исходные множества в n арном отношении r называются

Тест по реляционной алгебре

Тест по реляционной алгебре. Полезен при изучении темы «Реляционная модель данных. Реляционная алгебра «. Данный тест может быть использован для проверки знаний студентов по данной теме.

Просмотр содержимого документа
«Тест по реляционной алгебре»

Тема: «Реляционная модель и реляционная алгебра»

1. Основные понятия и ограничения реляционной модели впервые сформулировал

(Отметьте один правильный вариант ответа.)

2. Исходные множества в N-арном отношении R называются

(Отметьте один правильный вариант ответа.)

3. Вхождение домена в отношение называется

(Отметьте один правильный вариант ответа.)

4. Два отношения, отличающиеся только порядком строк или порядком столбцов, интерпретируются в рамках реляционной модели как

(Отметьте один правильный вариант ответа.)

5. Схемы двух отношений называются эквивалентными, если

(Ответ считается верным, если отмечены все правильные варианты ответов.)

6. Алгеброй называется

(Отметьте один правильный вариант ответа.)

7. Объединением двух отношений называется отношение, содержащее множество кортежей, принадлежащих

(Ответ считается верным, если отмечены все правильные варианты ответов.)

8. Операция расширенного декартова произведения является

(Отметьте один правильный вариант ответа.)

9. Операция ограничения отношений носит также название

(Ответ считается верным, если отмечены все правильные варианты ответов.)

10. Операция деления применяется в случаях, когда

(Отметьте один правильный вариант ответа.)

11. Операции объединения и пересечения являются

(Отметьте один правильный вариант ответа.)

Источник

Тест по реляционной алгебре

Тест по реляционной алгебре. Полезен при изучении темы «Реляционная модель данных. Реляционная алгебра «. Данный тест может быть использован для проверки знаний студентов по данной теме.

Просмотр содержимого документа
«Тест по реляционной алгебре»

Тема: «Реляционная модель и реляционная алгебра»

1. Основные понятия и ограничения реляционной модели впервые сформулировал

(Отметьте один правильный вариант ответа.)

2. Исходные множества в N-арном отношении R называются

(Отметьте один правильный вариант ответа.)

3. Вхождение домена в отношение называется

(Отметьте один правильный вариант ответа.)

4. Два отношения, отличающиеся только порядком строк или порядком столбцов, интерпретируются в рамках реляционной модели как

(Отметьте один правильный вариант ответа.)

5. Схемы двух отношений называются эквивалентными, если

(Ответ считается верным, если отмечены все правильные варианты ответов.)

6. Алгеброй называется

(Отметьте один правильный вариант ответа.)

7. Объединением двух отношений называется отношение, содержащее множество кортежей, принадлежащих

(Ответ считается верным, если отмечены все правильные варианты ответов.)

8. Операция расширенного декартова произведения является

(Отметьте один правильный вариант ответа.)

9. Операция ограничения отношений носит также название

(Ответ считается верным, если отмечены все правильные варианты ответов.)

10. Операция деления применяется в случаях, когда

(Отметьте один правильный вариант ответа.)

11. Операции объединения и пересечения являются

(Отметьте один правильный вариант ответа.)

Источник

Реляционная модель данных

Основные определения

Теоретической основой этой модели стала теория отношений, основу которой заложили два логика — американец Чарльз Содерс Пирс (1839-1914) и немец Эрнст Шредер (1841-1902). В руководствах по теории отношений было показано, что множество отношений замкнуто относительно некоторых специальных операций, то есть образует вместе с этими операциями абстрактную алгебру. Это важнейшее свойство отношений было использовано в реляционной модели для разработки языка манипулирования данными, связанного с исходной алгеброй. Американский математик Э. Ф. Кодд в 1970 году впервые сформулировал основные понятия и ограничения реляционной модели, ограничив набор операций в ней семью основными и одной дополнительной операцией. Предложения Кодда были настолько эффективны для систем баз данных, что за эту модель он был удостоен престижной премии Тьюринга в области теоретических основ вычислительной техники.

исходные множества в n арном отношении r называются

Полное декартово произведение — это набор всевозможных сочетаний из n элементов каждое, где каждый элемент берется из своего домена. Например, имеем три домена: D1 содержит три фамилии, D2 — набор из двух учебных дисциплин и D3 — набор из трех оценок. Допустим, содержимое доменов следующее:

Тогда полное декартово произведение содержит набор из 18 троек, где первый элемент — это одна из фамилий, второй — это название одной из учебных дисциплин, а третий — одна из оценок.

Отношение R моделирует реальную ситуацию и оно может содержать, допустим, только 5 строк, которые соответствуют результатам сессии (Крылов экзамен по «Базам данных» еще не сдавал):

R
ФамилияДисциплинаОценка
ИвановТеория автоматов4
ИвановБазы данных3
КрыловТеория автоматов5
СтепановТеория автоматов5
СтепановБазы данных4

Данная таблица обладает рядом специфических свойств:

Вхождение домена в отношение принято называть атрибутом. Строки отношения называются кортежами.

Количество атрибутов в отношении называется степенью, или рангом, отношения.

R1
ДисциплинаФамилияОценка
Теория автоматовКрылов5
Теория автоматовСтепанов5
Теория автоматовИванов4
Базы данныхИванов3
Базы данныхСтепанов4

Любое отношение является динамической моделью некоторого реального объекта внешнего мира. Поэтому вводится понятие экземпляра отношения, которое отражает состояние данного объекта в текущий момент времени, и понятие схемы отношения, которая определяет структуру отношения.

Схемой отношения R называется перечень имен атрибутов данного отношения с указанием домена, к которому они относятся:

исходные множества в n арном отношении r называются.

Схемы двух отношений называются эквивалентными,если они имеют одинаковую степень и возможно такое упорядочение имен атрибутов в схемах, что на одинаковых местах будут находиться сравнимые атрибуты, то есть атрибуты, принимающие значения из одного домена.

SR2 = (Bi1, Bi2. Bin) — схема отношения R2 после упорядочения имен атрибутов.

исходные множества в n арном отношении r называются

Как уже говорилось ранее, реляционная модель представляет базу данных в виде множества взаимосвязанных отношений. В отличие от теоретико- графовых моделей в реляционной модели связи между отношениями поддерживаются неявным образом. Какие же связи между отношениями поддерживаются в реляционной модели? В этой модели, так же как и в остальных, поддерживаются иерархические связи между отношениями. В каждой связи одно отношение может выступать как основное, а другое отношение выступает в роли подчиненного. Это означает, что один кортеж основного отношения может быть связан с несколькими кортежами подчиненного отношения. Для поддержки этих связей оба отношения должны содержать наборы атрибутов, по которым они связаны. В основном отношении это первичный ключ отношения ( PRIMARY KEY ), который однозначно определяет кортеж основного отношения. В подчиненном отношении для моделирования связи должен присутствовать набор атрибутов, соответствующий первичному ключу основного отношения. Однако здесь этот набор атрибутов уже является вторичным ключом, то есть он определяет множество кортежей подчиненного отношения, которые связаны с единственным кортежем основного отношения. Данный набор атрибутов в подчиненном отношении принято называть внешним ключом ( FOREIGN KEY ).

исходные множества в n арном отношении r называются

PRIMARY KEY отношения Сотрудник атрибут Паспорт является FOREIGN KEY для отношения «карьера».

Источник

N-арные отношения (отношения степени n)

исходные множества в n арном отношении r называются исходные множества в n арном отношении r называются исходные множества в n арном отношении r называются исходные множества в n арном отношении r называются

исходные множества в n арном отношении r называются

исходные множества в n арном отношении r называются

Таблица 2 Таблица фактов

Таблица 1. Матрица взаимоотношений

Рисунок 1 Граф взаимоотношений

Способ 3. При помощи матрицы взаимоотношений:

Способ 4. При помощи таблицы фактов:

Кто любитКого любят
ВовочкаВовочка
ПетяМаша
МашаПетя
МашаМаша
ЛенаПетя

Что касается предиката данного отношения, то он имеет следующий вид (дизъюнктивная нормальная форма):

Замечание. Приведенное отношение не является ни транзитивным, ни симметричным или антисимметричным, ни рефлексивным, поэтому оно не является ни отношением эквивалентности, ни отношением порядка, ни каким-либо другим разумным отношением.

Замечание. Большая часть мировой литературы существует и имеет смысл лишь постольку, поскольку бинарное отношение «любить» не является отношением эквивалентности. В частности, по этой причине человечество не разбивается на классы эквивалентности взаимно любящих особей. Изучением характеристик данного отношения и соответствующего ему предиката занималось (и продолжает заниматься) большое количество экспертов, таких как Толстой Л.Н., Шекспир В. и др.

В математике n-арные отношения рассматриваются относительно редко, в отличие от баз данных, где наиболее важными являются именно отношения, заданные на декартовом произведении более чем двух множеств.

Пример 6. В некотором университете на математическом факультете учатся студенты Иванов, Петров и Сидоров. Лекции им читают преподаватели Пушников, Цыганов и Шарипов, причем известны следующие факты:

Для того чтобы формально описать данную ситуацию (например, в целях разработки информационной системы, учитывающей данные о ходе учебного процесса), введем три множества:

Для того чтобы отразить факты 1-3 (характеризующие преподавателей и читаемые ими лекции), введем отношение исходные множества в n арном отношении r называютсяна декартовом произведении исходные множества в n арном отношении r называются, где исходные множества в n арном отношении r называются— множество рациональных чисел. А именно, упорядоченная тройка исходные множества в n арном отношении r называютсятогда и только тогда, когда преподаватель исходные множества в n арном отношении r называютсячитает лекции по предмету исходные множества в n арном отношении r называютсяв количестве исходные множества в n арном отношении r называютсячасов в семестр. Назовем такое отношение «Читает лекции по…». Множество кортежей, образующих отношение исходные множества в n арном отношении r называютсяудобно представить в виде таблицы:

A (Преподаватель)B (Предмет)Q (Количество часов)
ПушниковАлгебра
ПушниковБазы данных
ЦыгановГеометрия
ШариповАлгебра
ШариповГеометрия

Таблица 3 Отношение «Читает лекции по…»

исходные множества в n арном отношении r называются

Для того чтобы отразить факты 4-6 (характеризующие посещение студентами лекций), введем отношение исходные множества в n арном отношении r называютсяна декартовом произведении исходные множества в n арном отношении r называются. Упорядоченная тройка исходные множества в n арном отношении r называютсятогда и только тогда, когда студент исходные множества в n арном отношении r называютсяпосещает лекции по предмету исходные множества в n арном отношении r называютсяу преподавателя исходные множества в n арном отношении r называются. Назовем это отношение «Посещать лекции». Его также представим в виде таблицы:

C (студент)B (предмет)A (Преподаватель)
ИвановАлгебраШарипов
ИвановБазы данныхПушников
ПетровАлгебраПушников
ПетровГеометрияЦыганов
СидоровГеометрияЦыганов
СидоровБазы данныхПушников

Таблица 4 Отношение «Посещать лекции»

Рассмотрим отношение R2 подробнее. Оно задано на декартовом произведении исходные множества в n арном отношении r называются. Это произведение, содержащее 3*3*3=27 кортежей, можно назвать «Студенты-Лекции-Преподаватели». Множество Ω представляет собой совокупность всех возможных вариантов посещения студентами лекций. Отношение же R2 показывает текущеесостояние учебного процесса. Очевидно, что отношение R2 является изменяемым во времени отношением.

Итак, факты о ходе учебного процесса удалось отразить в виде двух отношений третьей степени (3-арных), а сами отношения изобразить в виде таблиц с тремя колонками.

Удобство использования табличной формы для задания отношения определяется в данном случае следующими факторами:

Нас сейчас не интересует вопрос, хороши ли полученные отношения. Заметим пока только, что, как показывают следующие замечания, не любую строку можно добавить в таблицу «Посещать лекции».

Замечание. В таблицу «Посещать лекции» нельзя добавить две одинаковые строки, т.к. таблица изображает отношение R2, а в отношении (как и в любом множестве) не может быть двух одинаковых элементов. Это пример синтаксического ограничения – такое ограничение задано в определении понятия отношение (одинаковых строк не может быть ни в одной таблице, задающей отношение).

Замечание. В таблицу «Посещать лекции» нельзя добавить кортеж (Иванов, Геометрия, Пушников). Действительно, из таблицы «Читает лекции по…», представляющей отношение R1, следует, что Пушников не читает предмет «Геометрия». Оказалось, что таблицы связаны друг с другом, и существенным образом! Это пример семантического ограничения – такое ограничение является следствием нашей трактовки данных, хранящихся в отношении (следствием понимания смысладанных).

Источник

Отношения. Часть II

исходные множества в n арном отношении r называются

Формальная теория моделирования использует алгебраические отношения, включая их в сигнатуры моделей алгебраических структур, которыми описывает реальные физические, технические объекты и процессы их функционирования. Эта публикация является продолжением предшествующей, прочтение которой желательно, так как многие понятия и термины, используемые здесь, описываются там.

Предлагается изложение не в традиционном (стрелочном) стиле, а так, как мне самому пришлось всю эту кухню представлять и осваивать и по учебникам/пособиям, и по журнальным статьям. Особенно полезной вещью считаю созданный мной каталог, он позволяет выделить практически любое пространство и представить его элементы в удобном виде: матрицей, графом и др. Сразу видишь с чем имеешь дело и свойства (они уже выписаны) проверять часто не требуется.

Понятие отношения

Думаю, что термин отношение знаком каждому читателю, но просьба дать определение поставит большинство в тупик. Причин для этого много. Они чаще всего в преподавателях, которые, если и использовали отношения в процессе преподавания, внимания на этом термине не заостряли, запоминающихся примеров не приводили. Некоторые комментаторы статьи отнесли замечания на свой счет и насыпали минусов. Но шила в мешке не утаишь. Серьезных публикаций как не было, так и нет. Задайте себе вопрос, работали ли Вы с каким-либо пространством отношений? И честно себе ответьте. Что об этом пространстве можете миру поведать, для начала хотя-бы перечислить его элементы и указать свойства. Даже на СУБД Вы смотрите глазами их создателей, а они ведь тоже не все видят, или не все показывают, как, например, в микросхемах.

Здесь сделаю небольшой повтор. Начинать следует с абстрактного множества А =. О нем почитать можно здесь. Для лучшего понимания сократим множество до 3 элементов, т.е. А =. Теперь выполним декартово умножение А×А =А 2 и явно перечислим все элементы декартова квадрата
А×А=<(a1, a1),(a1, а2),(a1, a3),(a2, а1),(a2, a2),(a2, a3),(a3, a1),(a3, a2),(a3, a3)>.
Получили 9 упорядоченных пар элементов из А×А, в паре первый элемент из первого сомножителя, второй — из второго. Теперь попробуем получить все подмножества из декартова квадрата А×А. Подмножества будут содержать разное количество пар: одну, две, три и так до всех 9 пар, включаем в этот список и пустое множество ∅. Сколько же получилось подмножеств? Много, а именно 2 9 = 512 элементов.

Отношения можно задавать в разном представлении:

Пространства бинарных отношений

Пространством бинарных отношений с множеством-носителем называется произвольное подмножество множества бинарных отношений заданных на. Рассмотрим основные пространства для отношений предпочтений (рис. 2.15).

исходные множества в n арном отношении r называются

исходные множества в n арном отношении r называются

Рисунок 2.15 Схема пространств бинарных отношений

Выявленные связи между пространствами используются для переноса задач принятия решений (ЗПР) из одних пространств в другие, где они могут быть решены более простым путем, а затем полученное решение возвращают в исходное пространство, где была сформулирована ЗПР.
Эти отношения представлены диаграммой на рис. 2.14. Пространства бинарных отношений (типы отношений) представлены рис. 2.15.

Отношения эквивалентности

Определение. Бинарное отношение σ ⊆ А×А, обладающее тремя свойствами рефлексивности, симметричности, транзитивности, называется, бинарным отношением эквивалентности (БОЭ). Обозначается отношение эквивалентности σ(х, у), (х, у)∊σ, хσу, х≈у. Удобно использовать матричное (табличное) представление отношения. Ниже на рис 2.24 приведено как раз матричное представление. Над множеством из 4-х элементов существует 15 БОЭ, которые все изображены.

Представление и анализ структуры отношений эквивалентности (n = 4)
Эквивалентность из бинарных отношений, пожалуй, самое распространенное БО. Редкая наука обходится без этого понятия, но даже тогда, когда эквивалентности используются в изложении каких-либо вопросов, бывает трудно понять, что в виду имел автор. Даже при корректном определении и перечислении свойств, присущих этому бинарному отношению – трудности восприятия остаются.

Начнем с примера об эквивалентностях, который иллюстрирует ограниченность их количества.

Пример 1. Пусть имеется три кубика. Составим список свойств, которыми наделены кубики и практическое использование которых (свойств кубиков) делает их как бы взаимозаменяемыми. Кубикам присвоим номера, а их свойства представим таблицей 1.

исходные множества в n арном отношении r называются

По каждому из свойств возникает БОЭ и классы эквивалентности. Продолжая список свойств, мы новых отношений эквивалентности не получим. Будут только повторы уже построенных, но для других признаков. Покажем связь БОЭ с множествами.

Рассмотрим множество из трех элементов А = <1,2,3>и получим для него все возможные разбиения на все части. ①1|2|3; ②12|3; ③13|2; ④ 1|23; ⑤123. Последнее разбиения на одну часть. Номера разбиений и БО в кружках.

Определение. Разбиением множества А называют семейство Аi, i = 1(1)I, непустых попарно непересекающихся подмножеств из А, объединение которых образует все исходное множество А=UАi, Аi∩Аj =∅, ∀ i ≠ j. Под-множества Аi называют классами эквивалентности разбиения исходного множества.

Это все разбиения множества (5 штук). Анализ БО показывает, что различных отношений эквивалентности тоже только 5 штук. Случайно ли это совпадение? Мы можем каждому разбиению сопоставить матрицу из девяти ячеек (3×3 = 9), в каждой из которых либо размещается упорядоченная пара элементов из множества А, либо ячейка остается пустой, если для соответствующей пары нет объекта. Строки и столбцы матрицы размечаются элементами множества А, а пересечению строка – столбец соответствует упорядоченная пара (i, j). В ячейку матрицы вписывается не пара, а просто единица или нуль, впрочем, нуль часто не пишут совсем.

Нет, совпадение не случайное. Оказывается, каждому разбиению множества взаимно однозначно соответствует БОЭ, при этом мощность множества может быть любой |A| = n.

Это отношение едва ли не самое частое по использованию в научном обороте, но совокупность свойств, реализуемых в этом отношении, сильно ограничивает его распространенность.
Так среди всех абстрактных бинарных отношений над множеством из трех элементов (всего их 2 9 = 512 отношений) только пять являются эквивалентностями — носителями требуемых свойств, менее одного процента.

Для |A| = 4 отношений существует 2 16 = 65536, но эквивалентностей лишь 15 штук. Это весьма редкий тип отношений. С другой стороны, отношения эквивалентности широко распространены в прикладных задачах. Везде, где имеются и рассматриваются множества самых различных объектов и различные разбиения таких множеств (не чисел) на части возникают отношения эквивалентности. Их можно назвать математическими (алгебраическими) моделями таких разбиений, классифицирующими множества объектов по различным признакам.

Решетка Р(4): все разбиения множества А = =

исходные множества в n арном отношении r называются

Минимальному разбиению соответствует отношение эквивалентности П15, которое называется равенством или единичным отношением. В каждом классе эквивалентности — единственный элемент. Разбиению множества А, включающему лишь само множество А, соответствует отношение эквивалентности, содержащее все элементы декартова квадрата А×А.

исходные множества в n арном отношении r называются

Ближайший тип к отношениям эквивалентности – отношения толерантности. Множество отношений толерантности содержит в себе все отношения эквивалентности. Для носителя А из трех элементов толерантностей 8. Все они обладают свойствами рефлексивности и симметричности.

При выполнении свойства транзитивности пять из восьми толерантностей преобразует в эквивалентности (рис. 2.24 и 2.25).

Определение. Совокупность классов [a]σ эквивалентности элементов множества А называется фактор-множеством (обозначается А/σ) множества А по эквивалентности σ.

Определение. Естественным (каноническим) отображением f: A→ А/σ называется такое отображение f, при котором f(а) = [a]σ.

Отношения толерантности и их анализ

Об этих БО ранее уже упоминалось, а здесь рассмотрим их подробнее. Всем известны понятия сходство, похожесть, одинаковость, неразличимость, взаимозаменяемость объектов. Они кажутся близкими по содержанию, но при этом не одно и то же. Когда для объектов указано только сходство, то невозможно разбить их на четкие классы так, что внутри класса объекты похожи, а между объектами разных классов сходства нет. В случае сходства возникает размытая ситуация без четких границ. С другой стороны, накапливание несущественных различий у сходных объектов может привести к совершенно непохожим объектам.

В предыдущей части мы обсудили содержательный смысл отношения одинаковости (эквивалентности) объектов. Не менее важной является ситуация, когда приходится устанавливать сходство объектов.

Пусть изучается форма геометрических тел. Если одинаковость формы объектов, например, кубиков, означает их полную взаимозаменяемость в определенной ситуации обучения, то сходство – это частичная взаимозаменяемость, (когда среди кубиков встречаются очень похожие на них параллелепипеды) т. е. возможность взаимной замены с некоторыми (допустимыми в данной ситуации) потерями.

Наибольшая мера для сходства – неразличимость, а вовсе не одинаковость, как может показаться на первый взгляд. Одинаковость – свойство качественно иное. Одинаковость можно рассматривать только как частный случай неразличимости и сходства.

Все дело в том, что неразличимые объекты (так же, как и сходные, похожие) не удается разбить на классы так, чтобы в каждом классе элементы не различались, а элементы разных классов заведомо различались.

В самом деле, будем рассматривать множество точек (х, у) на плоскости. Пусть величина d имеет значение меньшее порога разрешимости глаза, т. е. d – такое расстояние, при котором две точки, находящиеся на этом расстоянии, сливаются в одну, т.е. визуально неразличимы (при выбранном удалении плоскости от наблюдателя). Рассмотрим теперь n точек, лежащих на одной прямой и отстоящих (каждая от соседних) на расстоянии d. Каждая пара
соседних точек неразличима, но, если n достаточно велико, первая и последняя точки будут отстоять друг от друга на большое расстояние и заведомо будут различимы.

Традиционный подход к изучению сходства или неразличимости состоит в том, чтобы сначала определить меру сходства, а затем исследовать взаимное расположение сходных объектов. Английский математик Зиман, изучая модели зрительного аппарата, предложил аксиоматическое определение сходства. Тем самым свойства сходства стало возможным изучать независимо от того, как конкретно оно задано в той или иной ситуации: расстоянием между объектами, совпадением каких-то признаков или субъективным мнением наблюдателя.
Введем экспликацию понятия сходства или неразличимости.

Определение. Отношение Т на множестве M называется отношением толерантности или толерантностью, если оно рефлексивно и симметрично.

Корректность такого определения видна из того, что объект заведомо неразличим сам с собой и, конечно, похож на себя (это задает рефлексивность отношения). Порядок рассмотрения двух объектов не влияет на окончательный вывод об их сходстве или несходстве (симметричность).
Из примера со зрительной неразличимостью точек плоскости видим, что транзитивность толерантности выполняется не для всех пар объектов.

Ясно также, что поскольку одинаковость есть частный случай сходства, то эквивалентность должна быть частным случаем толерантности. Сравнивая определения эквивалентности и толерантности, убеждаемся, что так оно и есть. Философский принцип: «частное богаче общего» наглядно подтверждается. Дополнительное свойство – транзитивности делает часть отношений толерантности эквивалентностями. Двое близнецов бывают настолько одинаковыми, что без риска могут сдавать экзамены друг за друга. Однако если два студента только похожи, то такая проделка, хотя и осуществима, но рискованна.

Каждый элемент множества несет определенную информацию о похожих на него элементах. Но не всю информацию, как в случае одинаковых элементов. Здесь возможны разные степени информации, которую один элемент содержит относительно другого.

Рассмотрим примеры, где толерантность задается разными способами.

Пример 2. Множество M состоит из четырехбуквенных русских слов — нарицательных существительных в именительном падеже. Будем называть такие слова сходными, если они отличаются не более чем на одну букву. Известная задача «Превращение мухи в слона» в точных терминах формулируется так. Найти последовательность слов, начинающуюся словом «муха» и кончающуюся словом «слон», любые два соседних слова в которой сходны в смысле только что данного определения. Решение этой задачи:

муха — мура — тура — тара — кара — каре — кафе — кафр — каюр — каюк — крюк — крок — срок — сток — стон — слон.

Толерантность подмножеств (граней) означает наличие у них общих вершин.

Определение. Множество M с заданным на нем отношением толерантности τ называется пространством толерантности. Таким образом, пространство толерантности есть пара (M, τ).

Пример 4. Пространство толерантности Sp допускает обобщение на бесконечный случай. Пусть H — произвольное множество. Если SH – совокупность всех непустых подмножеств множества H, то отношение толерантности Т на SH задается условием: X Т Y, если X∩Y ≠ ∅. Симметричность и рефлексивность этого отношения очевидны. Пространство SH обозначается и называется «универсальным» пространством толерантности.

Пример 6. Рассмотрим пространство толерантности, компоненты которого принимают любые действительные значения.

В частности, это множество всех точек x = (a1, a2) декартовой плоскости. Толерантность двух точек означает совпадение у них хотя бы одной координаты. Значит, две толерантные точки находятся либо на общей вертикали, либо на общей горизонтали.

Отношения частичного порядка и их анализ

Упорядоченные множества – это множества с введенным на нем отношением порядка. Определение. Множество А и бинарное отношение порядка R на нем (≤) называется частично упорядоченным, если для отношения выполнены (как и в БОЭ) три условия (одно условие другое):

Элемент х∊А ЧУМ А покрывает элемент у∊А, если х > y и не существует z∊А такого, что х > z > y. Пара элементов х, у∊А называется сравнимой, если х ≥ у или х ≤ у.

Если в ЧУМ А всякая пара его элементов является сравнимой, то А называют линейно упорядоченным множеством или цепью.

Если же некоторое ЧУМ В состоит лишь из несравнимых друг с другом элементов, то множество В называют антицепью. Цепь в ЧУМ А называется насыщенной, если она не может быть вложена ни в какую другую цепь, отличную от себя.

Аналогично определяется насыщенная антицепь. Максимальной цепью (антицепью) называется цепь (антицепь), содержащая максимальное количество элементов.

Элемент m ЧУМ А называется минимальным, если в А нет элемента х∊А, отличного от m и такого, что х≤m. Элемент M ЧУМ А называется максимальным, если в А нет элемента х «большего», чем M, отличного от M и такого, что х ≥ M.

Элемент у∊А ЧУМ А называется наибольшим, если ∀ х∊ А х ≤ у. Элемент у∊ А ЧУМ А называется наименьшим, если ∀ х∊А х ≥ у. Для наибольшего и наименьшего элементов принято использовать обозначения 1 и 0 соответственно. Их называют универсальными границами. Всякое ЧУМ А имеет не более одного наименьшего и не более одного наибольшего элементов. В ЧУМ А допустимо несколько минимальных и несколько максимальных элементов
Изображать конечное ЧУМ А удобно диаграммой Хассе, которая представляет собой ориентированный граф, его вершины распределены по уровням диаграммы и соответствуют элементам из А, а каждая дуга направляется вниз и рисуется тогда и только тогда, когда элемент х∊А покрывает элемент у∊А.

Транзитивные дуги не изображаются. Уровни диаграммы Хассе содержат элементы одинакового ранга, т.е. связанные с минимальными элементами ЧУМ путями равной длины (по числу дуг).
Пусть В непустое подмножество ЧУМ А, тогда элемент х∊А называется точной верхней гранью (обозначается supAB) множества В, если х ≥ у для всех у∊В и, если из истинности соотношения z ≥ у для всех у∊В вытекает, что z ≥ х.

Точной нижней гранью (обозначается infAB) множества В называется элемент х∊А, если х ≤ у для всех у∊В и, если из условия z ≤ у для всех у∊ В вытекает, что z ≤ х.

Пример 7. Заданы два конечных числовых множества
А = <0,1,2,…,21>и B = <6,7,10,11>.

ЧУМ (А, ≤) представлено рис. 2.26.

Совокупность В Δ всех верхних граней для В называется верхним конусом для множества В. Совокупность В ∇ всех нижних граней для В называется нижним конусом для В.

исходные множества в n арном отношении r называются

Всякое подмножество ЧУМ также является ЧУМ относительно наследованного порядка. Если в множестве существуют наибольший и/или наименьший элементы, то они являются максимальным (минимальным соответственно). Обратное неверно. Булеан обладает единственным наименьшим (Ø) и единственным наибольшим элементами.

В приведенном множестве наименьший элемент нуль (0) и он совпадает с единственным минимальным элементом, а наибольшего элемента не существует. Максимальными элементами являются <19, 20, 21>. Точная верхняя грань для B = <6,7,10,11>есть элемент 21 (это наименьший элемент в верхнем конусе).

Общая ситуация. Пусть задано множество, мощность которого*******. Из всех бинарных отношений, возможных на этом множестве, выделим бинарные отношения предпочтения и связанные с ними отношения строгих частичных порядков.

Частичные порядки отличаются от строгих частичных порядков только тем, что содержат в своем составе дополнительные элементы (в матричном представлении – диагональные) (аi, ai ) = 1, i = 1(1)n, а число тех и других порядков в полном множестве отношений одинаково. До настоящего времени не найдены зависимости (формула, алгоритм), которые позволяли бы подсчитывать и перечислять при любом n число частичных порядков.

Разными авторами непосредственным подсчетом определены и опубликованы следующие результаты (табл. 2.12).

Вычислительные эксперименты автора позволили получить не только число, но и вид (представление) частичных порядков при разных мощностях множителя-носителя отношений. Принтер задыхался печатая такие огромные списки, но не только красота требует жертв, наука тоже не отказывается от них.

исходные множества в n арном отношении r называются

В таблице 2.12 показаны: n = |A| – мощность множества-носителя; вторая строка – количество всех бинарных отношений на множестве А; и далее

|Ин(n)| – количество классов неизоморфных отношений;
|Г(n)| – количество отношений частичного порядка;
|Гн(n)| – количество классов неизоморфны отношений частичного порядка;
|Гл(n)| = n! – количество отношений линейного порядка.

Как видим, в таблице для небольших n, например, Г(n=4) имеется всего 219, приводятся данные, значения которых с увеличением n очень быстро растут, что существенно усложняет их количественный (и качественный) непосредственный анализ даже с помощью ЭВМ.

Таблица ниже иллюстрирует возможность порождения Г(n=4) всех частичных порядков из пересечения каждого с каждым линейных частичных порядков. Но в этой ситуации возникают избыточные (повторяющиеся), которые при малых n можно отсечь вручную (пересчитать). Получаются 300 матриц, но ЧУМ среди них лишь 219. Общие формулы так и не были получены. На мировом уровне ситуация аналогичная, хотя мне не довелось видеть публикаций о перечислениях ЧУМ западных авторов. Наши алгоритмы вполне оригинальны и пионерские.

Приведу возможную схему решения задачи перечисления элементов пространства частичных порядков (n=4).

исходные множества в n арном отношении r называются

Множество строгих частичных порядков при лексикографическом упорядочении линейных порядков (n=4) порождается при их взаимном пересечении.

исходные множества в n арном отношении r называются

исходные множества в n арном отношении r называются

Несколько важных определений математики, для встречающихся часто в текстах понятий.

Определение. Замкнутый интервал – это множество вида ; открытый интервал не замкнут, и полуоткрытый интервал, т. е. множество вида

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *