут формулироваться более сложные теоремы и методы исчисления.
Примеры вычисления интегралов
Когда нет времени!
Помощь в написании работы от 1 дня. Гарантируем сдачу работу к сроку без плагиата, только авторский текст. Оформление + сопровождеие в подарок!
Узнать стоимость Список услуг Задать вопрос
Решение неопределенного интеграла
Решение определенного интеграла
Базовые понятия для понимания темы
Чтобы вы поняли суть интегрирования и не закрыли страницу от непонимания, мы объясним ряд базовых понятий. Что такое функция, производная, предел и первообразная.
Функция – правило, по которому все элементы из одного множества соотносятся со всеми элементами из другого.
Производная – функция, описывающая скорость изменения другой функции в каждой конкретной точке. Если говорить строгим языком, – это предел отношения приращения функции к приращению аргумента. Он вычисляется вручную, но проще использовать таблицу производных, в которой собрано большинство стандартных функций.
Приращение – количественное изменение функции при некотором изменении аргумента.
Предел – величина, к которой стремиться значение функции, при стремлении аргумента к определённому значению.
Пример предела: допустим при X равном 1, Y будет равно 2. Но что, если X не равен 1, а стремится к 1, то есть никогда её не достигает? В этом случае y никогда не достигнет 2, а будет только стремиться к этой величине. На математическом языке это записывается так: limY(X), при X –> 1 = 2. Читается: предел функции Y(X), при x стремящемся к 1, равен 2.
Как уже было сказано, производная – это функция, описывающая другую функцию. Изначальная функция может быть производной для какой-либо другой функции. Эта другая функция называется первообразной.
Заключение
Найти интегралы не трудно. Если вы не поняли, как это делать, прочитайте статью еще раз. Со второго раза становится понятнее. Запомните! Решение интегралов сводится к простым преобразованиям подынтегральной функции и поиска её в таблице интегралов.
Значение слова «интеграл»
[От лат. integer — целый]
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
ИНТЕГРА’Л, а, м. [от латин. integer — целый] (мат.). Конечная измеримая величина в отношении к бесконечно малой части ее — к диференциалу.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
интегра́л
1. матем. величина, рассматриваемая как сумма своих бесконечно малых частей
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова забойный (прилагательное):
Ассоциации к слову «интеграл»
Синонимы к слову «интеграл»
Предложения со словом «интеграл»
Цитаты из русской классики со словом «интеграл»
Сочетаемость слова «интеграл»
Каким бывает «интеграл»
Понятия со словом «интеграл»
Отправить комментарий
Дополнительно
Предложения со словом «интеграл»
На стене появилась дверь с изогнутой, подобно знаку интеграла, ручкой.
При использовании интегрального метода изменение выручки от продаж можно представить как сумму двух интегралов.
Эпсилон, стремящийся к бесконечности, производные, программный код, который считает интеграл…
Синонимы к слову «интеграл»
Ассоциации к слову «интеграл»
Сочетаемость слова «интеграл»
Каким бывает «интеграл»
Морфология
Правописание
Карта слов и выражений русского языка
Онлайн-тезаурус с возможностью поиска ассоциаций, синонимов, контекстных связей и примеров предложений к словам и выражениям русского языка.
Справочная информация по склонению имён существительных и прилагательных, спряжению глаголов, а также морфемному строению слов.
Сайт оснащён мощной системой поиска с поддержкой русской морфологии.
Значение слова интеграл
Словарь Ушакова
Этимологический Словарь Русского Языка
Латинское – integralis, integer (целый, полный).
В русском языке слово «интеграл» как математический термин появилось в 50–70-х гг. XVIII в. из французского языка. Впервые его ввел в обиход швейцарский математик Я. Бернулли, опираясь на латинское существительное.
Производные: интегральный, интегрировать, интеграция.
Энциклопедический словарь
Словарь Ожегова
ИНТЕГРАЛ [ тэ ], а, м. В математике: величина, получающаяся в результате действия, обратного дифференцированию.
| прил. интегральный, ая, ое. Интегральное исчисление.
Словарь Ефремовой
м.
Целая величина, рассматриваемая как сумма своих бесконечно малых частей.
Толковый словарь живого великорусского языка, Даль Владимир
м. математ. лат. конечная, измеримая величина, в отношении к бесконечно малой части ее, к дифференциалу. Интегральное вычисление, искусство отыскивать интеграл по дифференциалу. Интегрировать, вычислять, находить интеграл; интеграция ж. действие это.
Большая Советская Энциклопедия
Что такое интеграл и зачем мне знать это
Игорь Гладкобородов
IMAGE 1287 NOT FOUND
Представьте, что у нас есть какая-то функция зависимости чего-то от чего-то.
Например, вот так примерно можно на графике представить скорость моей работы в зависимости от времени суток:
Скорость я измеряю в строках кода в минуту, в реальной жизни я программист.
Объем работы — это скорость работы умножить на время. То есть если я пишу 3 строки в минуту, то в час получается 180. Если у нас есть такой график, можно узнать, сколько работы я сделал за день: это площадь под графиком. Но как это посчитать?
Разделим график на столбики равной ширины величиной в час. А высоту этих столбиков сделаем равной скорости работы в середине этого часа.
Площадь каждого столбика по отдельности легко посчитать, надо умножить его ширину на высоту. Получается, что площадь каждого столбика — это сколько примерно я работы сделал за каждый час. А если просуммировать все столбики, то получится примерная моя работа за день.
Проблема в том, что результат получится примерный, а нам нужно точное число. Разобьем график на столбики по полчаса:
На картинке видно, что это уже гораздо ближе к тому, что мы ищем.
Так уменьшать отрезки на графике можно до бесконечности, и каждый раз мы все ближе и ближе будем подходить к площади под графиком. А когда ширина столбиков будет стремиться к нулю, тогда сумма их площадей будет стремиться к площади под графиком. Это и называется интегралом и обозначается вот так:
В этой формуле f(x) означает функцию, которая зависит от величины x, а буквы a и b — это отрезок на котором мы хотим найти интеграл.
Зачем это нужно?
Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл — это один из основных инструментов работы с функциями.
Например, если у нас есть формула круга, мы можем при помощи интеграла посчитать его площадь. Если у нас есть формула шара, то мы можем посчитать его объем. При помощи интегрирования находят энергию, работу, давление, массу, электрический заряд и многие другие величины.
Нет, зачем мне это нужно?
Да низачем — просто так, из любопытства. На самом деле интегралы входят даже в школьную программу, но не так много людей вокруг помнят, что это такое.
Решение интегралов
Время чтения: 16 минут
Практическое применение интегралов в жизни
Реальный мир не идеален и не прямолинеен. В нем нет геометрических форм без изъяна, нет движения без ускорения. И зависимости между величинами редко представлены прямой линией. Поэтому вычисления не обходятся без интегралов.
Интеграл — важнейшее понятие математики. Связано с необходимостью отыскивать функции по их производным и измерять объемы и площади, работу сил за какой-либо промежуток времени.
Множество частных случаев из жизни делают интегрирование не просто полезным, а необходимым действием. Интеграл поможет:
Место интегралам нашлось не только в физико-математических науках, но и в астрономии, экономике, медицине, биологии и архитектуре.
Понимая практическую значимость интегралов, легче усвоить базовые понятия и применять их в решении задач.
Из истории интегрирования
Интегрирование рассматривается, как сложение бесконечно малых частей бесконечное количество раз.
Интегральный расчет получен при определении площадей и объемов. Правила измерения квадратуры были известны древним ученым. В Египте и Вавилоне вычисляли площади круга и объем усеченной пирамиды.
Значительный вклад внесли древнегреческие ученые. Первый метод интегрирования назвали «исчерпание» по аналогии с водой, которую черпают кружкой из ведра. В Древней Греции Архимед объяснил задачу вычисления площади круга без знаний о числе «Пи».
Описание метода
Для нахождения площади круга в него вписываются геометрические фигуры. Высчитывается предел последовательности площадей этих фигур, который и принимается за площадь круга.
Данный способ вычисления площади рассматривает идею интегрирования. То есть нахождения предела безграничной суммы. Метод нашел применение в решении прикладных задач в разных научных областях.
Ньютон и Лейбниц сформулировали теорию интегрирования опираясь на законы дифференциального исчисления. Чтобы разобраться в классической теории нужно получить базовые знания.
Смысл интегрирования заключается в двух видах задач: геометрических и аналитико-алгебраических. В первом случае находят площади фигур, во втором подсчитывают суммарное значение переменной величины, принимающей различные значение единиц времени, длины и других измерений.
Понятие «Интеграл» в простом изложении
Термин «интеграл» произошел от латинского integer, то есть «целостный». Данный термин предложил математик Лейбниц еще в 17 веке.
Интеграл – это сложение маленьких частей и даже обозначение ∫ представляет собой вытянутую s, что означает сумму.
Интеграл – первообразная функции. Интегрирование – определение первообразной.
В математике интеграл вычисляет площадь, ограниченную кривой линией. Неопределенный интеграл – это вся фигура. Определенный интеграл – площадь некоторой части.
Запись интеграла функции:
х – аргумент, его можно заменить любой другой переменной, в отношении которой будет осуществляться интегрирование. d – бесконечно малое число. Сочетание «dx» называют приращением и рассматривают, как бесконечно малый «икс».
На рисунке криволинейная трапеция разбита на столбцы шириной х, число столбцов – d.
Неопределённый интеграл
Неопределенный интеграл – это сумма всех первообразных данной функции, которая не имеет границ интегрирования.
Сумма F(x)+C всех первоначальных функций f(x) на интервале а
Определенные интегралы выражают площадь плоской фигуры, длину кривой, объем и поверхность тела, координаты центра тяжести, инерцию, работу.
Чтобы найти определенный интеграл, нужно вычислить первообразную, заменить значения «a» и «b» и посчитать разность. Связь между первообразной функцией и определенным интегралом выражает формула интеграла, Ньютона-Лейбница:
Таблица первообразных для решения интегралов.
Рассмотрим таблицу интегралов:
Правильное вычисление интегралов
Решение заданий с интегралом сводится к интегрированию функции по переменной. Когда интеграл имеет табличный вид, для решения нужна лишь таблица интегралов. В иных случаях необходимо упростить выражение, привести к табличной форме.
Прежде, чем приступить к преобразованию выражений с интегралами следует выучить основные свойства интегралов:
Простые способы преобразования выражений с интегралами помогут разобраться с более сложными теоремами и вычислениями интеграла:
Вынесение константы из-под знака интеграла:
Разложение на сумму интегралов суммы интеграла:
Знак интеграла изменится, при подмене а на b и b на а.
Разбиение интеграла на промежутки:
Нет времени решать самому?
Наши эксперты помогут!
Примеры вычисления интегралов
Найти неопределенный интеграл.
Часто при решении используют тригонометрические формулы.
Решение определенного интеграла.
Давайте рассмотрим несколько примеров вычисления интегралов:
Пример 1.
Пример 2.
Словарь базовых понятий.
Для понимания сути интеграла необходимо разбираться в базовых понятиях: функция, производная, приращение, предел.
Функция – отношение между элементами, где изменение одного элемента, повлечёт изменение другого.
Производная – функция, которая описывает скорость трансформации второй функции в каждой данной точке. Вторая функция называется первообразной. По сути — это предел отношения приращения функции к приращению аргумента. Высчитывание проводят, используя таблицу производных со стандартными функциями.
Приращение – количественная степень изменения функции при вероятном изменении аргумента.
Предел – величина, к которой стремится значение функции, при стремлении аргумента к определённому значению.
Решение задач с интегралами могут показаться сложными. Выполнение практических заданий поможет преодолеть трудности.
Решение интегралов сводится к простым видоизменениям подынтегральной функции и поиску её в таблице интегралов.
Мы также можем отметить, что интегралы играют не последнюю роль в нашей жизни. В Биологических науках, к примеру, при их помощи узнают прирост популяции видов, в медицине используют в различных исследованиях, например, в томографии, в астрономии рассчитывают передвижение космических объектов и многое другое. Да и вообще трудно найти область, в которой не применяются данные методы вычисления.
Виды интегралов
Неопределенные и определенные интегралы
Неопределенный интеграл представляет собой совокупность всех первообразных \(\ F(x)+C \) некоторой функции \(\ f(x) \) :
Подробнее о неопределенных интегралах по ссылке.
Определенный интеграл функции \(\ f(x) \) на отрезке \(\ [a ; b] \) является пределом интегральных сумм, когда диаметр разбиения стремится к нулю, если он существует независимо от разбиения и выбора точек внутри элементарных отрезков:
Собственные и неправильные интегралы
Собственный интеграл является определенным интегралом, для которого как подынтегральная функция, так и область интегрирования ограничены.
Неправильный интеграл является определенным интегралом, для которого либо подынтегральное выражение неограниченно, либо область интегрирования, либо и то, и другое.
Сходящиеся и расходящиеся интегралы
В противном случае несобственный интеграл первого рода называется расходящимся.
Если предел \(\ \lim _ <\varepsilon \rightarrow 0+0>\int_^ f(x) d x \) конечен, то несобственный интеграл первого рода называется сходящимся.
Если предел не существует или бесконечен, то несобственный интеграл второго рода называется расходящимся.
Множественный или множественный интеграл представляет собой набор интегралов, взятых из \(\ n>1 \) переменных:
\(\ \underbrace<\int_
Например: \(\ \int_<-3>^ <1>\int_<0>^ <4>\int_<5>^<6>(x+y+z) d x d y d z \)
Криволинейные и поверхностные интегралы
Например. \(\ \int_
Например: \(\ f(x ; y 😉 \)
Подробнее о криволинейных интегралах по ссылке.
Поверхностный интеграл первого вида функции \(\ \iint_ f(x ; y ; z) d S \) над некоторой поверхностью \(\ s \) называется интегралом \(\ \iint_(x+y+z) d S \)
Поверхностный интеграл второго рода на неподвижной стороне двухсторонней поверхности \(\ \mathrm \) является интегралом вида \(\ \iint_ P(x ; y ; z) d y d z+Q(x ; y ; z) d x d z+R(x ; y ; z) d x d y \)
Алгебра
План урока:
Понятие первообразной
Однако на практике значительно чаще встречается прямо противоположная задача. Известно, как меняется скорость тела, и найти требуется путь, пройденный им. В таком случае необходимо по производной определить ту функцию, которая «подверглась» дифференцированию.
Задание. Известна производная функции у(х):
В этом примере мы выполнили операцию, обратную дифференцированию. В математическом анализе он называется интегрированием. Если интегрируют некоторую произвольную функцию f(х), то в итоге получают новую функцию, которую чаще всего обозначают как F(x). Её называют первообразной функции f(x).
Приведем несколько примеров первообразной:
Последний пример показывает, что иногда первообразная может и совпадать с исходной функцией.
Задание. Докажите, что функция
Первообразные встречаются и в ряде практических задач, особенно в тех, где рассматривается движение тел.
Задание. Автомобиль Buggati Veyron разгоняется от 0 до 40 м/с за 4 секунды. Какое расстояние проедет эта машина за эти 4 секунды, если разгон осуществляется равномерно?
Решение: Если за 4 секунды машина разгоняется до 30 м/с, то за одну секунду она увеличивает скорость на
Примечание – в будущем мы научимся более строго решать такие задачи, и «угадывать» подходящую первообразную не придётся.
Бесконечное количество первообразных
Оказывается, что g1 также является первообразной для у. То есть у одной функции у = 4х 3 есть сразу две первообразных:g = x 4 и g = x 4 + 1! Более того, можно доказать, что у любой функции есть бесконечное количество первообразных!
Действительно, рассмотрим сразу все функции
где С – некоторая константа, то есть параметр. В данном случае можно сказать, что мы рассматриваем не одну функцию, а семейство функций. Продифференцируем g:
Данная особенность операции интегрирования может быть сформулирована в виде следующей теоремы:
Можно дать и графическую иллюстрацию этого правила. Построим произвольный график g = F(x). Далее построим ещё один график
Очевидно, что он может быть получен параллельным переносом первого графика на С единиц вверх:
Теперь в какой-нибудь точке х0 проведем касательные к обоим графикам первообразных. Очевидно, что они будут иметь одинаковый угол наклона, так как по сути тоже могут быть получены параллельным переносом:
Если же углы наклона касательных совпадают, то и производные в этих точках также равны.
В связи с наличием у каждой функции бесконечного количества первообразных их часто записывают в общем виде. Например, пусть надо записать первообразную для
Однако 2х 2 – это лишь одна из бесконечного множества первообразных. Все вместе они образуют семейство, которое записывается так:
Неопределенный интеграл
Каждая математическая операция имеет какое-то особое обозначение. Например, чтобы показать, что мы дифференцируем некоторую функцию, мы ставим после неё штрих (и при необходимости берем в скобки):
Напомним, что операция нахождения первообразной называется интегрированием. Для ее обозначения используется особый знак – интеграл. Например, мы знаем, что первообразная для у = х 2 – это семейство функций вида
Рассмотрим элементы записанного нами равенства:
Исходная функция – это та самая функция, для которой необходимо найти первообразную, то есть интегрируемая функция. Справа от знака «равно» как раз записывается первообразная. Сразу после первообразной надо писать «+ С». Тем самым мы показываем, что у интегрируемой функции есть бесконечное количество первообразных.
После интегрируемой функции стоит так называемый дифференциал dх (читается как «дэ икс»). В данном случае он указывает, что именно буквой х мы обозначаем переменную в интегрируемой функции. Его значение мы разберем несколько позже. Пока что надо запомнить, что после интегрируемой функции необходимо писать «dx». В целом вся запись
читается так: «интеграл от два икс по дэ икс равен икс в квадрате плюс цэ».
В чем разница между первообразной и интегралом? Первообразная – это функция, при дифференцировании которой получается исходная функция. Интеграл же – это не функция, а целое семейство функций (или их множество), которое включает в себя сразу все первообразные интегрируемой функции.
Так как интегрирование – это действие, обратное дифференцированию, то мы можем проверить результат своих вычислений. Пусть мы записали, что
Получили подынтегральное выражение. Значит, мы всё сделали правильно.
Здесь важно заметить, что в математике существует сразу несколько видов интегралов, каждый из которых имеет разное определение. Здесь описан так называемый «неопределенный интеграл». Несложно догадаться, что существует ещё и «определенный интеграл», который мы рассмотрим на следующих уроках. Теперь можно дать следующее определение:
Задание. Найдите неопределенный интеграл
Решение. Вспомним таблицу производных элементарных функций. Производная синуса равна косинусу:
Заметим, что непосредственно из определения следует важное свойство неопределенного интеграла – производная интеграла равна его подынтегральному выражению:
Грубо говоря, операции интегрирования дифференцирования «сокращают» друг друга.
Задание. Вычислите производную:
Таблица первообразных
Как же вычислять интегралы? Проще всего начать с тех функций, которые уже есть в таблице производных. Напомним, как она выглядит:
Из определения первообразной следует, что для тех функций, которые указаны во втором столбце таблицы, одной из первообразных является соответствующая функция из первого столбца. То есть можно составить такую таблицу первообразных:
Обратите внимание на третью строку снизу. Здесь произошло небольшое изменение – вместо первообразной lnx мы записали ln |x|, то есть использовали модуль числа. Дело в том, что функция
определена при любом значении аргумента, кроме нуля. В то же время функция
не определена при отрицательных значениях х, так как под знаком логарифма не может стоять отрицательное число. Однако области определения интегрируемой функции и ее первообразной должны совпадать. Использование модуля обеспечивает выполнение этого условия.
Полученная нами таблица интегралов не совсем удобна. Предположим, нам надо проинтегрировать функцию
Однако можно догадаться, что в качестве подходящей первообразной можно взять функцию
В связи с этим есть смысл немного подкорректировать таблицу первообразных таким образом, чтобы в первом столбце стояли стандартные функции без неудобных множителей. В результате таблица примет следующий вид:
Можно доказать, что каждое равенство в третьем столбце является справедливым. Возьмем, например, равенство
Получили подынтегральное выражение, а это значит, что равенство справедливо. Таким же образом можно доказать и все остальные равенства в таблице.
Задание. Вычислите неопределенный интеграл:
Решение. Этот интеграл присутствует в таблице (7-ая строка), а потому мы просто переписываем равенство из неё:
Задание. Найдите первообразную функции
Правила вычисления интегралов
Что делать в том случае, если надо вычислить интеграл, которого нет в таблице? Существует три несложных правила интегрирования, которые могут помочь в такой ситуации.
Докажем это правило. Для этого просто продифференцируем правую часть равенства:
Получили именно то выражение, которое стоит под знаком интеграла в левой части равенства. Это значит, что формула справедлива.
Рассмотрим пример использования этого правила. Пусть надо найти первообразную функции
Здесь мы представили исходный интеграл как сумму двух более простых интегралов, которые являются табличными
Обратите внимание, что мы не стали складывать константы интегрирования С как подобные слагаемые и писать 2С. Дело в том, что С – это некоторое произвольное число. Но если сложить два произвольных числа, то в итоге получится третье произвольное число, которое также будет обозначаться как С! Поэтому обычно константу С просто дописывают в самом конце решаемого примера.
Естественно, что правило сложения интегралов работает и в случае суммы не двух, а большего количества слагаемых.
Задание. Вычислите неопределенный интеграл
Возможна ситуация, когда мы не уверены в правильности полученного решения. В таком случае можно легко проверить себя, просто продифференцировав получившийся интеграл. В итоге мы должны получить исходную функцию (подынтегральное выражение):
Следующее правило позволяет выносить множитель из-под знака интеграла.
Для доказательства тождества снова продифференцируем его левую часть:
Получили как раз то выражение, которое стоит под интегралом справа. Следовательно, формула верна.
Рассмотрим несколько простейших примеров использования этого метода интегрирования неопределенных интегралов:
Естественно, что правила 1 и 2 можно комбинировать друг с другом, решая более сложные примеры.
Задание. Вычислите неопределенный интеграл от квадратичной функции
Первые два правила достаточно просты и напоминают аналогичные правила дифференцирования. А вот третий метод вычисления неопределенного интеграла более сложный.
Проиллюстрируем его на примере. Пусть надо найти первообразную для функции
Но в нашем случае под знаком косинуса стоит не х, а выражение 5х + 7, являющееся линейной функцией. Поэтому, согласно правилу, мы должны написать впервообразной не sinx, а sin (5x + 7), то есть изменить аргумент. Также надо добавить перед синусом «поправочный множитель», равный 1/k, то есть в нашем случае 1/5:
Проверим себя. Продифференцируем получившуюся первообразную. При этом мы используем правило дифференцирования сложной функции:
Получили ту самую функцию, которую и надо было проинтегрировать.
Приведем ещё несколько примеров использования правила 3:
Напомним, что при изучении производной мы познакомились также с правилами дифференцирования произведения, дроби и сложной функции. Используя их, мы могли найти производную для почти любой функции, которую только могли записать. С решением неопределенных интегралов ситуация значительно сложнее. С помощью приведенных трех правил не получится вычислить такие интегралы, как
Более того, в записанной нами таблице интегралов отсутствует ряд элементарных функций, поэтому мы не сможем даже проинтегрировать такую простую функцию, как
Дело в том, что задача интегрирования является значительно более сложной, чем задача дифференцирования. Отметим три момента. Во-первых, в нашей школьной таблице интегралов, содержащей всего 11 формул, указаны лишь самые простые элементарные функции. Существуют справочники, где в качестве табличных указаны интегралы десятков, а то и сотен функций. Во-вторых, есть и более сложные правила интегрирования, которые изучаются уже в институте. В-третьих, существуют такие элементарные функции, первообразную которых в принципе невозможно записать, используя элементарные функции (синус, косинус, логарифм и т.п.). В связи с этим приходится вводить в рассмотрение новые специальные функции, а также использовать приближенные методы вычислений.
Физический смысл неопределенного интеграла
Напомним физический смысл производной – если известен закон движения материальной точки, то есть некоторая функция S(t), то производная этого закона будет выражать скорость тела в момент времени t:
Отсюда прямо вытекает физический смысл первообразной. Если известен закон изменения скорости v(t), то его первообразная будет являться законом движения S(t). Точнее говоря, законом движения будет являться только одна из первообразных, так как их существует бесконечно много.
Задача. Скорость тела в произвольный момент времени t может быть вычислена по закону
Найдите закон движения материальной точки S(t). Известно, что в начальный момент времени тело находилось в точке с координатой 1,5, то есть S(0) = 1,5.
Решение. Нам надо просто проинтегрировать функцию v(t):
Интеграл вычислен, но это ещё не закон движения, ведь в нем присутствует константа интегрирования. Как от неё избавиться? Надо использовать условие, согласно которому S(0) = 1,5. В общем виде закон движения имеет вид
Мы нашли конкретное значение константы интегрирования. С учетом этого закон движения (1) примет вид: